
1/ 22

Steady-state scheduling on CELL

Mathias Jacquelin,

joint work with Matthieu Gallet, Loris Marchal and Yves Robert

INRIA GRAAL project-team
LIP (ENS-Lyon, CNRS, INRIA)

École Normale Supérieure de Lyon, France

“Scheduling for large-scale systems” workshop,
Knoxville, May 14, 2009.

2/ 22

Outline

Introduction
Steady-state scheduling
CELL

Platform and Application Modeling

Mapping the Application

Practical Steady-State on CELL
Preprocessing of the schedule
State machine of the application
Preliminary results

Conclusion and Future works

3/ 22

Motivation

I Multicore architectures: new opportunity to test the
scheduling strategies designed in the GRAAL team.

I Our trademark: efficient scheduling on heterogeneous
platforms

I Most multicore architecture are homogeneous, regular
I Need for tailored algorithms (linear algebra,. . .)

I Emerging heterogeneous multicore:
I Dedicated processing units on GPUs
I Mixed system: processor + accelerator

I This study: steady-state scheduling on CELL (bounded
heterogeneity) to demonstrate the usefulness of complex
(static) scheduling techniques

I Ongoing work: only preliminary results

3/ 22

Motivation

I Multicore architectures: new opportunity to test the
scheduling strategies designed in the GRAAL team.

I Our trademark: efficient scheduling on heterogeneous
platforms

I Most multicore architecture are homogeneous, regular
I Need for tailored algorithms (linear algebra,. . .)

I Emerging heterogeneous multicore:
I Dedicated processing units on GPUs
I Mixed system: processor + accelerator

I This study: steady-state scheduling on CELL (bounded
heterogeneity) to demonstrate the usefulness of complex
(static) scheduling techniques

I Ongoing work: only preliminary results

3/ 22

Motivation

I Multicore architectures: new opportunity to test the
scheduling strategies designed in the GRAAL team.

I Our trademark: efficient scheduling on heterogeneous
platforms

I Most multicore architecture are homogeneous, regular
I Need for tailored algorithms (linear algebra,. . .)

I Emerging heterogeneous multicore:
I Dedicated processing units on GPUs
I Mixed system: processor + accelerator

I This study: steady-state scheduling on CELL (bounded
heterogeneity) to demonstrate the usefulness of complex
(static) scheduling techniques

I Ongoing work: only preliminary results

4/ 22

Introduction: Steady-state Scheduling

Rationale:
I A pipelined application:

I Simple chain
I More complex application

(Directed Acyclic Graph)

I Objective: optimize the throughput
of the application
(number of input files treated per
seconds)

I Today: simple case where each
task has to be mapped on one
single resource

4/ 22

Introduction: Steady-state Scheduling

Rationale:
I A pipelined application:

I Simple chain
I More complex application

(Directed Acyclic Graph)

I Objective: optimize the throughput
of the application
(number of input files treated per
seconds)

I Today: simple case where each
task has to be mapped on one
single resource

T1

T2

T3

4/ 22

Introduction: Steady-state Scheduling

Rationale:
I A pipelined application:

I Simple chain
I More complex application

(Directed Acyclic Graph)

I Objective: optimize the throughput
of the application
(number of input files treated per
seconds)

I Today: simple case where each
task has to be mapped on one
single resource

T1

T2 T3 T4

T5 T6 T7 T8

T9

4/ 22

Introduction: Steady-state Scheduling

Rationale:
I A pipelined application:

I Simple chain
I More complex application

(Directed Acyclic Graph)

I Objective: optimize the throughput
of the application
(number of input files treated per
seconds)

I Today: simple case where each
task has to be mapped on one
single resource

T1

T2 T3 T4

T5 T6 T7 T8

T9

4/ 22

Introduction: Steady-state Scheduling

Rationale:
I A pipelined application:

I Simple chain
I More complex application

(Directed Acyclic Graph)

I Objective: optimize the throughput
of the application
(number of input files treated per
seconds)

