Steady-state scheduling on CELL

Mathias Jacquelin,

joint work with Matthieu Gallet, Loris Marchal and Yves Robert

INRIA GRAAL project-team
LIP (ENS-Lyon, CNRS, INRIA)

Ecole Normale Supérieure de Lyon, France

“Scheduling for large-scale systems” workshop,
Knoxville, May 14, 2009.

1/ 22

Qutline

Introduction
Steady-state scheduling
CELL
Platform and Application Modeling
Mapping the Application
Practical Steady-State on CELL
Preprocessing of the schedule
State machine of the application

Preliminary results

Conclusion and Future works

2/ 22

Motivation

» Multicore architectures: new opportunity to test the
scheduling strategies designed in the GRAAL team.

» Our trademark: efficient scheduling on heterogeneous
platforms

3/ 22

Motivation

» Multicore architectures: new opportunity to test the
scheduling strategies designed in the GRAAL team.

» Our trademark: efficient scheduling on heterogeneous
platforms

» Most multicore architecture are homogeneous, regular
> Need for tailored algorithms (linear algebra,. . .)
» Emerging heterogeneous multicore:

» Dedicated processing units on GPUs
» Mixed system: processor + accelerator

3/ 22

Motivation

» Multicore architectures: new opportunity to test the
scheduling strategies designed in the GRAAL team.

» Our trademark: efficient scheduling on heterogeneous
platforms

» Most multicore architecture are homogeneous, regular
> Need for tailored algorithms (linear algebra,. . .)
» Emerging heterogeneous multicore:

» Dedicated processing units on GPUs
» Mixed system: processor + accelerator

» This study: steady-state scheduling on CELL (bounded
heterogeneity) to demonstrate the usefulness of complex
(static) scheduling techniques

» Ongoing work: only preliminary results

3/ 22

Introduction: Steady-state Scheduling

Rationale:
» A pipelined application:

4/ 22

Introduction: Steady-state Scheduling

Rationale:
» A pipelined application:
» Simple chain

4/ 22

Introduction: Steady-state Scheduling

Rationale:
» A pipelined application:
» Simple chain

» More complex application
(Directed Acyclic Graph)

4/ 22

Introduction: Steady-state Scheduling

Rationale:
» A pipelined application:
» Simple chain

» More complex application
(Directed Acyclic Graph)

» Objective: optimize the throughput
of the application
(number of input files treated per
seconds)

4/ 22

Introduction: Steady-state Scheduling

Rationale:
» A pipelined application:
» Simple chain
» More complex application
(Directed Acyclic Graph)

» Objective: optimize the throughput
of the application
(number of input files treated per
seconds)

» Today: simple case where each
task has to be mapped on one
single resource

4/ 22

CELL brief introduction

» Multicore heterogeneous processor

» Accelerator extension to Power architecture

5/ 22

CELL brief introduction

» Multicore heterogeneous processor

» Accelerator extension to Power architecture

SPEg SPE; SPE; SPEg

L

SPEs SPE,4 SPE, SPE3

=
]

5/ 22

CELL brief introduction

» Multicore heterogeneous processor

» Accelerator extension to Power architecture

SPEg SPE; SPE; SPEg

L

SPEs SPE,4 SPE, SPE3

=
]

» 1 PPE core
» VMX unit
» L1, L2 cache
» 2 way SMT

5/ 22

CELL brief introduction

» Multicore heterogeneous processor

» Accelerator extension to Power architecture

SPEg SPE; SPE; SPEg

i

SPEs SPE,4 SPE, SPE3

=
]

» 8 SPEs

» 128-bit SIMD instruction set
» Local store 256KB
» Dedicated Asynchronous DMA engine 5/ 22

CELL brief introduction

» Multicore heterogeneous processor

» Accelerator extension to Power architecture

SPEg SPE; SPE; SPEg

L

SPEs SPE,4 SPE, SPE3

=
]

5/ 22

CELL brief introduction

» Multicore heterogeneous processor

» Accelerator extension to Power architecture

SPEg SPE; SPE; SPEg

i

SPEs SPE,4 SPE, SPE3

MEMORY

» Element Interconnect Bus (EIB)
» 200 GB/s bandwidth

5/ 22

CELL brief introduction

» Multicore heterogeneous processor

» Accelerator extension to Power architecture

SPEg SPE; SPE; SPEg

il

SPEs SPE,4 SPE, SPE3

=
il

» 25 GB/s bandwidth

5/ 22

QOutline

Platform and Application Modeling

6/ 22

Platform modeling

Simple CELL modeling:

» 1 PPE and 8 SPE: 9 processing elements P, ..., Py, with
unrelated speed,

» Each processing element access the communication bus with a
(bidirectional) bandwidth b = (25GB/s) ,

» The bus is able to route all concurrent communications
without contention (in a first step),
» Due to the limited size of the DMA stack on each SPE:

» Each SPE can perform at most 16 simultaneous DMA
operations,

» The PPE can perform at most 8 simultaneous DMA
operations to/from a given SPE.

