Bi-objective approximation scheme for makespan and

reliability optimization on uniform parallel machines for
independent tasks

Emmanuel Jeannot, Erik Saule, Denis Trystram
ICL & INRIA & LIG

Sheduling in Knoxville, May 13 2009

E. Jeannot (LORIA INRIA) Makespan and Reliability Optimization Knoxville 1/28

Outline of the talk

o Introduction, related work and modeling

© The problem

© Independent unitary tasks

@ Independent tasks: a bi-approximation algorithm
e Independent tasks: Pareto front approximation

@ Conclusion

E. Jeannot (LORIA INRIA) Makespan and Reliability Optimization Knoxville 2/28

Outline of the talk

@ Introduction, related work and modeling

E. Jeannot (LORIA INRIA) Makespan and Reliability Optimization Knoxville 3/28

Context: large parallel and distributed systems

Difficult to ensure that the resources are always available for a long

period of time

@ hardware failures
@ software faults

@ power breakdown
(]

resources removal

E. Jeannot (LORIA INRIA) Makespan and Reliability Optimization Knoxville 4 /28

Introduction

Problem studied:
@ scheduling independent tasks
@ heterogeneous systems (uniform model)
@ hardware can fail
Bi-criteria objective:
@ given a makespan objective

@ optimize reliability

Even if the system have checkpoint restart mechanism, it is important to
carefully allocate the tasks.

E. Jeannot (LORIA INRIA) Makespan and Reliability Optimization Knoxville 5/28

Related work

A " new subject’ :

@ Dogan & Ozgliner 2002: Model the problem, RDLS bi-criteria
heuristic.

@ Dogan & Ozgiiner 2004: enhancement of previous result (GA).
@ Qin & Jiang 2005: first optimize deadline, then maximize reliability.

o Hakem & Butelle 2006: BSA, bi-criteria heuristic that outperforms
RDLS.

E. Jeannot (LORIA INRIA) Makespan and Reliability Optimization Knoxville 6 /28

Modeling

An application: T a set of n independent tasks.
Number of operations of tasks i : p;
A set Q of m uniform processors

Processor j is associated with two values:

o 7; the time to perform one operation and
o), the failure rate.

@ Taks i executed on processor j will last p; X 7; = pj;.

E. Jeannot (LORIA INRIA) Makespan and Reliability Optimization Knoxville

An application: T a set of n independent tasks.
Number of operations of tasks i : p;
A set Q of m uniform processors

Processor j is associated with two values:

o 7; the time to perform one operation and
o), the failure rate.

@ Taks i executed on processor j will last p; X 7; = pj;.

Assumption:
@ Processors are subject to crash fault only.
@ During the execution of the DAG, the failure rate is constant.
= failure model follows an exponential law.

= probability that task i finishes (correctly) its execution:

e—p,-><7'j><)\j

E. Jeannot (LORIA INRIA) Makespan and Reliability Optimization Knoxville

Outline of the talk

© The problem

E. Jeannot (LORIA INRIA) Makespan and Reliability Optimization Knoxville 8 /28

Scheduling problem

@ A schedule: m: T — @

E. Jeannot (LORIA INRIA) Makespan and Reliability Optimization Knoxville

Scheduling problem

@ A schedule: m: T — @
o T(j,m)={i|m(i) =j}: set of tasks mapped to processor j

E. Jeannot (LORIA INRIA) Makespan and Reliability Optimization Knoxville 9 /28

Scheduling problem

@ A schedule: m: T — @
o T(j,m)={i|m(i) =j}: set of tasks mapped to processor j

o Gi(m) =3 ;c7(jx PiTj: completion time of a processor j

E. Jeannot (LORIA INRIA) Makespan and Reliability Optimization Knoxville 9 /28

Scheduling problem

@ A schedule: m: T — @
o T(j,m)={i|m(i) =j}: set of tasks mapped to processor j
o Gi(m) =3 ;c7(jx PiTj: completion time of a processor j

o C,..(m) = max;Cj(m): makespan of a schedule

E. Jeannot (LORIA INRIA) Makespan and Reliability Optimization Knoxville 9 /28

Scheduling problem

A schedule: 7: T — @

T(,m)={i| (i) =j}: set of tasks mapped to processor j
Gi(m) = > je7(j,x) PiTj: completion time of a processor j

