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Context: large parallel and distributed systems

Difficult to ensure that the resources are always available for a long
period of time

hardware failures

software faults

power breakdown

resources removal
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Introduction

Problem studied:

scheduling independent tasks

heterogeneous systems (uniform model)

hardware can fail

Bi-criteria objective:

given a makespan objective

optimize reliability

Even if the system have checkpoint restart mechanism, it is important to
carefully allocate the tasks.
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Related work

A ”new subject” :

Dogan & Ozgüner 2002: Model the problem, RDLS bi-criteria
heuristic.

Dogan & Ozgüner 2004: enhancement of previous result (GA).

Qin & Jiang 2005: first optimize deadline, then maximize reliability.

Hakem & Butelle 2006: BSA, bi-criteria heuristic that outperforms
RDLS.
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Modeling

An application: T a set of n independent tasks.

Number of operations of tasks i : pi

A set Q of m uniform processors

Processor j is associated with two values:

τj the time to perform one operation and
λj the failure rate.

Taks i executed on processor j will last pi × τj = pij .

Assumption:

Processors are subject to crash fault only.

During the execution of the DAG, the failure rate is constant.

⇒ failure model follows an exponential law.

⇒ probability that task i finishes (correctly) its execution:

e−pi×τj×λj
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Scheduling problem

A schedule: π : T → Q

T (j , π) = {i | π(i) = j}: set of tasks mapped to processor j

Cj(π) =
∑

i∈T (j ,π) piτj : completion time of a processor j

Cmax(π) = maxjCj(π): makespan of a schedule

pj
succ(π) = e−λjCj (π): probability that processor j executes all its tasks

successfully

Assumption: faults are independent.

psucc =
∏
j

pj
succ(π) = e−

P
j Cj (π)λj

probability that schedule π finishes correctly.
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Criteria

Two criteria to optimize:

Makespan: minimize

M = Cmax(π) = maxjCj(π)

Reliability: maximize

psucc =
∏
j

e−Cj (π)λj = e−
P

j Cj (π)λj

or minimize
Rel =

∑
j

Cj(π)λj
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Two antagonistic criteria

Question: Is there an algorithm which approximates both criteria at the
same time ?

Theorem

The problem of minimizing the Cmax and Rel is unapproximable within a
constant factor.

Proof Two machines such that τ2 = τ1/k and λ2 = k2λ1 (k ∈ R+∗).

A single task t1 where p1 = 1.

Cmax(π1) = τ1 and Cmax(π2) = τ1/k. This leads to Cmax(π1)/Cmax(π2) = k. π1 is not an
approximation on both criteria

Rel(π1) = τ1λ1 and Rel(π2) = τ1λ1k. This leads to Rel(π2)/Rel(π1) = k. π2 is not an
approximation on both criteria.

No solution of this instance approximates both criteria.
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Studied problem

Minimizing Rel when subject to a makespan objective.

Definition

ω: makespan threshold
value〈
ρ̄1, ρ2

〉
-approximation

algorithm.

Cmax ≤ ρ1ω

rel ≤ ρ2rel
∗,ω−

rel∗,ω− is the best
possible value of rel in
schedules whose
makespan is less than ω.

Cmax

Rel

! "1!

rel*, !-

"2rel*, !-
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Independent unitary tasks

oi = 1 and E = ∅, n = |V |.

Algorithm 1 Makespan-optimal allocation for independent unitary tasks

for i=1 to P

ni ←
⌊

1/τiP
1/τi

⌋
× n

while
∑

ni < n
k = argmin(τk(nk + 1))
nk ← nk + 1

Above algorithm gives Mopt the best achievable makespan.
For the reliability criteria the user gives the value of α that tells how far
from the optimal makespan he/she can tolerate to be.
Then we compute a schedule such that:

ω ≤ αMopt

it has the best reliability among all the schedules with makespan ≤ ω.
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An
〈
ᾱ, 1

〉
algorithm for Independent unitary tasks

Algorithm 2 Optimal reliable allocation for independent unitary tasks

Input: α ∈ [1,+∞[
Compute ω = αMopt using previous algorithm
Sort the processor by increasing λiτi

X ← 0
for i=1 to P

if X < N

ni ← min
(
N − X ,

⌊
ω
τi

⌋)
else

ni ← 0
X ← X + ni
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Proof of optimality of the reliability

We need to show that
∑

i∈[1,P] niλiτi is minimum.

First let us remark that the algorithm fills the processor of task in the
increasing order of λiτi .

⇒ any other valid allocation {n′1, . . . , n′N} is such that n′i < ni and
n′j > nj for any i < j .

w.l.o.g. let n′1 = n1 − k, n′i = ni + k and n′j = nj for k ∈ [1, ni ], j 6= 1
and j 6= i .

Then the difference between the two objective values is:

X = n1λ1τ1 + . . . + niλiτi + . . . + nNλNτN − n′
1λ1τ1 − . . .− n′

i λiτi − . . . + n′
NλNτN

= λ1τ1(n1 − n′
1) + λiτi (ni − n′

i )

= kλ1τ1 − kλiτi

= k(λ1τ1 − λiτi )

≤ 0 because λiτi ≥ λ1τ1.