» Linear cost communication model:
a data of size S is sent/received in time S/b

7/ 22

Application modeling

Application is described by a directed
acyclic graph:
» Tasks T1,..., T,

» Processing time of task T, on P; is
t,'(k),

8/ 22

Application modeling

Application is described by a directed
acyclic graph:
» Tasks T1,..., T,
» Processing time of task Ty, on P; is
t,'(k),
» If there is a dependency T, — Ty,

datay ; is the size of the file
produced by Ty and needed by T,

8/ 22

Application modeling

Application is described by a directed
acyclic graph:
» Tasks T1,..., T,
» Processing time of task Ty, on P; is
t,'(k),
» If there is a dependency T, — Ty,

datay ; is the size of the file
produced by Ty and needed by T,

» If Ty is an input task, it reads ready bytes from main memory,

» If Ty is an output task, it writes write, bytes to main memory,

8/ 22

Target application: vocoder

9/ 22

QOutline

Mapping the Application

10/ 22

How to compute an optimal mapping

v

Ojective: maximize throughput p

» Method: write a linear program gathering constraints on the
mapping
1 if Ty is mapped on P;
» Binary variables: a,’-‘ = { , ol '

0 otherwise

v

Other useful binary variables: 6;;’./ =1ifffile Ty — T;is
transfered from P; to P;

11/ 22

Constraints 1/2

On the application structure:

» Each task is mapped on a processor:
VT Y af=1
i

» Given a dependency Ty — T;, the processor computing T;
must receive the corresponding file:

(k1) € E,¥P;, Y Bl > af

1

» Given a dependency Ty — Ty, only the processor computing
Tk can send the corresponding file:

(k1) € EVP, Y B < ak

J

12/ 22

Constraints 2/2

On the achievable throughput p =1/T:
» On a given processor, all tasks must be completed within T

VP, Y af xti(k)<T
k
» All incoming communications must be completed within T
1 Y
VP;, E(Zaj‘ X ready + ZZﬂ,J X datak7,) <T
K P
» All outgoing communications must be completed within T

1 . kI
VP, b(%:af(X writey + ;Zﬁi’j X datak,/) <T
J i

+ constraints on the number of incoming/outgoing
communications to respect the DMA requirements

+ constraints on the available memory on SPE T

Optimal mapping computation

v

Linear program with the objective of minimizing T

v

Integer (binary) variables: Mixed Integer Programming

v

NP-complete problem

v

Efficient solvers exist with short running time

» for small-size problems
» or when an approximate solution is searched

v

We use CPLEX, and look for an approximate solution (5% of
the optimal throughput is good enough)

14/ 22

QOutline

Practical Steady-State on CELL

15/ 22

Preprocessing of the schedule

Main Objective: Compute minimal starting period and buffer sizes.

> min_period; = Maxmeprec/(Min_period,,) + peek; + 2

» min_buff; ; = min_period; — min_period;

peek;
min_period;

min_buff; &

min_buff;;

peeki

peek;

min_period; min_period,

min_buff;; =min_period,

—minperiod: \ i e

min_buffy s

peeki
min_period; = MaXmeprect(min_period,,) + peek + 2

16/ 22

Preprocessing of the schedule

Main Objective: Compute minimal starting period and buffer sizes.

peek; =0

min_period; = 0

min_buff; , =5

min_buff;; = 3

peek, =3

peek; =1
min_period, =5

min_period; = 3

min_buff;; = 9

min_buff;; = 6
min_buffy; = 4

peek; =2
min_period, = 9

16/ 22

Preprocessing of the schedule

Main Objective: Compute minimal starting period and buffer sizes.

peek; = 0

period = 0
min_period; = 0

min_buff; , =5

min_buff;; = 3

peek, =3

peek; =1
min_period, =5

min_period; = 3

min_buff;; = 9

min_buff;; = 6
min_buffy; = 4

peek; =2
min_period, = 9

16/ 22

Preprocessing of the schedule

Main Objective: Compute minimal starting period and buffer sizes.

peek; =0

period = 1
min_period; = 0

min_buff; , =5

min_buff;; = 3

peek, =3

peek; =1
min_period, =5

min_period; = 3

min_buff;; = 9

min_buff;; = 6
min_buffy; = 4

peek; =2
min_period, = 9

16/ 22

Preprocessing of the schedule

Main Objective: Compute minimal starting period and buffer sizes.

