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Solving sparse linear systems

Ax=0>
= Direct methods: A = LU
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Solving sparse linear systems | Typical matrix: BRGM matrix
* 3.7 x 10° variables

* 156 x 10° non zeros in A

* 4.5 x 10° non zeros in LU
26.5 x 10'? flops
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Solving sparse linear systems | Typical matrix: BRGM matrix

* 3.7 x 10° variables

* 156 x 10% non zeros in A
* 4.5 x 10° non zeros in LU
* 26.5 x 10'2 flops

Ax=0>
= Direct methods: A = LU

Hardware paradigm
*» Many-core architecture.

* Large global amount of
memory.

* Limited memory per core.
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Context
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Solving sparse linear systems | Typical matrix: BRGM matrix
* 3.7 x 10% variables

* 156 x 10% non zeros in A

* 4.5 x 10° non zeros in LU

* 26.5 x 10'? flops

Ax=0>
= Direct methods: A = LU

Hardware paradigm Software challenge
* Many-core architecture. — Need for algorithms whose
* Large global amount of memory usage scales with
memory. the number of processors.
» Limited memory per core. » Case study: MUMPS
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3. A new memory-aware algorithm
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1. Multifrontal method
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Multifrontal method

The multifrontal method (Duff, Reid’83)
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ifrontal method

The multifrontal method (Duff, Reid’83)

Storage divided into two parts: Factors / \3 3!

* Factors systematically written to ! \
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* Active Storage kept in memory. ’
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The multifrontal method (Duff, Reid’83)
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Multifrontal method

Memory behaviour (serial postorder traversal)
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Multifrontal method

Sequential case results

/Memory peak
; i /Memory peak i i E

Worst case. Best case.

Figure: Impact of the tree traversal on the memory behavior.
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Multifrontal method
Sequential case results

/Memory peak

/Memory peak

Worst case. Best case.

Figure: Impact of the tree traversal on the memory behavior.

— Algorithms to find the optimal tree traversal have been proposed
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Multifrontal method

Memory efficiency

Definition: Memory Efficiency on p processors (or cores)

— Sseq o i .
e(p) = pXSnax(p)’ Sseq: Serial storage, Sy..: parallel storage

Results: Memory Efficiency of MuMP S (with factors on disk)

Number p of processors | 16 32 64 | 128
AUDIKW.1 | 0.16 | 0.12 | 0.13 | 0.10

CONESHL_MOD | 0.28 | 0.28 | 0.22 | 0.19

CONV3D64 | 0.42 | 0.40 | 0.41 | 0.37

QIMONDAO7 | 0.30 | 0.18 | 0.11 -
ULTRASOUNDSO | 0.32 | 0.31 | 0.30 | 0.26
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2. Limits to memory scalability
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Limits to memory scalability
Parallel multifrontal scheme

* Type 1 : Nodes processed on a single processor
* Type 2 : Nodes processed with a parallel 1D blocked factorization
* Type 3 : Parallel 2D cyclic factorization (root node)

2D static decomposition

TIME

[ :sTATIC

SUBTREES
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Limits to memory scalability

Parallel multifrontal scheme

* Type 1 : Nodes processed on a single processor
* Type 2 : Nodes processed with a parallel 1D blocked factorization
* Type 3 : Parallel 2D cyclic factorization (root node)

2D static decomposition

Wl

\
.

TIME

1D pipé!ined factorization
P3 and PO chosen by P2 at runtime

[ : STATIC
[ 1 :DYNAMIC
SUBTREES
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Limits to memory scalability
Limits to memory scalability

2D static

3|38
3|83

TIME

1D plﬁélna} factorization
P3 and PO chosen by P2 at runtime

I : STATIC
[ :DYNAMIC

SUBTREES

*» Many simultaneous active tasks;
* Large master tasks;
* Large subtrees;
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Limits to memory scalability
Limits to memory scalability

2D static

3|38
3|83

TIME

1D plﬁélna} factorization
P3 and PO chosen by P2 at runtime

I : STATIC
[ :DYNAMIC

SUBTREES

*

Many simultaneous active tasks;
Large master tasks;

*

*

Large subtrees;

*

Proportional mapping.
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Limits to memory scalability

Proportional mapping VS postorder traversal (1/2)

Elimination tree :

d=0
d=1
d=2
d=3
d=4
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Limits to memory scalability

Proportional mapping VS postorder traversal (1/2)

Proportional mapping:
512

d=4
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T2 S S S S S S O S S A O S A A U A W A S WRVINY

Mapping
= Initially: all processors on root node;
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Proportional mapping:

512
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Mapping
= Initially: all processors on root node;
* Recursively split the set of processors on child subtrees.