I Today: simple case where each
task has to be mapped on one
single resource

P2

P1

P3

P4

T5 T6 T7 T8

T9

T1

T2 T3 T4

5/ 22

CELL brief introduction

I Multicore heterogeneous processor

I Accelerator extension to Power architecture

5/ 22

CELL brief introduction

I Multicore heterogeneous processor

I Accelerator extension to Power architecture

EIBPPE0

SPE3SPE2

SPE6SPE7SPE1SPE0

SPE4

M
E

M
O

R
Y

SPE5

5/ 22

CELL brief introduction

I Multicore heterogeneous processor

I Accelerator extension to Power architecture

EIB

SPE5 SPE3SPE2

SPE6SPE7SPE1SPE0

SPE4

PPE0

M
E

M
O

R
Y

I 1 PPE core
I VMX unit
I L1, L2 cache
I 2 way SMT

5/ 22

CELL brief introduction

I Multicore heterogeneous processor

I Accelerator extension to Power architecture

EIB

SPE4SPE5 SPE2

SPE6SPE7SPE1

M
E

M
O

R
Y

SPE3

PPE0

SPE0

I 8 SPEs
I 128-bit SIMD instruction set
I Local store 256KB
I Dedicated Asynchronous DMA engine

5/ 22

CELL brief introduction

I Multicore heterogeneous processor

I Accelerator extension to Power architecture

EIB

SPE5 SPE3SPE2

SPE6SPE7SPE1SPE0

SPE4

PPE0

M
E

M
O

R
Y

5/ 22

CELL brief introduction

I Multicore heterogeneous processor

I Accelerator extension to Power architecture

EIBPPE0

SPE3SPE2

SPE6SPE7SPE1SPE0

SPE4

M
E

M
O

R
Y

SPE5

I Element Interconnect Bus (EIB)
I 200 GB/s bandwidth

5/ 22

CELL brief introduction

I Multicore heterogeneous processor

I Accelerator extension to Power architecture

EIBPPE0

SPE4 SPE2

SPE6SPE7SPE1SPE0

SPE5

M
E

M
O

R
Y

SPE3

I 25 GB/s bandwidth

6/ 22

Outline

Introduction
Steady-state scheduling
CELL

Platform and Application Modeling

Mapping the Application

Practical Steady-State on CELL
Preprocessing of the schedule
State machine of the application
Preliminary results

Conclusion and Future works

7/ 22

Platform modeling

Simple CELL modeling:

I 1 PPE and 8 SPE: 9 processing elements P1, . . . ,P9, with
unrelated speed,

I Each processing element access the communication bus with a
(bidirectional) bandwidth b = (25GB/s) ,

I The bus is able to route all concurrent communications
without contention (in a first step),

I Due to the limited size of the DMA stack on each SPE:
I Each SPE can perform at most 16 simultaneous DMA

operations,
I The PPE can perform at most 8 simultaneous DMA

operations to/from a given SPE.

I Linear cost communication model:
a data of size S is sent/received in time S/b

8/ 22

Application modeling

Application is described by a directed
acyclic graph:

I Tasks T1, . . . ,Tn

I Processing time of task Tk on Pi is
ti (k),

I If there is a dependency Tk → Tl ,
datak,l is the size of the file
produced by Tk and needed by Tl ,

T1

T2 T3 T4

T5 T6 T7 T8

T9

I If Tk is an input task, it reads readk bytes from main memory,

I If Tk is an output task, it writes writek bytes to main memory,

8/ 22

Application modeling

Application is described by a directed
acyclic graph:

I Tasks T1, . . . ,Tn

I Processing time of task Tk on Pi is
ti (k),

I If there is a dependency Tk → Tl ,
datak,l is the size of the file
produced by Tk and needed by Tl ,

T1

T2 T3 T4

T5 T6 T7 T8

T9

I If Tk is an input task, it reads readk bytes from main memory,

I If Tk is an output task, it writes writek bytes to main memory,

8/ 22

Application modeling

Application is described by a directed
acyclic graph:

I Tasks T1, . . . ,Tn

I Processing time of task Tk on Pi is
ti (k),

I If there is a dependency Tk → Tl ,
datak,l is the size of the file
produced by Tk and needed by Tl ,

T1

T2 T3 T4

T5 T6 T7 T8

T9

I If Tk is an input task, it reads readk bytes from main memory,

I If Tk is an output task, it writes writek bytes to main memory,

9/ 22

Target application: vocoder

Vocoder

StepSource
work=21
I/O: 0->1

*** STATEFUL ***

IntToFloat
work=6

I/O: 1->1

Delay
work=215
I/O: 1->1

*** STATEFUL ***

DUPLICATE(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)
work=null

DFTFilter
work=66
I/O: 1->2

*** PEEKS 28 AHEAD ***
*** STATEFUL ***

DFTFilter
work=66
I/O: 1->2

*** PEEKS 28 AHEAD ***
*** STATEFUL ***

DFTFilter
work=66
I/O: 1->2

*** PEEKS 28 AHEAD ***
*** STATEFUL ***

DFTFilter
work=66
I/O: 1->2

*** PEEKS 28 AHEAD ***
*** STATEFUL ***

DFTFilter
work=66
I/O: 1->2

*** PEEKS 28 AHEAD ***
*** STATEFUL ***

DFTFilter
work=66
I/O: 1->2

*** PEEKS 28 AHEAD ***
*** STATEFUL ***

DFTFilter
work=66
I/O: 1->2

*** PEEKS 28 AHEAD ***
*** STATEFUL ***

DFTFilter
work=66
I/O: 1->2

*** PEEKS 28 AHEAD ***
*** STATEFUL ***

DFTFilter
work=66
I/O: 1->2

*** PEEKS 28 AHEAD ***
*** STATEFUL ***

DFTFilter
work=66
I/O: 1->2

*** PEEKS 28 AHEAD ***
*** STATEFUL ***

DFTFilter
work=66
I/O: 1->2

*** PEEKS 28 AHEAD ***
*** STATEFUL ***

DFTFilter
work=66
I/O: 1->2

*** PEEKS 28 AHEAD ***
*** STATEFUL ***

DFTFilter
work=66
I/O: 1->2

*** PEEKS 28 AHEAD ***
*** STATEFUL ***

DFTFilter
work=66
I/O: 1->2

*** PEEKS 28 AHEAD ***
*** STATEFUL ***

DFTFilter
work=66
I/O: 1->2

*** PEEKS 28 AHEAD ***
*** STATEFUL ***

WEIGHTED_ROUND_ROBIN(2,2,2,2,2,2,2,2,2,2,2,2,2,2,2)
work=null

RectangularToPolar
work=9105
I/O: 30->30

WEIGHTED_ROUND_ROBIN(1,1)
work=null

DUPLICATE(1,1)
work=null

WEIGHTED_ROUND_ROBIN(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)
work=null

