Memory-Aware Scheduling for Sparse Direct

Methods

Emmanuel AGULLO, ICL - University of Tennessee
Abdou GUERMOUCHE, LaBRlI, Université de Bordeaux
Jean-Yves UEXCELLENT, LIP - INRIA

May 15, 2009

AGULLO - GUERMOUGHE - LUEXCELLENT Memory-Aware Scheduling for Sparse Direct Methods

Context
Context

Solving sparse linear systems

Ax=0>
= Direct methods: A = LU

AGULLO - GUERMOUCHE - UEXCELLENT Memory-Aware Scheduling for Sparse Direct Methods

Context
Context

Solving sparse linear systems | Typical matrix: BRGM matrix
* 3.7 x 10° variables

* 156 x 10° non zeros in A

* 4.5 x 10° non zeros in LU
26.5 x 10'? flops

»*

Ax=0>
= Direct methods: A = LU

AGULLO - GUERMOUCHE - UEXCELLENT Memory-Aware Scheduling for Sparse Direct Methods

Context
Context

Solving sparse linear systems | Typical matrix: BRGM matrix

* 3.7 x 10° variables

* 156 x 10% non zeros in A
* 4.5 x 10° non zeros in LU
* 26.5 x 10'2 flops

Ax=0>
= Direct methods: A = LU

Hardware paradigm
*» Many-core architecture.

* Large global amount of
memory.

* Limited memory per core.

AGULLO - GUERMOUCHE - UEXCELLENT Memory-Aware Scheduling for Sparse Direct Methods

Context
Context

Solving sparse linear systems | Typical matrix: BRGM matrix
* 3.7 x 10% variables

* 156 x 10% non zeros in A

* 4.5 x 10° non zeros in LU

* 26.5 x 10'? flops

Ax=0>
= Direct methods: A = LU

Hardware paradigm Software challenge
* Many-core architecture. — Need for algorithms whose
* Large global amount of memory usage scales with
memory. the number of processors.
» Limited memory per core. » Case study: MUMPS

AGULLO - GUERMOUCHE - UEXCELLENT Memory-Aware Scheduling for Sparse Direct Methods

Context
QOutline

1. Multifrontal method

2. Limits to memory scalability

3. A new memory-aware algorithm
4. Preliminary results

5. Conclusion

AGULLO - GUERMOUCHE - LEXCELLENT Memory-Aware Scheduling for Sparse Direct Methods

Multifrontal method

Outline

1. Multifrontal method

AGULLO - GUERMOUCHE - LEXCELLENT Memory-Aware Scheduling for Sparse Direct Methods

. Non-zero

. Fill-in

Storage divided into two parts:

* Factors

* Active Storage

Active
frontal
matrix

Stack of
contribution
blocks

Active Storage

AGULLO - GUERMOUGHE - LUEXCELLENT

Factors / \ 3 E

1
4
5

Contribution block

Elimination tree

Memory-Aware Scheduling for Sparse Direct Methods

Multifrontal method

The multifrontal method (Duff, Reid’83)

Storage divided into two parts: Factors / \3 3.
= Factors ! 4\

* Active Storage ’

Contribution block

Active
frontal
matrix

Elimination tree

Active Storage

AGULLO - GUERMOUGHE - LUEXCELLENT Memory-Aware Scheduling for Sparse Direct Methods

ifrontal method

The multifrontal method (Duff, Reid’83)

Storage divided into two parts: Factors / \3 3!

* Factors systematically written to ! \
. 1
disk; .\
* Active Storage kept in memory. ’
Contribution block
Active Stack of AR q
Factors frontal | contribution Elimination tree
matrix blocks

Active Storage

AGULLO - GUERMOUGHE - LUEXCELLENT Memory-Aware Scheduling for Sparse Direct Methods

Multifrontal method

The multifrontal method (Duff, Reid’83)

Storage divided into two parts:

= Factors systematically written to

disk;

* Active Storage kept in memory.

Active
Factors frontal
matrix

Stack of
contribution
blocks

Active Storage

AGULLO - GUERMOUGHE - LUEXCELLENT

4
5 4

Factors / \ 3
3y
\ 1
1
4

8

Contribution block

Elimination tree

Memory-Aware Scheduling for Sparse Direct Methods

Multifrontal method

The multifrontal method (Duff, Reid’83)

Storage divided into two parts:

= Factors systematically written to

disk;

* Active Storage kept in memory.

