
Memory-Aware Scheduling for Sparse Direct
Methods

Emmanuel AGULLO, ICL - University of Tennessee
Abdou GUERMOUCHE, LaBRI, Université de Bordeaux

Jean-Yves L’EXCELLENT, LIP - INRIA

May 15, 2009

AGULLO - GUERMOUCHE - L’EXCELLENT Memory-Aware Scheduling for Sparse Direct Methods 1

Context

Context

Solving sparse linear systems

Ax = b
⇒ Direct methods: A = LU

Typical matrix: BRGM matrix
F 3.7× 106 variables
F 156× 106 non zeros in A
F 4.5× 109 non zeros in LU
F 26.5× 1012 flops

Hardware paradigm
F Many-core architecture.
F Large global amount of

memory.
F Limited memory per core.

Software challenge
→ Need for algorithms whose

memory usage scales with
the number of processors.

F Case study: MUMPS

AGULLO - GUERMOUCHE - L’EXCELLENT Memory-Aware Scheduling for Sparse Direct Methods 2

Context

Context

Solving sparse linear systems

Ax = b
⇒ Direct methods: A = LU

Typical matrix: BRGM matrix
F 3.7× 106 variables
F 156× 106 non zeros in A
F 4.5× 109 non zeros in LU
F 26.5× 1012 flops

Hardware paradigm
F Many-core architecture.
F Large global amount of

memory.
F Limited memory per core.

Software challenge
→ Need for algorithms whose

memory usage scales with
the number of processors.

F Case study: MUMPS

AGULLO - GUERMOUCHE - L’EXCELLENT Memory-Aware Scheduling for Sparse Direct Methods 2

Context

Context

Solving sparse linear systems

Ax = b
⇒ Direct methods: A = LU

Typical matrix: BRGM matrix
F 3.7× 106 variables
F 156× 106 non zeros in A
F 4.5× 109 non zeros in LU
F 26.5× 1012 flops

Hardware paradigm
F Many-core architecture.
F Large global amount of

memory.
F Limited memory per core.

Software challenge
→ Need for algorithms whose

memory usage scales with
the number of processors.

F Case study: MUMPS

AGULLO - GUERMOUCHE - L’EXCELLENT Memory-Aware Scheduling for Sparse Direct Methods 2

Context

Context

Solving sparse linear systems

Ax = b
⇒ Direct methods: A = LU

Typical matrix: BRGM matrix
F 3.7× 106 variables
F 156× 106 non zeros in A
F 4.5× 109 non zeros in LU
F 26.5× 1012 flops

Hardware paradigm
F Many-core architecture.
F Large global amount of

memory.
F Limited memory per core.

Software challenge
→ Need for algorithms whose

memory usage scales with
the number of processors.

F Case study: MUMPS

AGULLO - GUERMOUCHE - L’EXCELLENT Memory-Aware Scheduling for Sparse Direct Methods 2

Context

Outline

1. Multifrontal method

2. Limits to memory scalability

3. A new memory-aware algorithm

4. Preliminary results

5. Conclusion

AGULLO - GUERMOUCHE - L’EXCELLENT Memory-Aware Scheduling for Sparse Direct Methods 3

Multifrontal method

Outline

1. Multifrontal method

2. Limits to memory scalability

3. A new memory-aware algorithm

4. Preliminary results

5. Conclusion

AGULLO - GUERMOUCHE - L’EXCELLENT Memory-Aware Scheduling for Sparse Direct Methods 4

Multifrontal method

The multifrontal method (Duff, Reid’83)

3

5

4

2

1

1 2 3 4 5

3

5

4

2

1

1 2 3 4 5

Non−zero Fill−in

A=

00

0

0

0

0 0 0

0

0

00

0 0

0 0

0

0

0 0

0

0

L+U−I=

Storage divided into two parts:
F Factors systematically written to

disk;
F Active Storage kept in memory.

Factors
Stack of

contribution

blocks

Active

frontal
matrix

Active Storage

3

2

4

5

1

1

5

4 2

3

3

4

4

5

5

Factors

Contribution block

Elimination tree

AGULLO - GUERMOUCHE - L’EXCELLENT Memory-Aware Scheduling for Sparse Direct Methods 5

Multifrontal method

The multifrontal method (Duff, Reid’83)

Storage divided into two parts:
F Factors systematically written to

disk;
F Active Storage kept in memory.