WEIGHTED_ROUND_ROBIN(1,1)
work=null

PolarToRectangular
work=5060
I/O: 40->40

FIRSmoothingFilter
work=3300
I/O: 15->15

Identity
work=90

I/O: 15->15

WEIGHTED_ROUND_ROBIN(1,1)
work=null

Deconvolve
work=450

I/O: 30->30

WEIGHTED_ROUND_ROBIN(1,1)
work=null

Duplicator
work=195

I/O: 15->20

LinearInterpolator
work=2010
I/O: 15->60

*** PEEKS 1 AHEAD ***

WEIGHTED_ROUND_ROBIN(1,1)
work=null

Multiplier
work=220

I/O: 40->20

Decimator
work=320

I/O: 60->20

Identity
work=120

I/O: 20->20

PhaseUnwrapper
work=107
I/O: 1->1

*** STATEFUL ***

PhaseUnwrapper
work=107
I/O: 1->1

*** STATEFUL ***

PhaseUnwrapper
work=107
I/O: 1->1

*** STATEFUL ***

PhaseUnwrapper
work=107
I/O: 1->1

*** STATEFUL ***

PhaseUnwrapper
work=107
I/O: 1->1

*** STATEFUL ***

PhaseUnwrapper
work=107
I/O: 1->1

*** STATEFUL ***

PhaseUnwrapper
work=107
I/O: 1->1

*** STATEFUL ***

PhaseUnwrapper
work=107
I/O: 1->1

*** STATEFUL ***

PhaseUnwrapper
work=107
I/O: 1->1

*** STATEFUL ***

PhaseUnwrapper
work=107
I/O: 1->1

*** STATEFUL ***

PhaseUnwrapper
work=107
I/O: 1->1

*** STATEFUL ***

PhaseUnwrapper
work=107
I/O: 1->1

*** STATEFUL ***

PhaseUnwrapper
work=107
I/O: 1->1

*** STATEFUL ***

PhaseUnwrapper
work=107
I/O: 1->1

*** STATEFUL ***

PhaseUnwrapper
work=107
I/O: 1->1

*** STATEFUL ***

WEIGHTED_ROUND_ROBIN(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)
work=null