C

max

(m) = max;Cj(m): makespan of a schedule

p£ucc(ﬂ) = e YG(™): probability that processor j executes all its tasks
successfully

E. Jeannot (LORIA INRIA) Makespan and Reliability Optimization Knoxville 9 /28

Scheduling problem

A schedule: 7: T — @

T(,m)={i| (i) =j}: set of tasks mapped to processor j
Gi(m) = > je7(j,x) PiTj: completion time of a processor j

C

max

(m) = max;Cj(m): makespan of a schedule

p£ucc(ﬂ) = e YG(™): probability that processor j executes all its tasks
successfully

Assumption: faults are independent.

Psucc = H pé:ucc(ﬂ') = e Zj CJ'(TF))‘J'
J

probability that schedule 7 finishes correctly.

E. Jeannot (LORIA INRIA) Makespan and Reliability Optimization Knoxville 9 /28

Criteria

Two criteria to optimize:

o Makespan: minimize

M= C

max(ﬂ') = maXJCJ(ﬂ')
o Reliability: maximize
Psucc = H e_cj(ﬂ—p‘f = e Zj Cj(ﬂ')/\j
J

or minimize

Rel =) Gi(m)Aj
j

E. Jeannot (LORIA INRIA) Makespan and Reliability Optimization Knoxville 10 / 28

Two antagonistic criteria

Question: Is there an algorithm which approximates both criteria at the
same time 7

E. Jeannot (LORIA INRIA) Makespan and Reliability Optimization Knoxville 11 /28

Two antagonistic criteria

Question: Is there an algorithm which approximates both criteria at the
same time 7

The problem of minimizing the C, .. and Rel is unapproximable within a

max
constant factor.

E. Jeannot (LORIA INRIA) Makespan and Reliability Optimization Knoxville 11 /28

Two antagonistic criteria

Question: Is there an algorithm which approximates both criteria at the
same time 7

The problem of minimizing the C, .. and Rel is unapproximable within a

max
constant factor.

Proof Two machines such that 7 = 71/k and X2 = k*\; (k € RT*).

E. Jeannot (LORIA INRIA) Makespan and Reliability Optimization Knoxville 11 /28

Two antagonistic criteria

Question: Is there an algorithm which approximates both criteria at the

same time ?

The problem of minimizing the C,,,, and Rel is unapproximable within a

constant factor.

Proof Two machines such that 7 = 71/k and X2 = k*\; (k € RT*).
A single task t; where p; = 1.

Knoxville 11 /28

E. Jeannot (LORIA INRIA) Makespan and Reliability Optimization

Two antagonistic criteria

Question: Is there an algorithm which approximates both criteria at the

same time ?

The problem of minimizing the C,,,, and Rel is unapproximable within a

constant factor.

Proof Two machines such that 7 = 71/k and X2 = k*\; (k € RT*).

A single task t; where p; = 1.
Crnax(m1) = 11 and G, (m2) = 71/ k. This leads to Cpax(m1)/ Crax(m2) = k. 71 is not an

approximation on both criteria

Knoxuville 11 /28

E. Jeannot (LORIA INRIA) Makespan and Reliability Optimization

Two antagonistic criteria

Question: Is there an algorithm which approximates both criteria at the

same time ?

The problem of minimizing the C,,,, and Rel is unapproximable within a
constant factor.

Proof Two machines such that 7 = 71/k and X2 = k*\; (k € RT*).

A single task t; where p; = 1.
Crnax(m1) = 11 and G, (m2) = 71/ k. This leads to Cpax(m1)/ Crax(m2) = k. 71 is not an

approximation on both criteria
Rel(m1) = 71 A1 and Rel(m2) = 11 A\1k. This leads to Rel(m2)/Rel(m1) = k. 72 is not an

approximation on both criteria.