Active
Factors frontal
matrix

Stack of
contribution
blocks

Active Storage

AGULLO - GUERMOUGHE - LUEXCELLENT

4
5 4

Factors / \ 3
3y
\ .
1
4 2

8 3

Contribution block

Elimination tree

Memory-Aware Scheduling for Sparse Direct Methods

Multifrontal method

The multifrontal method (Duff, Reid’83)

Storage divided into two parts: Factors / \ 3

3 4
* Factors systematically written to ! \
. 1
disk; g 2
2
* Active Storage kept in memory. ; .
Contribution block
Active Stack of AR q
Factors frontal | contribution Elimination tree
matrix blocks

Active Storage

AGULLO - GUERMOUCHE - LEXCELLENT Memory-Aware Scheduling for Sparse Direct Methods

Multifrontal method

The multifrontal method (Duff, Reid’83)

Storage divided into two parts:

= Factors systematically written to

disk;

* Active Storage kept in memory.

Active
Factors frontal
matrix

Stack of
contribution
blocks

Active Storage

AGULLO - GUERMOUGHE - LUEXCELLENT

4
5 4

Factors / \ 3
3y
\ 1
1
4

8

Contribution block

Elimination tree

Memory-Aware Scheduling for Sparse Direct Methods

Multifrontal method

Memory behaviour (serial postorder traversal)

AGULLO - GUERMOUCHE - LEXCELLENT Memory-Aware Scheduling for Sparse Direct Methods n

Multifrontal method

Memory behaviour (serial postorder traversal)

AGULLO - GUERMOUCHE - LEXCELLENT Memory-Aware Scheduling for Sparse Direct Methods n

Multifrontal method

Memory behaviour (serial postorder traversal)

AGULLO - GUERMOUCHE - LEXCELLENT Memory-Aware Scheduling for Sparse Direct Methods n

Multifrontal method

Memory behaviour (serial postorder traversal)

AGULLO - GUERMOUCHE - LEXCELLENT Memory-Aware Scheduling for Sparse Direct Methods n

Multifrontal method

Memory behaviour (serial postorder traversal)

AGULLO - GUERMOUCHE - LEXCELLENT Memory-Aware Scheduling for Sparse Direct Methods n

Multifrontal method

Memory behaviour (serial postorder traversal)

AGULLO - GUERMOUGHE - LUEXCELLENT Memory-Aware Scheduling for Sparse Direct Methods n

Multifrontal method

Memory behaviour (serial postorder traversal)

AGULLO - GUERMOUGHE - LUEXCELLENT Memory-Aware Scheduling for Sparse Direct Methods n

Multifrontal method

Memory behaviour (serial postorder traversal)

AGULLO - GUERMOUCHE - LEXCELLENT Memory-Aware Scheduling for Sparse Direct Methods n

Multifrontal method

Sequential case results

/Memory peak
; i /Memory peak i i E

Worst case. Best case.

Figure: Impact of the tree traversal on the memory behavior.

AGULLO - GUERMOUCHE - LEXCELLENT Memory-Aware Scheduling for Sparse Direct Methods

Multifrontal method
Sequential case results

/Memory peak

/Memory peak

Worst case. Best case.

Figure: Impact of the tree traversal on the memory behavior.

— Algorithms to find the optimal tree traversal have been proposed

AGULLO - GUERMOUCHE - UEXCELLENT Memory-Aware Scheduling for Sparse Direct Methods

Multifrontal method

Memory efficiency

Definition: Memory Efficiency on p processors (or cores)

— Sseq o i .
e(p) = pXSnax(p)’ Sseq: Serial storage, Sy..: parallel storage

Results: Memory Efficiency of MuMP S (with factors on disk)

Number p of processors | 16 32 64 | 128
AUDIKW.1 | 0.16 | 0.12 | 0.13 | 0.10

CONESHL_MOD | 0.28 | 0.28 | 0.22 | 0.19

CONV3D64 | 0.42 | 0.40 | 0.41 | 0.37

QIMONDAO7 | 0.30 | 0.18 | 0.11 -
ULTRASOUNDSO | 0.32 | 0.31 | 0.30 | 0.26

AGULLO - GUERMOUCHE - LEXCELLENT Memory-Aware Scheduling for Sparse Direct Methods

Limits to memory scalability

Outline

2. Limits to memory scalability

AGULLO - GUERMOUCHE - LEXCELLENT Memory-Aware Scheduling for Sparse Direct Methods n

Limits to memory scalability
Parallel multifrontal scheme

* Type 1 : Nodes processed on a single processor
* Type 2 : Nodes processed with a parallel 1D blocked factorization
* Type 3 : Parallel 2D cyclic factorization (root node)

2D static decomposition

TIME

[:sTATIC

SUBTREES

AGULLO - GUERMOUGHE - LUEXCELLENT Memory-Aware Scheduling for Sparse Direct Methods

Limits to memory scalability

Parallel multifrontal scheme

* Type 1 : Nodes processed on a single processor
* Type 2 : Nodes processed with a parallel 1D blocked factorization
* Type 3 : Parallel 2D cyclic factorization (root node)

2D static decomposition

Wl

\
.