Factors
Stack of

contribution

blocks

Active

frontal
matrix

Active Storage

3

2

4

5

1

1

5

4 2

3

3

4

4

5

5

Factors

Contribution block

Elimination tree

AGULLO - GUERMOUCHE - L’EXCELLENT Memory-Aware Scheduling for Sparse Direct Methods 5

Multifrontal method

The multifrontal method (Duff, Reid’83)

Storage divided into two parts:
F Factors systematically written to

disk;
F Active Storage kept in memory.

Factors
Stack of

contribution

blocks

Active

frontal
matrix

Active Storage

3

2

4

5

1

1

5

4 2

3

3

4

4

5

5

Factors

Contribution block

Elimination tree

AGULLO - GUERMOUCHE - L’EXCELLENT Memory-Aware Scheduling for Sparse Direct Methods 5

Multifrontal method

The multifrontal method (Duff, Reid’83)

Storage divided into two parts:
F Factors systematically written to

disk;
F Active Storage kept in memory.

Factors
Stack of

contribution

blocks

Active

frontal
matrix

Active Storage

3

2

4

5

1

1

5

4 2

3

3

4

4

5

5

Factors

Contribution block

Elimination tree

AGULLO - GUERMOUCHE - L’EXCELLENT Memory-Aware Scheduling for Sparse Direct Methods 5

Multifrontal method

The multifrontal method (Duff, Reid’83)

Storage divided into two parts:
F Factors systematically written to

disk;
F Active Storage kept in memory.

Factors
Stack of

contribution

blocks

Active

frontal
matrix

Active Storage

3

2

4

5

1

1

5

4 2

3

3

4

4

5

5

Factors

Contribution block

Elimination tree

AGULLO - GUERMOUCHE - L’EXCELLENT Memory-Aware Scheduling for Sparse Direct Methods 5

Multifrontal method

The multifrontal method (Duff, Reid’83)

Storage divided into two parts:
F Factors systematically written to

disk;
F Active Storage kept in memory.

Factors
Stack of

contribution

blocks

Active

frontal
matrix

Active Storage

3

2

4

5

1

1

5

4 2

3

3

4

4

5

5

Factors

Contribution block

Elimination tree

AGULLO - GUERMOUCHE - L’EXCELLENT Memory-Aware Scheduling for Sparse Direct Methods 5

Multifrontal method

The multifrontal method (Duff, Reid’83)

Storage divided into two parts:
F Factors systematically written to

disk;
F Active Storage kept in memory.

Factors
Stack of

contribution

blocks

Active

frontal
matrix

Active Storage

3

2

4

5

1

1

5

4 2

3

3

4

4

5

5

Factors

Contribution block

Elimination tree

AGULLO - GUERMOUCHE - L’EXCELLENT Memory-Aware Scheduling for Sparse Direct Methods 5

Multifrontal method

Memory behaviour (serial postorder traversal)

3

21

AGULLO - GUERMOUCHE - L’EXCELLENT Memory-Aware Scheduling for Sparse Direct Methods 6

Multifrontal method

Memory behaviour (serial postorder traversal)

3

21

AGULLO - GUERMOUCHE - L’EXCELLENT Memory-Aware Scheduling for Sparse Direct Methods 6

Multifrontal method

Memory behaviour (serial postorder traversal)

3

21

AGULLO - GUERMOUCHE - L’EXCELLENT Memory-Aware Scheduling for Sparse Direct Methods 6

Multifrontal method

Memory behaviour (serial postorder traversal)

3

21

AGULLO - GUERMOUCHE - L’EXCELLENT Memory-Aware Scheduling for Sparse Direct Methods 6

Multifrontal method

Memory behaviour (serial postorder traversal)

3

21

AGULLO - GUERMOUCHE - L’EXCELLENT Memory-Aware Scheduling for Sparse Direct Methods 6

Multifrontal method

Memory behaviour (serial postorder traversal)

3

21

AGULLO - GUERMOUCHE - L’EXCELLENT Memory-Aware Scheduling for Sparse Direct Methods 6

Multifrontal method

Memory behaviour (serial postorder traversal)

3

21

AGULLO - GUERMOUCHE - L’EXCELLENT Memory-Aware Scheduling for Sparse Direct Methods 6

Multifrontal method

Memory behaviour (serial postorder traversal)

3

21

AGULLO - GUERMOUCHE - L’EXCELLENT Memory-Aware Scheduling for Sparse Direct Methods 6

Multifrontal method

Sequential case results

Memory peak

Worst case.