Duplicator
work=195

I/O: 15->20

FirstDifference
work=15
I/O: 1->1

*** STATEFUL ***

ConstMultiplier
work=8

I/O: 1->1

Accumulator
work=14
I/O: 1->1

*** STATEFUL ***

FirstDifference
work=15
I/O: 1->1

*** STATEFUL ***

ConstMultiplier
work=8

I/O: 1->1

Accumulator
work=14
I/O: 1->1

*** STATEFUL ***

FirstDifference
work=15
I/O: 1->1

*** STATEFUL ***

ConstMultiplier
work=8

I/O: 1->1

Accumulator
work=14
I/O: 1->1

*** STATEFUL ***

FirstDifference
work=15
I/O: 1->1

*** STATEFUL ***

ConstMultiplier
work=8

I/O: 1->1

Accumulator
work=14
I/O: 1->1

*** STATEFUL ***

FirstDifference
work=15
I/O: 1->1

*** STATEFUL ***

ConstMultiplier
work=8

I/O: 1->1

Accumulator
work=14
I/O: 1->1

*** STATEFUL ***

FirstDifference
work=15
I/O: 1->1

*** STATEFUL ***

ConstMultiplier
work=8

I/O: 1->1

Accumulator
work=14
I/O: 1->1

*** STATEFUL ***

FirstDifference
work=15
I/O: 1->1

*** STATEFUL ***

ConstMultiplier
work=8

I/O: 1->1

Accumulator
work=14
I/O: 1->1

*** STATEFUL ***

FirstDifference
work=15
I/O: 1->1

*** STATEFUL ***

ConstMultiplier
work=8

I/O: 1->1

Accumulator
work=14
I/O: 1->1

*** STATEFUL ***

FirstDifference
work=15
I/O: 1->1

*** STATEFUL ***

ConstMultiplier
work=8

I/O: 1->1

Accumulator
work=14
I/O: 1->1

*** STATEFUL ***

FirstDifference
work=15
I/O: 1->1

*** STATEFUL ***

ConstMultiplier
work=8

I/O: 1->1

Accumulator
work=14
I/O: 1->1

*** STATEFUL ***

FirstDifference
work=15
I/O: 1->1

*** STATEFUL ***

ConstMultiplier
work=8

I/O: 1->1

Accumulator
work=14
I/O: 1->1

*** STATEFUL ***

FirstDifference
work=15
I/O: 1->1

*** STATEFUL ***

ConstMultiplier
work=8

I/O: 1->1

Accumulator
work=14
I/O: 1->1

*** STATEFUL ***

FirstDifference
work=15
I/O: 1->1

*** STATEFUL ***

ConstMultiplier
work=8

I/O: 1->1

Accumulator
work=14
I/O: 1->1

*** STATEFUL ***

FirstDifference
work=15
I/O: 1->1

*** STATEFUL ***

ConstMultiplier
work=8

I/O: 1->1

Accumulator
work=14
I/O: 1->1

*** STATEFUL ***

FirstDifference
work=15
I/O: 1->1

*** STATEFUL ***

ConstMultiplier
work=8

I/O: 1->1

Accumulator
work=14
I/O: 1->1

*** STATEFUL ***

WEIGHTED_ROUND_ROBIN(1,1)
work=null

WEIGHTED_ROUND_ROBIN(1,18,1)
work=null

FloatVoid
work=60

I/O: 20->0

WEIGHTED_ROUND_ROBIN(1,0)
work=null

InvDelay
work=9

I/O: 1->1
*** PEEKS 13 AHEAD ***

Identity
work=6

I/O: 1->1

Doubler
work=252

I/O: 18->18

Identity
work=6

I/O: 1->1

WEIGHTED_ROUND_ROBIN(1,18,1)
work=null

Pre_CollapsedDataParallel_1
work=207

I/O: 20->20

Adder
work=146
I/O: 20->2

Subtractor
work=14
I/O: 2->1

ConstMultiplier
work=8

I/O: 1->1

FloatToShort
work=12
I/O: 1->1

FileWriter
work=0

I/O: 1->0

10/ 22

Outline

Introduction
Steady-state scheduling
CELL

Platform and Application Modeling

Mapping the Application

Practical Steady-State on CELL
Preprocessing of the schedule
State machine of the application
Preliminary results

Conclusion and Future works

11/ 22

How to compute an optimal mapping

I Ojective: maximize throughput ρ

I Method: write a linear program gathering constraints on the
mapping

I Binary variables: αk
i =

{
1 if Tk is mapped on Pi

0 otherwise

I Other useful binary variables: βk,l
i ,j = 1 iff file Tk → Tl is

transfered from Pi to Pj

12/ 22

Constraints 1/2

On the application structure:

I Each task is mapped on a processor:

∀Tk

∑
i

αk
i = 1

I Given a dependency Tk → Tl , the processor computing Tl

must receive the corresponding file:

∀(k , l) ∈ E , ∀Pj ,
∑

i

βk,l
i ,j ≥ α

l
j

I Given a dependency Tk → Tl , only the processor computing
Tk can send the corresponding file:

∀(k, l) ∈ E ,∀Pi ,
∑

j

βk,l
i ,j ≤ α

k
i

13/ 22

Constraints 2/2

On the achievable throughput ρ = 1/T :

I On a given processor, all tasks must be completed within T :

∀Pi ,
∑
k

αk
i × ti (k) ≤ T

I All incoming communications must be completed within T :

∀Pj ,
1

b

(∑
k

αk
j × readk +

∑
k,l

∑
i

βk,l
i ,j × datak,l

)
≤ T

I All outgoing communications must be completed within T :

∀Pi ,
1

b

(∑
k

αk
i × writek +

∑
k,l

∑
i

βk,l
i ,j × datak,l

)
≤ T

+ constraints on the number of incoming/outgoing
communications to respect the DMA requirements

+ constraints on the available memory on SPE

14/ 22

Optimal mapping computation

I Linear program with the objective of minimizing T

I Integer (binary) variables: Mixed Integer Programming

I NP-complete problem

I Efficient solvers exist with short running time
I for small-size problems
I or when an approximate solution is searched

I We use CPLEX, and look for an approximate solution (5% of
the optimal throughput is good enough)

15/ 22

Outline

Introduction
Steady-state scheduling
CELL

Platform and Application Modeling

Mapping the Application

Practical Steady-State on CELL
Preprocessing of the schedule
State machine of the application
Preliminary results

Conclusion and Future works

16/ 22

Preprocessing of the schedule

Main Objective: Compute minimal starting period and buffer sizes.