Knoxville 11 /28

E. Jeannot (LORIA INRIA) Makespan and Reliability Optimization

Two antagonistic criteria

Question: Is there an algorithm which approximates both criteria at the
same time 7

The problem of minimizing the C, .. and Rel is unapproximable within a

max
constant factor.

Proof Two machines such that 7 = 71/k and X2 = k*\; (k € RT*).

A single task t; where p; = 1.

Crnax(m1) = 11 and G, (m2) = 71/ k. This leads to Cpax(m1)/ Crax(m2) = k. 71 is not an
approximation on both criteria

Rel(m1) = 71 A1 and Rel(m2) = 11 A\1k. This leads to Rel(m2)/Rel(m1) = k. 72 is not an
approximation on both criteria.

No solution of this instance approximates both criteria.

E. Jeannot (LORIA INRIA) Makespan and Reliability Optimization Knoxville 11 /28

Studied problem

Minimizing Rel when subject to a makespan objective.

Rel §

@ w: makespan threshold
value

° <P_1,p2>-approximation porel -k
algorithm.

o C

max

< pw

o rel < porel*™¥—

@ rel*“~ is the best
possible value of rel in

schedules whose
makespan is less than w.
v

w p1 max

E. Jeannot (LORIA INRIA) Makespan and Reliability Optimization

Outline

© Independent unitary tasks

E. Jeannot (LORIA INRIA) Makespan and Reliability Optimization Knoxville 13 /28

Independent unitary tasks

oj=land E=0,n=|V|

E. Jeannot (LORIA INRIA) Makespan and Reliability Optimization Knoxville 14 / 28

Independent unitary tasks

oj=1land E=0, n=|V|.
Algorithm 1 Makespan-optimal allocation for independent unitary tasks
for i=1to P

n; «— [il/l%iJ X n

while > n; < n
k = argmin(7k(ng + 1))
ng < ni+1

E. Jeannot (LORIA INRIA) Makespan and Reliability Optimization Knoxville 14 / 28

Independent unitary tasks

oj=1land E=0, n=|V|.
Algorithm 1 Makespan-optimal allocation for independent unitary tasks
for i=1to P

n; «— [gé;iTiJ X n

while > n; < n
k = argmin(7k(ng + 1))
ng < ni+1

Above algorithm gives M, the best achievable makespan.
For the reliability criteria the user gives the value of « that tells how far
from the optimal makespan he/she can tolerate to be.
Then we compute a schedule such that:
o w < aMop
@ it has the best reliability among all the schedules with makespan < w.

E. Jeannot (LORIA INRIA) Makespan and Reliability Optimization Knoxville 14 / 28

An (@&,1) algorithm for Independent unitary tasks

Algorithm 2 Optimal reliable allocation for independent unitary tasks
Input: o € [1,4o00[
Compute w = aMypt using previous algorithm
Sort the processor by increasing A\;7;
X <0
for i=1to P
if X <N
n; < min (N - X, {%J)
else
n; <0

X<—X—|—n,~

E. Jeannot (LORIA INRIA) Makespan and Reliability Optimization Knoxville 15 /

Proof of optimality of the reliability

We need to show that Z,-E[l Pl mA;T; is minimum.

E. Jeannot (LORIA INRIA) Makespan and Reliability Optimization Knoxville 16 / 28

Proof of optimality of the reliability

We need to show that Z,-E[l Pl mA;T; is minimum.
@ First let us remark that the algorithm fills the processor of task in the
increasing order of \;7;.

E. Jeannot (LORIA INRIA) Makespan and Reliability Optimization Knoxville 16 / 28

Proof of optimality of the reliability

We need to show that Zie[l,P] mA;T; is minimum.
@ First let us remark that the algorithm fills the processor of task in the
increasing order of \;7;.
= any other valid allocation {nf, ..., n}} is such that n} < n; and
n; > n; for any i < j.

E. Jeannot (LORIA INRIA) Makespan and Reliability Optimization Knoxville 16 / 28

Proof of optimality of the reliability

We need to show that Zie[l,P] mA;T; is minimum.
@ First let us remark that the algorithm fills the processor of task in the
increasing order of \;7;.
= any other valid allocation {nf, ..., n}} is such that n} < n; and
n; > n; for any i < j.
o w.lo.g. let ny =ni —k, n; = nj+ k and n} = n; for k € [L,n], j # 1
and j # i.