Hence, the first allocation has a smaller objective value.
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A Dual Approximation algorithm

CMLT
ω: makespan threshold
M(i) = {j | pij ≤ ω}
begin

sort tasks in non-increasing pi order
sort processors in non-decreasing τj order
Let H be an empty heap
j = 1
for i = 1 to n do

while Pj ∈ M(i) do
Add Pj to H with key λjτj

j = j + 1

if H.empty() then
Return no solution

schedule i on j ′ = H.min()
Cj′ = Cj′ + piτj′

if Cj′ > ω then
Remove j ′ from H

end

p = {7, 5, 4, 2}

λ1 = 3, τ1 = 1, pi1 = {7, 5, 4, 2}
λ2 = 1, τ2 = 2, pi2 = {14, 10, 8, 4}

ω = 10
M(1) = {1}
M(2) = M(3) = M(4) = {1, 2}

i C1 C2 H j

0 0 (,) 1
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Properties of CMLT

Cmax(CMLT) ≤ 2ω

Tasks are ranked by non-increasing duration

Processor j is used until Cj > ω

If CMLT does not return a schedule then there is no schedule π with
Cmax(π) < ω

M(i) = {j | pij ≤ ω}
If task i cannot be executed on any processors of
M(i) =⇒ ∀j ∈ M(i),Cj > ω

∀i , i ′ ∈ T such that pi ≤ pi ′ , M(i ′) ⊆ M(i)

∀i ′ ≤ i such that pi ′ > pi must have been schedule to a processor of
M(i).

There is more operations in the set of tasks {i ′ ≤ i} than processors
in M(i) can execute in ω units of time.
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Properties of CMLT

CMLT generates a schedule such that rel ≤ rel∗,ω−

Idea: tasks are scheduled on the processor that have the minimum λτ
product which is known to be optimal for unitary tasks.

CMLT a
〈
2̄, 1

〉
-approximation algorithm

The time complexity of CMLT is in O(n log n + m log m)

cost of sorting tasks: O(n log n)

cost of sorting processors: O(m log m)

Adding elements to heap: O(m log m)

Getting and removing elements from heap 0(1 ∗ n)
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Outline of the talk

1 Introduction, related work and modeling

2 The problem

3 Independent unitary tasks

4 Independent tasks: a bi-approximation algorithm

5 Independent tasks: Pareto front approximation

6 Conclusion
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Back to Definition

Optimality

In multi-criteria, k functions are optimized f1 . . . fk . Solution S ′ is Pareto
dominated by S if ∀i , fi (S) ≤ fi (S

′). A solution which is not dominated is
Pareto-optimal.

Pareto Front

The Pareto front is
the set P of all Pareto
optimal solution. We
should remark that
the size of P can be
exponential.
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Approximating the Pareto front

Definition

Informally, P is a ρ = (ρ1, ρ2, . . . , ρk) approximation of P∗ if each solution
S∗ ∈ P∗ is ρ approximated by a solution S ∈ P. Formally,
∀S∗ ∈ P∗,∃S ∈ P,∀i , fi (S) ≤ ρi fi (S

∗).

x

rel

y

y
ρ2

Cmax
x
ρ1

Bold crosses are a (ρ1, ρ2)-approximation of the Pareto set.
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Pareto front approximation algorithm

Papadimitriou and Yannakakis approximation method of the Pareto
front
Data: ε a positive real number

Result: S a set of solutions

Cmin
max =

P
i piP
j

1
τj

Cmax
max =

∑
i pi maxj τj

begin
i = 0
S = ∅
while i ≤

⌈
log1+ε/2

(
Cmax

max

Cmin
max

)⌉
do

ωi = (1 + ε
2 )iCmin

max

πi = CMLT (ωi )
S = S ∪ πi

i = i + 1
return S

end
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A (2 + ε, 1) approximation algorithm of the Pareto front

Cmax

rel∗(ωi)

rel∗(ωi+1)

ωi ωi+1 = (1 + ε
2
)ωi

×(2 + ε)

×2×(1 + ε
2
)

rel

≤ ×1
CMLT (ωi+1)

Cmax(CMLT (ωi+1)) ≤ 2.ωi+1

ωi+1 = (1 + ε
2)ωi =⇒ Cmax(CMLT (ωi+1)) ≤ (2 + ε)ωi

rel (CMLT (ωi+1)) ≤ rel∗(ωi+1)

CMLT (ωi+1) is a (2 + ε, 1)-approximation of (ωi , rel
∗(ωi+1))
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Cardinality and complexity

Cardinality

Number of solutions less than:⌈
log1+ ε

2

Cmax
max

Cmin
max

⌉
≤

⌈
log1+ ε

2
maxiτi

∑
j 1/τj

⌉
≤

⌈
log1+ ε

2
mmaxiτi

miniτi

⌉
polynomial in 1/ε and in m

Complexity

Sorting the tasks:independent of ω (can be done once for all)

Complexity of the Pareto front approximation algorithm:

O(n log n +
⌈
log1+ε/2(

Cmax
max

Cmin
max

)
⌉

(n + m log m))
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Outline of the talk

1 Introduction, related work and modeling

2 The problem

3 Independent unitary tasks

4 Independent tasks: a bi-approximation algorithm

5 Independent tasks: Pareto front approximation

6 Conclusion
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Conclusion

Problem

Reliability is a crucial issue

Scheduling independent tasks on related processors

Optimizing makespan and reliability

These criteria are conflicting

Contribution

a
〈
ᾱ, 1

〉
-approximation with α ∈ [1,+∞[ for unitary independant

tasks

CMLT: a
〈
2̄, 1

〉
-approximation for non unitary independant tasks

algorithm

A (2 + ε, 1)-approximation of the Pareto front

Exemplify the role of the λτ product
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