peek; =0

period = 2
min_period; = 0

min_buff; , =5

min_buff;; = 3

peek, =3

peek; =1
min_period, =5

min_period; = 3

min_buff;; = 9

min_buff;; = 6
min_buff, ; = 4

peek; =2
min_period, = 9

16/ 22

Preprocessing of the schedule

Main Objective: Compute minimal starting period and buffer sizes.

peek; = 0

period = 3
min_period; = 0

min_buff; , =5

min_buff;; = 3

peek, =3

peek; =1
min_period, =5

min_period; = 3

min_buff;; = 9

min_buff;; = 6
min_buff, ; = 4

peek; =2
min_period, = 9

16/ 22

Preprocessing of the schedule

Main Objective: Compute minimal starting period and buffer sizes.

peek; = 0

period = 4
min_period; = 0

min_buff; , =5

min_buff;; = 3

peek, =3

peek; =1
min_period, =5

min_period; = 3

min_buff;; = 9

min_buff, ; = 4

peek; =2
min_period, = 9

16/ 22

Preprocessing of the schedule

Main Objective: Compute minimal starting period and buffer sizes.

peek; = 0

period = 5
min_period; = 0

min_buff; , =5

min_buff;; = 3

peek, =3

peek; =1
min_period, =5

min_period; = 3

min_buff;; = 9

min_buff, ; = 4

peek; =2
min_period, = 9

16/ 22

Preprocessing of the schedule

Main Objective: Compute minimal starting period and buffer sizes.

peek; = 0

period = 6
min_period; = 0

min_buff; , =5

min_buff;; = 3

peek, =3

peek; =1
min_period, =5

min_period; = 3

min_buff;; = 9

min_buffy; = 4

peek; =2
min_period, = 9

16/ 22

Preprocessing of the schedule

Main Objective: Compute minimal starting period and buffer sizes.

peek; = 0

period =7
min_period; = 0

min_buff; , =5

min_buff;; = 3

peek, =3

peek; =1
min_period, =5

min_period; = 3

min_buff;; = 9

min_buffy; = 4

peek; =2
min_period, = 9

16/ 22

Preprocessing of the schedule

Main Objective: Compute minimal starting period and buffer sizes.

peek; = 0

period = 8
min_period; = 0

min_buff; , =5

min_buff;; = 3

peek, =3

peek; =1
min_period, =5

min_period; = 3

min_buff;; = 9

min_buffy; = 4

peek; =2
min_period, = 9

16/ 22

Preprocessing of the schedule

Main Objective: Compute minimal starting period and buffer sizes.

peek; = 0

period =9
min_period; = 0

min_buff; , =5

min_buff;; = 3

peek, =3

peek; =1
min_period, =5

min_period; = 3

min_buff;; = 9

min_buffy; = 4

peek; =2
min_period, = 9

16/ 22

State machine of the application

Two main phases: Computation and Communication

- m mm e = oo =)

Wait Resources

!

Process Task

1

Signal new Data

Communicate

Computation Phase

Lo

17/ 22

State machine of the application

Two main phases: Computation and Communication

- m mm e = oo =)

Wait Resources

!

Process Task

1

Signal new Data

Communicate

Computation Phase

Lo

17/ 22

State machine of the application

Two main phases: Computation and Communication

.
Wait Resources

Process Task

1

Signal new Data

Computation Phase

- m mm e = oo =)

e ___ Lo

Communicate

17/ 22

State machine of the application

Two main phases: Computation and Communication

- m mm e = oo =)

Wait Resources

{

Process Task

i

Signal new Data

Communicate

Computation Phase

Lo

17/ 22

State machine of the application

Two main phases: Computation and Communication

w2
3
3
Z

Wait Resources

!

Process Task

!

Signal new Data

Computation Phase

r;;444444444444444444444444444444
|
|
|
'
|
|
|
'
|
|
|
'
|
|
|
'
|
|
|
'
|
L
I
'
|
|
|
'
|
|
|
'
|

Communicate

17/ 22

State machine of the application

Two main phases: Computation and Communication

y

Compute

No more comm.

For each inbound comm.

!

Watch DMA
¥

No

Check input data
¥

i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
:
i

Check input buffers]
i
i
i
i
i
i
;

L

¥

Get Data

17/ 22

State machine of the application

Two main phases: Computation and Communication

y

Compute

B | S

No more comm.

For each inbound comm.

!

Q

4

Watch DMA (oW
: g

e

Check input data 8
e

=

g

g

Q

O

No

¥

Check input buffers

¥

Get Data

17/ 22

State machine of the application

Two main phases: Computation and Communication

y

Compute

No more comm.

For each inbound comm.

!

Watch DMA
$

No

Check input data
¥

i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
:
i

Check input buffers]
i
i
i
i
i
i
;

L

¥

Get Data

17/ 22

State machine of the application

Two main phases: Computation and Communication

y

Compute

B -

No more comm.

For each inbound comm.