TIME

1D pipé!ined factorization
P3 and PO chosen by P2 at runtime

[: STATIC
[1 :DYNAMIC
SUBTREES

AGULLO - GUERMOUGHE - LUEXCELLENT Memory-Aware Scheduling for Sparse Direct Methods

Limits to memory scalability
Limits to memory scalability

2D static

3|38
3|83

TIME

1D plﬁélna} factorization
P3 and PO chosen by P2 at runtime

I : STATIC
[:DYNAMIC

SUBTREES

*» Many simultaneous active tasks;
* Large master tasks;
* Large subtrees;

AGULLO - GUERMOUCHE - LEXCELLENT Memory-Aware Scheduling for Sparse Direct Methods

Limits to memory scalability
Limits to memory scalability

2D static

TIME

3|38

3|83

SUBTREES

*» Many simultaneous active tasks;

* Large master tasks;

* Large subtrees;

AGULLO - GUERMOUGHE - LUEXCELLENT

Memory-Aware Scheduling for Sparse Direct Methods

1D plﬁélna} factorization
P3 and PO chosen by P2 at runtime

I : STATIC
[:DYNAMIC

Limits to memory scalability
Limits to memory scalability

2D static

3|38
3|83

TIME

1D plﬁélna} factorization
P3 and PO chosen by P2 at runtime

I : STATIC
[:DYNAMIC

SUBTREES

*

Many simultaneous active tasks;
Large master tasks;

*

*

Large subtrees;

*

Proportional mapping.

AGULLO - GUERMOUCHE - LEXCELLENT Memory-Aware Scheduling for Sparse Direct Methods

Limits to memory scalability

Proportional mapping VS postorder traversal (1/2)

Elimination tree :

d=0
d=1
d=2
d=3
d=4

AGULLO - GUERMOUGHE - LUEXCELLENT Memory-Aware Scheduling for Sparse Direct Methods

Limits to memory scalability

Proportional mapping VS postorder traversal (1/2)

Proportional mapping:

d=0
d=1
d=2
d=3
d=4

Mapping

AGULLO - GUERMOUGHE - LUEXCELLENT Memory-Aware Scheduling for Sparse Direct Methods

Limits to memory scalability

Proportional mapping VS postorder traversal (1/2)

Proportional mapping:
512

d=4

L N A N S A S O S S S SO S S S A S A S AR S A AR
L2 S T S S S S S S S O A S S S A W S U AR SR A A
T2 S S S S S S O S S A O S A A U A W A S WRVINY

Mapping
= Initially: all processors on root node;

AGULLO - GUERMOUGHE - LUEXCELLENT Memory-Aware Scheduling for Sparse Direct Methods

Limits to memory scalability

Proportional mapping VS postorder traversal (1/2)

Proportional mapping:

512
d=0

d=1
d=2
d=3
d=4

Mapping
= Initially: all processors on root node;
* Recursively split the set of processors on child subtrees.

AGULLO - GUERMOUGHE - LUEXCELLENT Memory-Aware Scheduling for Sparse Direct Methods

Limits to memory scalability

Proportional mapping VS postorder traversal (1/2)

Proportional mapping:

512
d=0

d=1
d=2
d=3
d=4

Mapping
= Initially: all processors on root node;
* Recursively split the set of processors on child subtrees.

Advantages and drawbacks
Tree-level + task-level parallelism;

AGULLO - GUERMOUGHE - LUEXCELLENT Memory-Aware Scheduling for Sparse Direct Methods

Limits to memory scalability

Proportional mapping VS postorder traversal (1/2)

Proportional mapping:

Mapping
= Initially: all processors on root node;
* Recursively split the set of processors on child subtrees.

Advantages and drawbacks
Tree-level + task-level parallelism;
©® Bad memory efficiency.