Memory peak

Best case.

Figure: Impact of the tree traversal on the memory behavior.

→ Algorithms to find the optimal tree traversal have been proposed

AGULLO - GUERMOUCHE - L’EXCELLENT Memory-Aware Scheduling for Sparse Direct Methods 7

Multifrontal method

Sequential case results

Memory peak

Worst case.

Memory peak

Best case.

Figure: Impact of the tree traversal on the memory behavior.

→ Algorithms to find the optimal tree traversal have been proposed

AGULLO - GUERMOUCHE - L’EXCELLENT Memory-Aware Scheduling for Sparse Direct Methods 7

Multifrontal method

Memory efficiency

Definition: Memory Efficiency on p processors (or cores)

e(p) = Sseq
p×Smax(p) , Sseq: serial storage, Smax: parallel storage

Results: Memory Efficiency of MUMPS (with factors on disk)

Number p of processors 16 32 64 128
AUDI KW 1 0.16 0.12 0.13 0.10

CONESHL MOD 0.28 0.28 0.22 0.19
CONV3D64 0.42 0.40 0.41 0.37
QIMONDA07 0.30 0.18 0.11 -

ULTRASOUND80 0.32 0.31 0.30 0.26

AGULLO - GUERMOUCHE - L’EXCELLENT Memory-Aware Scheduling for Sparse Direct Methods 8

Limits to memory scalability

Outline

1. Multifrontal method

2. Limits to memory scalability

3. A new memory-aware algorithm

4. Preliminary results

5. Conclusion

AGULLO - GUERMOUCHE - L’EXCELLENT Memory-Aware Scheduling for Sparse Direct Methods 9

Limits to memory scalability

Parallel multifrontal scheme

F Type 1 : Nodes processed on a single processor
F Type 2 : Nodes processed with a parallel 1D blocked factorization
F Type 3 : Parallel 2D cyclic factorization (root node)

P0

P0

P3P2

P0 P1

P3

P0 P1

P0

P0

P3

P0

P2 P2

P0

P2
P2

P0

P0

P1 P3

P3

T
IM

E

: STATIC

2D static decomposition

SUBTREES

AGULLO - GUERMOUCHE - L’EXCELLENT Memory-Aware Scheduling for Sparse Direct Methods 10

Limits to memory scalability

Parallel multifrontal scheme

F Type 1 : Nodes processed on a single processor
F Type 2 : Nodes processed with a parallel 1D blocked factorization
F Type 3 : Parallel 2D cyclic factorization (root node)

P0
P1

P0

P0

P1

P3

P2

P1

P3P2

P0 P1

P3

P0 P1

P0

P0

P3

P0

P2 P2

P0

P2
P2
P3
P0

P0

P0

P1 P3

P3

T
IM

E

P0

: STATIC

P2

1D pipelined factorization

: DYNAMIC

P3 and P0 chosen by P2 at runtime

2D static decomposition

SUBTREES

P2
P3

AGULLO - GUERMOUCHE - L’EXCELLENT Memory-Aware Scheduling for Sparse Direct Methods 10

Limits to memory scalability

Limits to memory scalability

P0
P1

P0

P0

P1

P3

P2

P1

P3P2

P0 P1

P3

P0 P1

P0

P0

P3

P0

P2 P2

P0

P2
P2
P3
P0

P0

P0

P1 P3

P3

T
IM

E

P0

: STATIC

P2

1D pipelined factorization

: DYNAMIC

P3 and P0 chosen by P2 at runtime

2D static decomposition

SUBTREES

P2
P3

F Many simultaneous active tasks;
F Large master tasks;
F Large subtrees;
F Proportional mapping.

AGULLO - GUERMOUCHE - L’EXCELLENT Memory-Aware Scheduling for Sparse Direct Methods 11

Limits to memory scalability

Limits to memory scalability

P0
P1

P0

P0

P1

P3

P2

P1

P3P2

P0 P1

P3

P0 P1

P0

P0

P3

P0

P2 P2

P0

P2
P2
P3
P0

P0

P0

P1 P3

P3

T
IM

E

P0

: STATIC

P2

1D pipelined factorization

: DYNAMIC

P3 and P0 chosen by P2 at runtime

2D static decomposition

SUBTREES

P2
P3

F Many simultaneous active tasks;
F Large master tasks;
F Large subtrees;
F Proportional mapping.