Advantages and drawbacks
Tree-level + task-level parallelism;
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Limits to memory scalability

Proportional mapping VS postorder traversal (1/2)

Proportional mapping:

Mapping
= Initially: all processors on root node;
* Recursively split the set of processors on child subtrees.

Advantages and drawbacks
Tree-level + task-level parallelism;
©® Bad memory efficiency.
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Limits to memory scalability

Proportional mapping VS postorder traversal (2/2)

Elimination tree :

d=0
d=1
d=2
d=3
d=4
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Limits to memory scalability

Proportional mapping VS postorder traversal (2/2)

Postorder traversal :

d=0
d=1
d=2
d=3
d=4

Traversal
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Proportional mapping VS postorder traversal (2/2)

Postorder traversal
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» Postorder traversal, node by node;
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Limits to memory scalability

Proportional mapping VS postorder traversal (2/2)

Postorder traversal :

Traversal
» Postorder traversal, node by node;
= All processors on each node.

Advantages and drawbacks

High memory efficiency.
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Limits to memory scalability

Proportional mapping VS postorder traversal (2/2)

Postorder traversal :

512
d=0

d=1
d=2
d=3
d=4

512

Traversal
» Postorder traversal, node by node;
= All processors on each node.

Advantages and drawbacks
® Only task-level parallelism;
High memory efficiency.
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3. A new memory-aware algorithm
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A new memory-aware algorithm

Memory-aware mapping algorithm

Elimination tree

d=0
d=1
d=2
d=3
d=4
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Memory-aware mapping algorithm

Memory-aware mapping:

d=4

Mapping
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Memory-aware mapping algorithm

Memory-aware mapping:
512

d=4
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Mapping
* Initially: all processors on root node;
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A new memory-aware algorithm

aware mapping algorithm

Memory-aware mapping:

512
d=0

d=1
d=2
d=3
d=4

L N A N S A S O S S S SO S S S A S A S AR S A AR
L2 S T S S S S S S S O A S S S A W S U AR SR A A
T2 S S S S S S O S S A O S A A U A W A S WRVINY

Mapping
* Initially: all processors on root node;

* Recursively split the set of processors on child subtrees if
memory allows for it.
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A new memory-aware algorithm

aware mapping algorithm

Memory-aware mapping:

512
d=0

d=1
d=2
d=3
d=4

L N A N S A S O S S S SO S S S A S A S AR S A AR
L2 S T S S S S S S S O A S S S A W S U AR SR A A
T2 S S S S S S O S S A O S A A U A W A S WRVINY

Advantages

Robust: guaranteed (if memory My < S;j‘f).

Efficient: available memory provides tree-level parallelism.
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Preliminary results

MUMPS: a MUltifrontal Massively Parallel sparse direct

Solver

Solution of large sparse linear systems with:
*» Symmetric positive definite matrices;
» General symmetric matrices;
* General unsymmetric matrices.

Implementation
* Distributed Multifrontal Solver (F90, MPI based);
» Dynamic Distributed Scheduling;
» Use of BLAS, BLACS, ScaLAPACK.

Interfaces
* Fortran, C, Matlab, Scilab, Visual Studio.
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Preliminary results

Preliminary results

* Excellent memory scalability:
» memory efficiency closed to 1.

*» Competitive (time) efficiency
» closed to proportional mapping (if enough memory);
» memory provides tree-level parallelism:
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Conclusion
Conclusion

Prototype of a memory-aware algorithm

* Maximizes the amount of tree-level parallelism with respect to
the amount of memory available per processor/core.

* New static mapping implemented, with constraints on dynamic
schedulers; experimented within the OOC version of MUMPS.

= Very good memory scalability obtained.

On-going work
= Further tuning and validation.
» Generalization to the in-core case.
» Reinject dynamic information to schedulers.
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