I min periodl = maxm∈precl(min periodm) + peekl + 2

I min buffi ,l = min periodl −min periodi

min periodk

min periodl = maxm∈precl(min periodm) + peekl + 2

min buffj ,l

min buffi ,l =min periodl

−min periodi

min periodj

peekj peekk

peeki

peekl

min buffi ,k

min buffi ,j

min periodi

min buffk,l

Tl

Ti

Tk
Tj

16/ 22

Preprocessing of the schedule

Main Objective: Compute minimal starting period and buffer sizes.

min buffi ,j = 3

min buffj ,l = 6

min periodl = 9

min buffi ,l = 9

min buffk,l = 4

peeki = 0

min periodi = 0

peekj = 1

min periodj = 3 min periodk = 5

peekk = 3

peekl = 2

min buffi ,k = 5

Tl

Ti

Tk
Tj

16/ 22

Preprocessing of the schedule

Main Objective: Compute minimal starting period and buffer sizes.

peekk = 3

peekl = 2

min buffi ,k = 5

min buffi ,j = 3

min buffi ,l = 9

min buffj ,l = 6

min periodl = 9

peeki = 0

min buffk,l = 4

min periodi = 0

min periodj = 3

peekj = 1

min periodk = 5

Ti

Tk
Tj

Tl

period = 0

16/ 22

Preprocessing of the schedule

Main Objective: Compute minimal starting period and buffer sizes.

min periodl = 9

min buffj ,l = 6

min buffi ,j = 3

min buffi ,k = 5

peekl = 2

peekk = 3

min periodj = 3 min periodk = 5

min periodi = 0

peeki = 0

min buffi ,l = 9

min buffk,l = 4

peekj = 1

Tk

Tl

Tj

Ti

period = 1

16/ 22

Preprocessing of the schedule

Main Objective: Compute minimal starting period and buffer sizes.

peekk = 3

min periodk = 5

peekj = 1

min periodj = 3

min periodi = 0

peeki = 0

min buffk,l = 4

min periodl = 9

min buffj ,l = 6

min buffi ,j = 3

min buffi ,k = 5

peekl = 2

min buffi ,l = 9

Tk

Ti

Tj

Tl

period = 2

16/ 22

Preprocessing of the schedule

Main Objective: Compute minimal starting period and buffer sizes.

peekk = 3

min periodk = 5

peekj = 1

min periodj = 3

min periodi = 0

peeki = 0

min buffk,l = 4

min periodl = 9

min buffi ,l = 9

min buffj ,l = 6

min buffi ,j = 3

min buffi ,k = 5

peekl = 2
Tl

Tj Tk

Ti

period = 3

16/ 22

Preprocessing of the schedule

Main Objective: Compute minimal starting period and buffer sizes.

peekk = 3

min periodk = 5

peekj = 1

min periodj = 3

min periodi = 0

peeki = 0

min buffk,l = 4

min periodl = 9

min buffi ,l = 9

min buffj ,l = 6

min buffi ,j = 3

min buffi ,k = 5

peekl = 2
Tl

Tj Tk

Ti

period = 4

16/ 22

Preprocessing of the schedule

Main Objective: Compute minimal starting period and buffer sizes.

peekk = 3

min periodk = 5

peekj = 1

min periodj = 3

min periodi = 0

peeki = 0

min buffk,l = 4

min periodl = 9

min buffi ,l = 9

min buffj ,l = 6

min buffi ,j = 3

min buffi ,k = 5

peekl = 2
Tl

Tj Tk

Ti

period = 5

16/ 22

Preprocessing of the schedule

Main Objective: Compute minimal starting period and buffer sizes.

min periodj = 3

peekj = 1

min periodk = 5

peekk = 3

peekl = 2

min buffi ,k = 5

min buffi ,j = 3

min buffj ,l = 6

min periodl = 9

min buffi ,l = 9

min buffk,l = 4

peeki = 0

min periodi = 0

Tk
Tj

Tl

Ti

period = 6

16/ 22

Preprocessing of the schedule

Main Objective: Compute minimal starting period and buffer sizes.

peekj = 1

min periodj = 3

min periodi = 0

min buffj ,l = 6

peekk = 3

min buffi ,j = 3

min periodk = 5

peeki = 0

min buffk,l = 4

min buffi ,k = 5

peekl = 2

min periodl = 9

min buffi ,l = 9

Tk

Ti

Tj

Tl

period = 7

16/ 22

Preprocessing of the schedule

Main Objective: Compute minimal starting period and buffer sizes.