E. Jeannot (LORIA INRIA) Makespan and Reliability Optimization Knoxville 16 / 28

Proof of optimality of the reliability

We need to show that Zie[l,P] mA;T; is minimum.

@ First let us remark that the algorithm fills the processor of task in the

increasing order of \;7;.
= any other valid allocation {nf, ..., n}} is such that n} < n; and

n; > n; for any i < j.

o w.lo.g. let ny =ni —k, n; = nj+ k and n} = n; for k € [L,n], j # 1
and j # i.

@ Then the difference between the two objective values is:

E. Jeannot (LORIA INRIA) Makespan and Reliability Optimization Knoxville 16 / 28

Proof of optimality of the reliability

We need to show that Zie[l,P] mA;T; is minimum.

@ First let us remark that the algorithm fills the processor of task in the

increasing order of \;7;.
= any other valid allocation {nf, ..., n}} is such that n} < n; and

n; > n; for any i < j.

o w.lo.g. let ny =ni —k, n; = nj+ k and n} = n; for k € [L,n], j # 1
and j # i.

@ Then the difference between the two objective values is:

X = nl)\lﬁ+..,+n;/\;T;+...+nN)\NTN—ni)\lﬁ—...—n,’-)\,-T,-—...—i—n;V)\NTN
= Am(m — ni) + Nimi(ni — nf)
= kAi11 — k)\iTi
= k(M1 — AiTi)

< 0 because \i7; > A\i71.

Hence, the first allocation has a smaller objective value.

E. Jeannot (LORIA INRIA) Makespan and Reliability Optimization Knoxville 16 / 28

Outline of the talk

@ Independent tasks: a bi-approximation algorithm

E. Jeannot (LORIA INRIA) Makespan and Reliability Optimization Knoxville 17 / 28

A Dual Approximation algorithm

CMLT

w: makespan threshold
M(i) = {j | pj < w}
begin
sort tasks in non-increasing p; order
sort processors in non-decreasing 7; order
Let H be an empty heap
j=1
for i =1 to n do
while P; € M(i) do
Add P; to H with key \;7;
Jj=j+1
if H.empty() then
L Return no solution
schedule i on j* = H.min()
Cj/ = Cj/ + p,'Tj/
if Gy > w then
| Remove j/ from H

end

E. Jeannot (LORIA INRIA) Makespan and Reliability Optimization Knoxville 18 / 28

A Dual Approximation algorithm

CMLT
p = {77 57 47 2}

w: makespan threshold
M(i) = {j | pj < w}
begin
sort tasks in non-increasing p; order
sort processors in non-decreasing 7; order
Let H be an empty heap
j=1
for i =1 to n do
while P; € M(i) do
Add P; to H with key \;7;
Jj=j+1
if H.empty() then
L Return no solution
schedule i on j* = H.min()
Cj/ = Cj/ + p,'Tj/
if Gy > w then
| Remove j/ from H

end

E. Jeannot (LORIA INRIA) Makespan and Reliability Optimization Knoxville 18 / 28

A Dual Approximation algorithm

CMLT
p = {77 57 47 2}

w: makespan threshold
s/l(i_) ={jlpj<w} M =3 7n=1 p1=1{7,5472}
e Xo=1, 1 =2, pip ={14,10,8,4}

sort tasks in non-increasing p; order
sort processors in non-decreasing 7; order
Let H be an empty heap
j=1
for i =1 to n do
while P; € M(i) do
Add P; to H with key \;7;
j=j+1
if H.empty() then
L Return no solution
schedule i on j* = H.min()
Cj/ = Cj' + p,'Tj/
if Gy > w then
| Remove j/ from H