!

i [
| 3
i Watch DMA oy
: I g
: No +
: Check input data &
i E
: =)
! g
| g
! Q
1 O

¥

Check input buffers

¥

Get Data

17/ 22

State machine of the application

Two main phases: Computation and Communication

y

Compute

No more comm.

For each inbound comm.

!

Watch DMA
¥

No

Check input data
¥

i
i
i
i
i
i
i
i
l
Check input buffers I
i
i
i
i
L

v

Get Data

17/ 22

State machine of the application

Two main phases: Computation and Communication

y

Compute

No more comm.

For each inbound comm.

!

Watch DMA
¥

No

Check input data
¥

i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
:
i

Check input buffers]
i
i
i
i
i
i
;

L

¥
Get Data

17/ 22

Communication between processors

Py Pu

e
Tz("l)

(D)

18/ 22

Communication between processors

Pk PL

!
Signal Data(i)
.................. T

prac

|

mfc_putb for SPEs’ outbound communications.
spe_mfcio_getb for PPEs’ outbound communications to SPEs.

memcpy for PPEs' outbound communications to main memory.

18/ 22

Communication between processors

Pk PL

i)
Signal Data(i)

.................. 740

Input buffers are available
to store data

Output buffer containing i
cannot be overwritten

T

|

mfc_putb for SPEs’ outbound communications.
spe_mfcio_getb for PPEs’ outbound communications to SPEs.

memcpy for PPEs' outbound communications to main memory.

18/ 22

Communication between processors

Pk P

Signal Data(i)
.................. T

[Output buffer containing i] Get Datai) Input lt):)lfitt'ii_:u(ﬁﬁuil‘dble

cannot be overwritten

T

|

mfc_get for SPEs' inbound communications.
spe_mfcio_put for PPEs’ inbound communications from SPEs.

memcpy for PPEs’ inbound communications from main memory.

18/ 22

Communication between processors

Pk P

Signal Data(i)
.................. T

[Output buffer containing i] Get Datai) Input lt):)lfitt'ii_:u(ﬁﬁuil‘dble

cannot be overwritten

T

|

mfc_get for SPEs' inbound communications.
spe_mfcio_put for PPEs’ inbound communications from SPEs.

memcpy for PPEs’ inbound communications from main memory.

18/ 22

Communication between processors

Pk P

i)
Signal Data(i)

.................. 740

Output buffer containing / Get Data(i) Input L;uﬁ,tt.rs. al-ﬁ g\uilable
cannot be overwritten Lo store data

T

|

mfc_putb for SPEs" acknowledgements.
spe_mfcio_getb for PPEs’ acknowledgements to SPEs.

Self acknowledgement of PPEs’ transfers from main memory.

18/ 22

Communication between processors

Pk P

Signal Data(i)
.................. T

Output buffer containing i Get Data(i) Input buﬁ‘ers. are available
cannot be overwritten to store data

- — Transfer Done(i
[Output buffer containing i] __________ (.)

can now be overwritten

T

mfc_putb for SPEs" acknowledgements.
spe_mfcio_getb for PPEs’ acknowledgements to SPEs.

Self acknowledgement of PPEs’ transfers from main memory.

18/ 22

Communication between processors

Pk

Signal Data(i)
.................. T

Output buffer containing i Get Data(i) Input buﬁ‘ers. are available
cannot be overwritten to store data

Output buffer containing
can now be overwritten

mfc_putb for SPEs" acknowledgements.
spe_mfcio_getb for PPEs’ acknowledgements to SPEs.

Self acknowledgement of PPEs’ transfers from main memory.

18/ 22

Preliminary results

We outperform both greedy heuristic and sequential version.

400
350
300

5

2 250
=
% 200
o

£ 150

[

100
50
0

Sequential

Greedy

Linear Program

Results are obtained over 70000 periods

19/ 22

QOutline

Conclusion and Future works

20/ 22

Feedback on Cell programming

» Multilevel heterogeneity:

» 32 bits SPEs vs 64 bits PPE architectures

» Different communication mechanism and constraints

» Non trivial initialization phase

» Varying data structure sizes (32/64bits)

» Runtime memory allocation

21/ 22

On-going and Future work

» Various code optimizations

» SIMD code for SPEs
» Reduce control overhead

» Better communication modeling

> Is linear cost model relevant ?
» Contention on concurrent DMA operations ?

» Larger platforms

» Using multiple CELL processors
» CELL + other type of processing units ?
» Work on communication modeling

» Design scheduling heuristics
» MIP is costly

22/ 22

	Introduction
	Steady-state scheduling
	CELL

	Platform and Application Modeling
	Mapping the Application
	Practical Steady-State on CELL
	Preprocessing of the schedule
	State machine of the application
	Preliminary results

	Conclusion and Future works