min periodl = 9

min buffi ,l = 9

min buffk,l = 4

peeki = 0

min periodi = 0

min periodj = 3

peekj = 1 peekk = 3

min periodk = 5

peekl = 2

min buffi ,k = 5

min buffi ,j = 3

min buffj ,l = 6

Ti

Tk
Tj

Tl

period = 8

16/ 22

Preprocessing of the schedule

Main Objective: Compute minimal starting period and buffer sizes.

min buffi ,l = 9

min buffk,l = 4

peeki = 0

min periodi = 0

min periodj = 3

peekj = 1

min periodk = 5

peekl = 2

peekk = 3

min buffi ,k = 5

min buffi ,j = 3

min buffj ,l = 6

min periodl = 9

Tj

Tl

Ti

Tk

period = 9

17/ 22

State machine of the application

Two main phases: Computation and Communication

Select a Task

Wait Resources

Process Task

Signal new Data

C
o
m

p
u
ta

ti
o
n

P
h
a
se

Communicate

17/ 22

State machine of the application

Two main phases: Computation and Communication

Select a Task

Wait Resources

Communicate

Signal new Data

C
o
m

p
u
ta

ti
o
n

P
h
a
se

Process Task

17/ 22

State machine of the application

Two main phases: Computation and Communication

Communicate
Wait Resources

Process Task

Signal new Data

C
o
m

p
u
ta

ti
o
n

P
h
a
se

Communicate

Select a Task

17/ 22

State machine of the application

Two main phases: Computation and Communication

Select a Task

Wait Resources

Communicate

Signal new Data

C
o
m

p
u
ta

ti
o
n

P
h
a
se

Process Task

17/ 22

State machine of the application

Two main phases: Computation and Communication

Select a Task

Wait Resources

Communicate

Signal new Data

C
o
m

p
u
ta

ti
o
n

P
h
a
se

Process Task

17/ 22

State machine of the application

Two main phases: Computation and Communication

No

No more comm.

No

Get Data

Watch DMA

Check input buffers

Check input data

C
o
m

m
u
n
ic

a
ti
o
n

P
h
a
se

Compute

For each inbound comm.

17/ 22

State machine of the application

Two main phases: Computation and Communication

No

No more comm.

No
Check input data

Watch DMA

Check input buffers

Get Data

C
o
m

m
u
n
ic

a
ti
o
n

P
h
a
se

For each inbound comm.

Compute

17/ 22

State machine of the application

Two main phases: Computation and Communication

No

No more comm.

No
Check input data

Watch DMA

Check input buffers

Get Data

C
o
m

m
u
n
ic

a
ti
o
n

P
h
a
se

For each inbound comm.

Compute

17/ 22

State machine of the application

Two main phases: Computation and Communication

No

No more comm.

No
Check input data

Watch DMA

Check input buffers

Get Data

C
o
m

m
u
n
ic

a
ti
o
n

P
h
a
se

For each inbound comm.

Compute

17/ 22

State machine of the application

Two main phases: Computation and Communication

No

No more comm.

No
Check input data

Watch DMA

Check input buffers

Get Data

C
o
m

m
u
n
ic

a
ti
o
n

P
h
a
se

For each inbound comm.

Compute

17/ 22

State machine of the application

Two main phases: Computation and Communication

No

No more comm.

No
Check input data

Watch DMA

Check input buffers

Get Data

C
o
m

m
u
n
ic

a
ti
o
n

P
h
a
se

For each inbound comm.

Compute

18/ 22

Communication between processors

PK PL

T
(i−1)
2

T
(i)
2

T
(i+1)
1

T
(i)
1

18/ 22

Communication between processors

Signal Data(i)

PL

T
(i)
2

T
(i+1)
1

T
(i)
1

PK

T
(i−1)
2

mfc putb for SPEs’ outbound communications.

spe mfcio getb for PPEs’ outbound communications to SPEs.

memcpy for PPEs’ outbound communications to main memory.