end

E. Jeannot (LORIA INRIA) Makespan and Reliability Optimization Knoxville 18 / 28

A Dual Approximation algorithm

CMLT

w: makespan threshold p= {7, 5, 47 2}
s/,(’):{./|pugw})\1:3, T = 1, pi1:{7’5’472}
egin
s sort tasks in non-increasing p; order >\2 =1, T2 = 2, pPi2 = {14a 107 87 4}
sort processors in non-decreasing 7; order w=10
Let H be an empty heap
ji=1 M(1) = {1}
for i=1 ton do M(Z): M(3): M(4):{1,2}

while P; € M(i) do
Add P; to H with key \;7;
Jj=j+1
if H.empty() then
L Return no solution
schedule i on j* = H.min()
Cj/ = Cj' + p,'Tj/
if Gy > w then
| Remove j/ from H

end

E. Jeannot (LORIA INRIA) Makespan and Reliability Optimization Knoxuville 18 / 28

A Dual Approximation algorithm

CMLT
w: makespan threshold p= {7, 5.4, 2}
ll:\’/,(l):{J|pU§w})\1:3, T = 1, pi1:{7’5’472}
egin
s sort tasks in non-increasing p; order >\2 =1, T2 = 2, pPi2 = {14a 107 87 4}
sort processors in non-decreasing 7; order w =10
Let H be an empty heap
ji=1 M(1) = {1}
for i=1 ton do M(Z): M(3): M(4):{1,2}

while P; € M(i) do
Add P; to H with key \;7; - -
j=i+1 ilG[G] H | J]
if H.empty() then 0 0 (') 1
L Return no solution
schedule i on j* = H.min()
Cj/ = Cj' + p,'Tj/
if Gy > w then
| Remove j/ from H

end

E. Jeannot (LORIA INRIA) Makespan and Reliability Optimization Knoxville 18 / 28

A Dual Approximation algorithm

CMLT
p = {77 57 47 2}

w: makespan threshold

ll:\’/,(l):{J|pU§w})\1:3, T = 1, pi1:{7’5’472}
egin
s sort tasks in non-increasing p; order >\2 =1, T2 = 2, pPi2 = {14a 107 87 4}
sort processors in non-decreasing 7; order w =10
Let H be an empty heap
ji=1 M(1) = {1}
for i=1 ton do M(Z): M(3): M(4):{1,2}

while P; € M(i) do
Add P; to H with key \;7; - -
j=i+1 ilG[G] H | J]
if H.empty() then 0 0 (') 1
L Return no solution
schedule i on j* = H.min() 110 0 (') 1
Cj/ = Cj' + p,'Tj/
if Gy > w then
| Remove j/ from H

end

E. Jeannot (LORIA INRIA) Makespan and Reliability Optimization Knoxville 18 / 28

A Dual Approximation algorithm

CMLT
p = {77 57 47 2}

w: makespan threshold

ll:\’/,(l):{J|pU§w})\1:3, T = 1, Pi1 :{7’5’472}
egin
s sort tasks in non-increasing p; order >\2 =1, T2 = 2, pPi2 = {14a 10, 87 4}
sort processors in non-decreasing 7; order w =10
Let H be an empty heap
ji=1 M(1) = {1}
for i=1 ton do M(Z): M(3): M(4):{1,2}

while P; € M(i) do
Add P; to H with key \;7; - -
j=i+1 ilG[G] H | J]
if H.empty() then 0 0 (') 1
L Return no solution
schedule i on j/ = H.min() 110 0 (P1'3) 1
Cj/ = Cj' + p,'Tj/
if Gy > w then
| Remove j/ from H

end

E. Jeannot (LORIA INRIA) Makespan and Reliability Optimization Knoxville 18 / 28

A Dual Approximation algorithm

CMLT
p = {77 57 47 2}

w: makespan threshold

ll:\’/,(l):{J|pU§w})\1:3, T = 1, Pi1 :{7’5’472}
egin
s sort tasks in non-increasing p; order >\2 =1, T2 = 2, pPi2 = {14a 10, 87 4}
sort processors in non-decreasing 7; order w =10
Let H be an empty heap
ji=1 M(1) = {1}
for i=1 ton do M(Z): M(3): M(4):{1,2}