AGULLO - GUERMOUGHE - LUEXCELLENT Memory-Aware Scheduling for Sparse Direct Methods

Limits to memory scalability

Proportional mapping VS postorder traversal (2/2)

Elimination tree :

d=0
d=1
d=2
d=3
d=4

AGULLO - GUERMOUGHE - LUEXCELLENT Memory-Aware Scheduling for Sparse Direct Methods

Limits to memory scalability

Proportional mapping VS postorder traversal (2/2)

Postorder traversal :

d=0
d=1
d=2
d=3
d=4

Traversal

AGULLO - GUERMOUGHE - LUEXCELLENT Memory-Aware Scheduling for Sparse Direct Methods

Limits to memory scalability

Proportional mapping VS postorder traversal (2/2)

Postorder traversal
d=0
d=1
d=2
d=3
d=4

L N A N S A S O S S S SO S S S A S A S AR S A AR
L2 S T S S S S S S S O A S S S A W S U AR SR A A
T2 S S S S S S O S S A O S A A U A W A S WRVINY

Traversal
» Postorder traversal, node by node;

AGULLO - GUERMOUGHE - LUEXCELLENT Memory-Aware Scheduling for Sparse Direct Methods

Limits to memory scalability

Proportional mapping VS postorder traversal (2/2)

Postorder traversal
d=0
d=1
d=2
d=3
d=4

L N A N S A S O S S S SO S S S A S A S AR S A AR
L2 S T S S S S S S S O A S S S A W S U AR SR A A
T2 S S S S S S O S S A O S A A U A W A S WRVINY

Traversal
» Postorder traversal, node by node;
= All processors on each node.

AGULLO - GUERMOUGHE - LUEXCELLENT Memory-Aware Scheduling for Sparse Direct Methods

Limits to memory scalability

Proportional mapping VS postorder traversal (2/2)

Postorder traversal

d=0
d=1
d=2
d=3
d=4

Traversal
» Postorder traversal, node by node;
= All processors on each node.

AGULLO - GUERMOUGHE - LUEXCELLENT Memory-Aware Scheduling for Sparse Direct Methods

Limits to memory scalability

Proportional mapping VS postorder traversal (2/2)

Postorder traversal

d=0
d=1
d=2
d=3
d=4

Traversal
» Postorder traversal, node by node;
= All processors on each node.

AGULLO - GUERMOUGHE - LUEXCELLENT Memory-Aware Scheduling for Sparse Direct Methods

Limits to memory scalability

Proportional mapping VS postorder traversal (2/2)

Postorder traversal
d=0
d=1
d=2
d=3
d=4

L N A N S A S O S S S SO S S S A S A S AR S A AR
L2 S T S S S S S S S O A S S S A W S U AR SR A A
T2 S S S S S S O S S A O S A A U A W A S WRVINY

Traversal
» Postorder traversal, node by node;
= All processors on each node.

AGULLO - GUERMOUGHE - LUEXCELLENT Memory-Aware Scheduling for Sparse Direct Methods

Limits to memory scalability

Proportional mapping VS postorder traversal (2/2)

Postorder traversal :

Traversal
» Postorder traversal, node by node;
= All processors on each node.

Advantages and drawbacks

High memory efficiency.

AGULLO - GUERMOUGHE - LUEXCELLENT Memory-Aware Scheduling for Sparse Direct Methods

Limits to memory scalability

Proportional mapping VS postorder traversal (2/2)

Postorder traversal :

Traversal
» Postorder traversal, node by node;
= All processors on each node.

Advantages and drawbacks

High memory efficiency.

AGULLO - GUERMOUGHE - LUEXCELLENT Memory-Aware Scheduling for Sparse Direct Methods

Limits to memory scalability

Proportional mapping VS postorder traversal (2/2)

Postorder traversal :

512
d=0

d=1
d=2
d=3
d=4

512

Traversal
» Postorder traversal, node by node;
= All processors on each node.

Advantages and drawbacks
® Only task-level parallelism;
High memory efficiency.