18/ 22

Communication between processors

cannot be overwritten
Input buffers are available

to store data
Output buffer containing i

Signal Data(i)

PL

T
(i−1)
2

T
(i)
2

T
(i+1)
1

T
(i)
1

PK

mfc putb for SPEs’ outbound communications.

spe mfcio getb for PPEs’ outbound communications to SPEs.

memcpy for PPEs’ outbound communications to main memory.

18/ 22

Communication between processors

Get Data(i)
cannot be overwritten

Input buffers are available
to store data

Output buffer containing i

Signal Data(i)

T
(i−1)
2

T
(i)
2

T
(i+1)
1

T
(i)
1

PK PL

mfc get for SPEs’ inbound communications.

spe mfcio put for PPEs’ inbound communications from SPEs.

memcpy for PPEs’ inbound communications from main memory.

18/ 22

Communication between processors

Get Data(i)
cannot be overwritten

Input buffers are available
to store data

Output buffer containing i

Signal Data(i)

T
(i−1)
2

T
(i)
2

T
(i+1)
1

T
(i)
1

PK PL

mfc get for SPEs’ inbound communications.

spe mfcio put for PPEs’ inbound communications from SPEs.

memcpy for PPEs’ inbound communications from main memory.

18/ 22

Communication between processors

Transfer Done(i)

Get Data(i)Output buffer containing i
cannot be overwritten

Input buffers are available
to store data

Signal Data(i)

PL

T
(i−1)
2

T
(i)
2

T
(i+1)
1

T
(i)
1

PK

mfc putb for SPEs’ acknowledgements.

spe mfcio getb for PPEs’ acknowledgements to SPEs.

Self acknowledgement of PPEs’ transfers from main memory.

18/ 22

Communication between processors

Output buffer containing i
can now be overwritten

Transfer Done(i)

Get Data(i)
Input buffers are available

to store data
Output buffer containing i

cannot be overwritten

Signal Data(i)

PL

T
(i−1)
2

T
(i)
2

T
(i+1)
1

T
(i)
1

PK

mfc putb for SPEs’ acknowledgements.

spe mfcio getb for PPEs’ acknowledgements to SPEs.

Self acknowledgement of PPEs’ transfers from main memory.

18/ 22

Communication between processors

Signal Data(i + 1)

can now be overwritten
Output buffer containing i

Transfer Done(i)

Get Data(i)
Input buffers are available

to store data
Output buffer containing i

cannot be overwritten

Signal Data(i)

T
(i−1)
2

T
(i)
2

T
(i+1)
1

T
(i)
1

PK PL

mfc putb for SPEs’ acknowledgements.

spe mfcio getb for PPEs’ acknowledgements to SPEs.

Self acknowledgement of PPEs’ transfers from main memory.

19/ 22

Preliminary results

We outperform both greedy heuristic and sequential version.

0 

50 

100 

150 

200 

250 

300 

350 

400 

Sequen-al  Greedy  Linear Program 

Th
ro
ug
hp

ut
 

Results are obtained over 70000 periods

20/ 22

Outline

Introduction
Steady-state scheduling
CELL

Platform and Application Modeling

Mapping the Application

Practical Steady-State on CELL
Preprocessing of the schedule
State machine of the application
Preliminary results

Conclusion and Future works

21/ 22

Feedback on Cell programming

I Multilevel heterogeneity:

I 32 bits SPEs vs 64 bits PPE architectures

I Different communication mechanism and constraints

I Non trivial initialization phase

I Varying data structure sizes (32/64bits)

I Runtime memory allocation

22/ 22

On-going and Future work

I Various code optimizations
I SIMD code for SPEs
I Reduce control overhead

I Better communication modeling
I Is linear cost model relevant ?
I Contention on concurrent DMA operations ?

I Larger platforms
I Using multiple CELL processors
I CELL + other type of processing units ?
I Work on communication modeling

I Design scheduling heuristics
I MIP is costly

	Introduction
	Steady-state scheduling
	CELL

	Platform and Application Modeling
	Mapping the Application
	Practical Steady-State on CELL
	Preprocessing of the schedule
	State machine of the application
	Preliminary results

	Conclusion and Future works