while P; € M(i) do
Add P; to H with key \;7; - -
j=i+1 ilG[G] H | J]
if H.empty() then 0 0 (') 1
L Return no solution
schedule i on j/ = H.min() 110 0 (P1'3) 2
Cj/ = Cj' + p,'Tj/
if Gy > w then
| Remove j/ from H

end

E. Jeannot (LORIA INRIA) Makespan and Reliability Optimization Knoxville 18 / 28

A Dual Approximation algorithm

CMLT
p = {77 57 47 2}

w: makespan threshold

ll:\’/,(l):{J|pU§w})\1:3, T = 1, Pi1 :{7’5’472}
egin
s sort tasks in non-increasing p; order >\2 =1, T2 = 2, pPi2 = {14a 10, 87 4}
sort processors in non-decreasing 7; order w =10
Let H be an empty heap
ji=1 M(1) = {1}
for i=1 ton do M(Z): M(3): M(4):{1,2}

while P; € M(i) do
Add P; to H with key \;7; - -
j=i+1 i1G[G] H L J |
if H.empty() then 0 0 (') 1
L Return no solution
schedule i on j’ = H.min() 11710 (P1.3) 2
Cj/ = Cj' + p,'Tj/
if Gy > w then
| Remove j/ from H

end

E. Jeannot (LORIA INRIA) Makespan and Reliability Optimization Knoxville 18 / 28

A Dual Approximation algorithm

CMLT

w: makespan threshold p= {7, 5,4, 2}
ll:\’/,(l):{J|pU§w})\1:3, T = 1, Pi1 :{7’5’472}
egin
s sort tasks in non-increasing p; order >\2 =1, T2 = 2, pPi2 = {14a 10, 87 4}
sort processors in non-decreasing 7; order w=10
Let H be an empty heap
ji=1 M(1) = {1}
for i=1 ton do M(2) = M(3) = M(4) ={1,2
while P; € M(i) do () () () { }
Add P; to H with key \;7; - -
i=it1 oG] H | J]
if H.empty() then 0 0 (,) 1
L Return no solution
schedule i on j' = H.min() 17 0 (P1,3) 2
Cj’:Cj' —|—p,'7'j/ 2 7 0 (P1,3) 2
if Gy > w then
| Remove j/ from H
end

E. Jeannot (LORIA INRIA) Makespan and Reliability Optimization

Knoxville 18 / 28

A Dual Approximation algorithm

CMLT

w: makespan threshold p= {7, 5,4, 2}
ll:\’/,(l):{J|pU§w})\1:3, T = 1, Pi1 :{7’5’472}
egin
s sort tasks in non-increasing p; order >\2 =1, T2 = 2, pPi2 = {14a 10, 87 4}
sort processors in non-decreasing 7; order w=10
Let H be an empty heap
ji=1 M(1) = {1}
for i=1 ton do M(2) = M(3) = M(4) ={1,2
while P; € M(i) do () () () { }
Add P; to H with key \;7; - -
i=it1 oG] H | J]
if H.empty() then 0 0 (,) 1
L Return no solution
schedule i on j' = H.min() 17 0 (P1,3) 2
Cj’:Cj' —|—p,'7'j/ 2 7 0 (P1|3).(P212) 2
if Gy > w then
| Remove j/ from H
end

E. Jeannot (LORIA INRIA) Makespan and Reliability Optimization

Knoxville 18 / 28

A Dual Approximation algorithm

CMLT

w: makespan threshold p= {7, 5,4, 2}
ll:\’/,(l):{J|pU§w})\1:3, T = 1, Pi1 :{7’5’472}
egin
s sort tasks in non-increasing p; order >\2 =1, T2 = 2, pPi2 = {14a 10, 87 4}
sort processors in non-decreasing 7; order w=10
Let H be an empty heap
ji=1 M(1) = {1}
for i=1 ton do M(2) = M(3) = M(4) ={1,2
while P; € M(i) do () () () { }
Add P; to H with key \;7; - -
i=it1 oG] H | J]
if H.empty() then 0 0 (,) 1
L Return no solution
schedule i on j' = H.min() 17 0 (P1,3) 2
Cj’:Cj' —|—p,'7'j/ 2 7 0 (P1|3).(P212) 3
if Gy > w then
| Remove j/ from H
end