AGULLO - GUERMOUGHE - LUEXCELLENT Memory-Aware Scheduling for Sparse Direct Methods

A new memory-aware algorithm

Outline

3. A new memory-aware algorithm

AGULLO - GUERMOUCHE - LEXCELLENT Memory-Aware Scheduling for Sparse Direct Methods

A new memory-aware algorithm

Memory-aware mapping algorithm

Elimination tree

d=0
d=1
d=2
d=3
d=4

AGULLO - GUERMOUGHE - LUEXCELLENT Memory-Aware Scheduling for Sparse Direct Methods

A new memory-aware algorithm

Memory-aware mapping algorithm

Memory-aware mapping:

d=4

Mapping

AGULLO - GUERMOUGHE - LUEXCELLENT Memory-Aware Scheduling for Sparse Direct Methods

A new memory-aware algorithm

Memory-aware mapping algorithm

Memory-aware mapping:
512

d=4

L N A N S A S O S S S SO S S S A S A S AR S A AR
L2 S T S S S S S S S O A S S S A W S U AR SR A A
T2 S S S S S S O S S A O S A A U A W A S WRVINY

Mapping
* Initially: all processors on root node;

AGULLO - GUERMOUGHE - LUEXCELLENT Memory-Aware Scheduling for Sparse Direct Methods

A new memory-aware algorithm

aware mapping algorithm

Memory-aware mapping:

512
d=0

d=1
d=2
d=3
d=4

L N A N S A S O S S S SO S S S A S A S AR S A AR
L2 S T S S S S S S S O A S S S A W S U AR SR A A
T2 S S S S S S O S S A O S A A U A W A S WRVINY

Mapping
* Initially: all processors on root node;

* Recursively split the set of processors on child subtrees if
memory allows for it.

AGULLO - GUERMOUGHE - LUEXCELLENT Memory-Aware Scheduling for Sparse Direct Methods

A new memory-aware algorithm

aware mapping algorithm

Memory-aware mapping:

512
d=0

d=1
d=2
d=3
d=4

L N A N S A S O S S S SO S S S A S A S AR S A AR
L2 S T S S S S S S S O A S S S A W S U AR SR A A
T2 S S S S S S O S S A O S A A U A W A S WRVINY

Advantages

Robust: guaranteed (if memory My < S;j‘f).

Efficient: available memory provides tree-level parallelism.

AGULLO - GUERMOUGHE - LUEXCELLENT Memory-Aware Scheduling for Sparse Direct Methods

Preliminary results

Outline

4. Preliminary results

AGULLO - GUERMOUGHE - LUEXCELLENT Memory-Aware Scheduling for Sparse Direct Methods

Preliminary results

MUMPS: a MUltifrontal Massively Parallel sparse direct

Solver

Solution of large sparse linear systems with:
*» Symmetric positive definite matrices;
» General symmetric matrices;
* General unsymmetric matrices.

Implementation
* Distributed Multifrontal Solver (F90, MPI based);
» Dynamic Distributed Scheduling;
» Use of BLAS, BLACS, ScaLAPACK.

Interfaces
* Fortran, C, Matlab, Scilab, Visual Studio.

AGULLO - GUERMOUGHE - LUEXCELLENT Memory-Aware Scheduling for Sparse Direct Methods

Preliminary results

Preliminary results

* Excellent memory scalability:
» memory efficiency closed to 1.

*» Competitive (time) efficiency
» closed to proportional mapping (if enough memory);
» memory provides tree-level parallelism:

T 20 \
o Proportlonal mappmg
= 18| MO0=1/32*sequential peak ——
£ MO0=2/32*sequential peak
S 16+ M0=5/32*sequential peak ~ + |
£ MO0=8/32*sequential peak O
()
s 14 ,
o
=
g 12 | E
= | \
[i \
s 10 | \]
7] | \
& | \
g 8F | it b
o \
S et ‘ :
o
8 4aff.ts i\ -
E / rs
2 2 ggo N -
= e R R A e e
= 0 Il Il Il Il Il

0 B 10 15 20 25 30

Distance to root node (depth)

AGULLO - GUERMOUGHE - LUEXCELLENT Memory-Aware Scheduling for Sparse Direct Methods

Conclusion

Outline

5. Conclusion

AGULLO - GUERMOUGHE - LUEXCELLENT Memory-Aware Scheduling for Sparse Direct Methods

Conclusion
Conclusion

Prototype of a memory-aware algorithm

* Maximizes the amount of tree-level parallelism with respect to
the amount of memory available per processor/core.

* New static mapping implemented, with constraints on dynamic
schedulers; experimented within the OOC version of MUMPS.

= Very good memory scalability obtained.

On-going work
= Further tuning and validation.
» Generalization to the in-core case.
» Reinject dynamic information to schedulers.

AGULLO - GUERMOUGHE - LUEXCELLENT Memory-Aware Scheduling for Sparse Direct Methods

	Context
	Multifrontal method
	Limits to memory scalability
	A new memory-aware algorithm
	Preliminary results
	Conclusion