AGULLO - GUERMOUCHE - L’EXCELLENT Memory-Aware Scheduling for Sparse Direct Methods 11

Limits to memory scalability

Limits to memory scalability

P0
P1

P0

P0

P1

P3

P2

P1

P3P2

P0 P1

P3

P0 P1

P0

P0

P3

P0

P2 P2

P0

P2
P2
P3
P0

P0

P0

P1 P3

P3

T
IM

E

P0

: STATIC

P2

1D pipelined factorization

: DYNAMIC

P3 and P0 chosen by P2 at runtime

2D static decomposition

SUBTREES

P2
P3

F Many simultaneous active tasks;
F Large master tasks;
F Large subtrees;
F Proportional mapping.

AGULLO - GUERMOUCHE - L’EXCELLENT Memory-Aware Scheduling for Sparse Direct Methods 11

Limits to memory scalability

Proportional mapping VS postorder traversal (1/2)
Elimination tree :

d=0

d=1

d=2

d=3

d=4

Mapping
F Initially: all processors on root node;
F Recursively split the set of processors on child subtrees.

Advantages and drawbacks
, Tree-level + task-level parallelism;
/ Bad memory efficiency.

AGULLO - GUERMOUCHE - L’EXCELLENT Memory-Aware Scheduling for Sparse Direct Methods 12

Limits to memory scalability

Proportional mapping VS postorder traversal (1/2)
Proportional mapping:

d=0

d=1

d=2

d=3

d=4

Mapping
F Initially: all processors on root node;
F Recursively split the set of processors on child subtrees.

Advantages and drawbacks
, Tree-level + task-level parallelism;
/ Bad memory efficiency.

AGULLO - GUERMOUCHE - L’EXCELLENT Memory-Aware Scheduling for Sparse Direct Methods 12

Limits to memory scalability

Proportional mapping VS postorder traversal (1/2)
Proportional mapping:

d=0

d=1

d=2

d=3

d=4

512

Mapping
F Initially: all processors on root node;
F Recursively split the set of processors on child subtrees.

Advantages and drawbacks
, Tree-level + task-level parallelism;
/ Bad memory efficiency.

AGULLO - GUERMOUCHE - L’EXCELLENT Memory-Aware Scheduling for Sparse Direct Methods 12

Limits to memory scalability

Proportional mapping VS postorder traversal (1/2)
Proportional mapping:

d=0

d=1

d=2

d=3

d=4

256 256

128 128 128 128

512

Mapping
F Initially: all processors on root node;
F Recursively split the set of processors on child subtrees.

Advantages and drawbacks
, Tree-level + task-level parallelism;
/ Bad memory efficiency.

AGULLO - GUERMOUCHE - L’EXCELLENT Memory-Aware Scheduling for Sparse Direct Methods 12

Limits to memory scalability

Proportional mapping VS postorder traversal (1/2)
Proportional mapping:

d=0

d=1

d=2

d=3

d=4

256 256

128 128 128 128

512

Mapping
F Initially: all processors on root node;
F Recursively split the set of processors on child subtrees.

Advantages and drawbacks
, Tree-level + task-level parallelism;
/ Bad memory efficiency.

AGULLO - GUERMOUCHE - L’EXCELLENT Memory-Aware Scheduling for Sparse Direct Methods 12

Limits to memory scalability

Proportional mapping VS postorder traversal (1/2)
Proportional mapping:

Mapping
F Initially: all processors on root node;
F Recursively split the set of processors on child subtrees.

Advantages and drawbacks
, Tree-level + task-level parallelism;
/ Bad memory efficiency.

AGULLO - GUERMOUCHE - L’EXCELLENT Memory-Aware Scheduling for Sparse Direct Methods 12

Limits to memory scalability

Proportional mapping VS postorder traversal (2/2)
Elimination tree :

d=0

d=1

d=2

d=3

d=4

Traversal
F Postorder traversal, node by node;
F All processors on each node.

Advantages and drawbacks
/ Only task-level parallelism;
, High memory efficiency.