E. Jeannot (LORIA INRIA) Makespan and Reliability Optimization

Knoxville 18 / 28

A Dual Approximation algorithm

CMLT

w: makespan threshold p= {7, 5, 47 2}
ll:\’/,(’):{J'pUSw})\1:3, 7’1:1, Pi1:{7757472}
egin
s sort tasks in non-increasing p; order >\2 =1, T2 = 2, pPi2 = {14a 10, 87 4}
sort processors in non-decreasing 7; order w=10
Let H be an empty heap
Al M(1) = {1}
for i=1 ton do M(2) = M(3) = M(4) ={1,2
while P; € M(i) do () () () { }
Add P; to H with key \;7; - -
i=it1 oG] H | J]
if H.empty() then 0 0 (,) 1
L Return no solution
schedule i on j' = H.min() 17 0 (P1,3) 2
Cyr = Gjr + piTyr 21 7 10 (P1,3),(P2.2) 3
if Gy > w then
| Remove j/ from H
end

E. Jeannot (LORIA INRIA)

Makespan and Reliability Optimization

Knoxville 18 / 28

A Dual Approximation algorithm

CMLT

w: makespan threshold p= {7, 5,4, 2}
ll:\’/,(’):{J'pUSw})\1:3, 7’1:1, Pi1:{7757472}
egin
s sort tasks in non-increasing p; order >\2 =1, T2 = 2, pPi2 = {14a 10, 87 4}
sort processors in non-decreasing 7; order w=10
Let H be an empty heap
ji=1 M(1) = {1}
for i=1 ton do M(2) = M(3) = M(4) ={1,2
while P; € M(i) do () () () { }
Add P; to H with key \;7; - -
j=i+1 Collale| H | J]
if H.empty() then 0 0 (') 1
L Return no solution
schedule i on j' = H.min() 17 0 (P1,3) 2
Cj’:Cj' + piTj 2 7 10 (P1,3),(P2,2) 3
if C» > w th
I LJRemu;ve??from H 317 10 (P1,3).(P2,2) 3
end

E. Jeannot (LORIA INRIA) Makespan and Reliability Optimization Knoxville 18 / 28

A Dual Approximation algorithm

CMLT

w: makespan threshold p= {7, 5,4, 2}
ll:\’/,(’):{J'pUSw})\1:3, 7’1:1, Pi1:{7757472}
egin
s sort tasks in non-increasing p; order >\2 =1, T2 = 2, pPi2 = {14a 10, 87 4}
sort processors in non-decreasing 7; order w=10
Let H be an empty heap
ji=1 M(1) = {1}
for i=1 ton do M(2) = M(3) = M(4) ={1,2
while P; € M(i) do () () () { }
Add P; to H with key \;7; - -
j=i+1 Collale| H | J]
if H.empty() then 0 0 (') 1
L Return no solution
schedule i on j' = H.min() 17 0 (P1,3) 2
Cj’:Cj' + piTj 2 7 10 (P1,3),(P2,2) 3
if C» > w th
I LJRemu;ve??from H 317 18 (P1,3).(P2,2) 3
end

E. Jeannot (LORIA INRIA) Makespan and Reliability Optimization Knoxville 18 / 28

A Dual Approximation algorithm

CMLT

w: makespan threshold p= {7, 5,4, 2}
ll:\’/,(l):{J|pU§w})\1:3, T = 1, Pi1 :{7’5’472}
egin
s sort tasks in non-increasing p; order >\2 =1, T2 = 2, pPi2 = {14a 10, 87 4}
sort processors in non-decreasing 7; order w=10
Let H be an empty heap
ji=1 M(1) = {1}
for i=1 ton do M(2) = M(3) = M(4) ={1,2
while P; € M(i) do () () () { }
Add P; to H with key \;7; - -
j=i+1 Collale| H | J]
if H.empty() then 0 0 (') 1
L Return no solution
schedule i on j' = H.min() 17 0 (P1,3) 2
Cj’:Cj' + piTj 2 7 10 (P1,3),(P2,2) 3
if Ci/ > w then
I L JRemuc))ve Jj' from H 3 ’ 18 (P1'3) 3
end