AGULLO - GUERMOUCHE - L’EXCELLENT Memory-Aware Scheduling for Sparse Direct Methods 13

Limits to memory scalability

Proportional mapping VS postorder traversal (2/2)
Postorder traversal :

d=0

d=1

d=2

d=3

d=4

Traversal
F Postorder traversal, node by node;
F All processors on each node.

Advantages and drawbacks
/ Only task-level parallelism;
, High memory efficiency.

AGULLO - GUERMOUCHE - L’EXCELLENT Memory-Aware Scheduling for Sparse Direct Methods 13

Limits to memory scalability

Proportional mapping VS postorder traversal (2/2)
Postorder traversal :

d=0

d=1

d=2

d=3

d=4

Traversal
F Postorder traversal, node by node;
F All processors on each node.

Advantages and drawbacks
/ Only task-level parallelism;
, High memory efficiency.

AGULLO - GUERMOUCHE - L’EXCELLENT Memory-Aware Scheduling for Sparse Direct Methods 13

Limits to memory scalability

Proportional mapping VS postorder traversal (2/2)
Postorder traversal :

d=0

d=1

d=2

d=3

d=4

Traversal
F Postorder traversal, node by node;
F All processors on each node.

Advantages and drawbacks
/ Only task-level parallelism;
, High memory efficiency.

AGULLO - GUERMOUCHE - L’EXCELLENT Memory-Aware Scheduling for Sparse Direct Methods 13

Limits to memory scalability

Proportional mapping VS postorder traversal (2/2)
Postorder traversal :

d=0

d=1

d=2

d=3

d=4

Traversal
F Postorder traversal, node by node;
F All processors on each node.

Advantages and drawbacks
/ Only task-level parallelism;
, High memory efficiency.

AGULLO - GUERMOUCHE - L’EXCELLENT Memory-Aware Scheduling for Sparse Direct Methods 13

Limits to memory scalability

Proportional mapping VS postorder traversal (2/2)
Postorder traversal :

d=0

d=1

d=2

d=3

d=4

Traversal
F Postorder traversal, node by node;
F All processors on each node.

Advantages and drawbacks
/ Only task-level parallelism;
, High memory efficiency.

AGULLO - GUERMOUCHE - L’EXCELLENT Memory-Aware Scheduling for Sparse Direct Methods 13

Limits to memory scalability

Proportional mapping VS postorder traversal (2/2)
Postorder traversal :

d=0

d=1

d=2

d=3

d=4

Traversal
F Postorder traversal, node by node;
F All processors on each node.

Advantages and drawbacks
/ Only task-level parallelism;
, High memory efficiency.

AGULLO - GUERMOUCHE - L’EXCELLENT Memory-Aware Scheduling for Sparse Direct Methods 13

Limits to memory scalability

Proportional mapping VS postorder traversal (2/2)
Postorder traversal :

Traversal
F Postorder traversal, node by node;
F All processors on each node.

Advantages and drawbacks
/ Only task-level parallelism;
, High memory efficiency.

AGULLO - GUERMOUCHE - L’EXCELLENT Memory-Aware Scheduling for Sparse Direct Methods 13

Limits to memory scalability

Proportional mapping VS postorder traversal (2/2)
Postorder traversal :

Traversal
F Postorder traversal, node by node;
F All processors on each node.

Advantages and drawbacks
/ Only task-level parallelism;
, High memory efficiency.

AGULLO - GUERMOUCHE - L’EXCELLENT Memory-Aware Scheduling for Sparse Direct Methods 13

Limits to memory scalability

Proportional mapping VS postorder traversal (2/2)
Postorder traversal :

d=0

d=1

d=2

d=3

d=4

512

512

512

512 512512

512

Traversal
F Postorder traversal, node by node;
F All processors on each node.

Advantages and drawbacks
/ Only task-level parallelism;
, High memory efficiency.

AGULLO - GUERMOUCHE - L’EXCELLENT Memory-Aware Scheduling for Sparse Direct Methods 13

A new memory-aware algorithm

Outline

1. Multifrontal method

2. Limits to memory scalability

3. A new memory-aware algorithm

4. Preliminary results

5. Conclusion

AGULLO - GUERMOUCHE - L’EXCELLENT Memory-Aware Scheduling for Sparse Direct Methods 14

A new memory-aware algorithm

Memory-aware mapping algorithm
Elimination tree :

d=0

d=1

d=2

d=3

d=4

Mapping
F Initially: all processors on root node;
F Recursively split the set of processors on child subtrees if

memory allows for it.

AGULLO - GUERMOUCHE - L’EXCELLENT Memory-Aware Scheduling for Sparse Direct Methods 15

A new memory-aware algorithm

Memory-aware mapping algorithm
Memory-aware mapping:

d=0

d=1

d=2

d=3

d=4

Mapping
F Initially: all processors on root node;
F Recursively split the set of processors on child subtrees if

memory allows for it.

AGULLO - GUERMOUCHE - L’EXCELLENT Memory-Aware Scheduling for Sparse Direct Methods 15

A new memory-aware algorithm

Memory-aware mapping algorithm
Memory-aware mapping:

d=0

d=1

d=2

d=3

d=4

512

Mapping
F Initially: all processors on root node;
F Recursively split the set of processors on child subtrees if

memory allows for it.

AGULLO - GUERMOUCHE - L’EXCELLENT Memory-Aware Scheduling for Sparse Direct Methods 15

A new memory-aware algorithm

Memory-aware mapping algorithm
Memory-aware mapping:

d=0

d=1

d=2

d=3

d=4

256 256

512

512

512

512

512

Mapping
F Initially: all processors on root node;
F Recursively split the set of processors on child subtrees if

memory allows for it.

AGULLO - GUERMOUCHE - L’EXCELLENT Memory-Aware Scheduling for Sparse Direct Methods 15

A new memory-aware algorithm

Memory-aware mapping algorithm
Memory-aware mapping:

d=0

d=1

d=2

d=3

d=4

256 256

512

512

512

512

512

Advantages

, Robust: guaranteed (if memory M0 <
Sseq

p).
, Efficient: available memory provides tree-level parallelism.

AGULLO - GUERMOUCHE - L’EXCELLENT Memory-Aware Scheduling for Sparse Direct Methods 15

Preliminary results

Outline

1. Multifrontal method

2. Limits to memory scalability

3. A new memory-aware algorithm

4. Preliminary results

5. Conclusion

AGULLO - GUERMOUCHE - L’EXCELLENT Memory-Aware Scheduling for Sparse Direct Methods 16

Preliminary results

MUMPS: a MUltifrontal Massively Parallel sparse direct
Solver

Solution of large sparse linear systems with:
F Symmetric positive definite matrices;
F General symmetric matrices;
F General unsymmetric matrices.

Implementation
F Distributed Multifrontal Solver (F90, MPI based);
F Dynamic Distributed Scheduling;
F Use of BLAS, BLACS, ScaLAPACK.

Interfaces
F Fortran, C, Matlab, Scilab, Visual Studio.

AGULLO - GUERMOUCHE - L’EXCELLENT Memory-Aware Scheduling for Sparse Direct Methods 17

Preliminary results

Preliminary results
F Excellent memory scalability:

I memory efficiency closed to 1.
F Competitive (time) efficiency

I closed to proportional mapping (if enough memory);
I memory provides tree-level parallelism:

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 0 5 10 15 20 25 30

av
g

nu
m

be
r

of
 p

ro
ce

ss
or

s
pe

r
no

de
 (

no
rm

al
iz

ed
)

Distance to root node (depth)

Proportional mapping
M0=1/32*sequential peak
M0=2/32*sequential peak
M0=5/32*sequential peak
M0=8/32*sequential peak

AGULLO - GUERMOUCHE - L’EXCELLENT Memory-Aware Scheduling for Sparse Direct Methods 18

Conclusion

Outline

1. Multifrontal method

2. Limits to memory scalability

3. A new memory-aware algorithm

4. Preliminary results

5. Conclusion

AGULLO - GUERMOUCHE - L’EXCELLENT Memory-Aware Scheduling for Sparse Direct Methods 19

Conclusion

Conclusion

Prototype of a memory-aware algorithm
F Maximizes the amount of tree-level parallelism with respect to

the amount of memory available per processor/core.
F New static mapping implemented, with constraints on dynamic

schedulers; experimented within the OOC version of MUMPS.
F Very good memory scalability obtained.

On-going work
F Further tuning and validation.
F Generalization to the in-core case.
F Reinject dynamic information to schedulers.

AGULLO - GUERMOUCHE - L’EXCELLENT Memory-Aware Scheduling for Sparse Direct Methods 20

	Context
	Multifrontal method
	Limits to memory scalability
	A new memory-aware algorithm
	Preliminary results
	Conclusion