E. Jeannot (LORIA INRIA) Makespan and Reliability Optimization Knoxville 18 / 28

A Dual Approximation algorithm

CMLT
w: makespan threshold p= {7, 5,4, 2}
ll:\’/,(’):{J'pUSw})\1:3, 7’1:1, Pi1:{7757472}
egin
s sort tasks in non-increasing p; order >\2 =1, T2 = 2, pPi2 = {14a 10, 87 4}
sort processors in non-decreasing 7; order w=10
Let H be an empty heap
ji=1 M(1) = {1}
for i=1 ton do M(2) = M(3) = M(4) ={1,2
while P; € M(i) do () () () { }
Add P; to H with key \;7; - -
i=it1 oG] H | J]
if H.empty() then 0 0 (') 1
L Return no solution
schedule i on j' = H.min() 17 0 (P1,3) 2
Cyr = Gjr + piTyr 21 7 |10 (P1,3),(P2.2) 3
if C» > w th
I L JRemuc))ve ?‘from H 3 ’ 18 (P1'3) 3
J = 4| 7 |18 (P1,3) 3
en

E. Jeannot (LORIA INRIA) Makespan and Reliability Optimization Knoxville 18 / 28

A Dual Approximation algorithm

CMLT
w: makespan threshold p= {7, 5, 47 2}
ll:\’/,(l):{J|pU§w})\1:3, T = 1, Pi1 :{7’5’472}
egin
s sort tasks in non-increasing p; order >\2 =1, T2 = 2, pPi2 = {14a 10, 87 4}
sort processors in non-decreasing 7; order w=10
Let H be an empty heap
ji=1 M(1) = {1}
for i=1 ton do M(2) = M(3) = M(4) ={1,2
while P; € M(i) do () () () { }
Add P; to H with key \;7; - -
j=it1 Toollal 6| H | J |
if H.empty() then 0 0 (') 1
L Return no solution
schedule i on j' = H.min() 17 0 (P1,3) 2
Cyr = Gjr + piTyr 21 7 |10 (P1,3),(P2.2) 3
if C» > w th
I L JRemuc))ve ?‘from H 3 ’ 18 (P1'3) 3
- 419 |18 (Py3) 3
en

E. Jeannot (LORIA INRIA) Makespan and Reliability Optimization Knoxville 18 / 28

Properties of CMLT

@ Tasks are ranked by non-increasing duration

@ Processor j is used until (; > w

E. Jeannot (LORIA INRIA) Makespan and Reliability Optimization Knoxville 19 /28

Properties of CMLT

@ Tasks are ranked by non-increasing duration

@ Processor j is used until (; > w

If CMLT does not return a schedule then there is no schedule 7 with

Coax(T) < w

max

o M(i)={j | py < w}

v

E. Jeannot (LORIA INRIA) Makespan and Reliability Optimization Knoxville 19 /28

Properties of CMLT

@ Tasks are ranked by non-increasing duration

@ Processor j is used until (; > w

If CMLT does not return a schedule then there is no schedule 7 with

Coax(T) < w

max

o M(i) ={j | py < w}

@ If task / cannot be executed on any processors of
M(i) = Vje M(i),G >w

v

E. Jeannot (LORIA INRIA) Makespan and Reliability Optimization Knoxville 19 /28

Properties of CMLT

@ Tasks are ranked by non-increasing duration

@ Processor j is used until (; > w

If CMLT does not return a schedule then there is no schedule 7 with
Cmax(ﬂ-) < w
o M(i)={j|pj <w}
@ If task / cannot be executed on any processors of
M(i) = Vje M(i),G >w

e Vi,i" € T such that p; < py, M(i") € M(i)

v

E. Jeannot (LORIA INRIA) Makespan and Reliability Optimization Knoxville 19 /28

Properties of CMLT

@ Tasks are ranked by non-increasing duration

@ Processor j is used until (; > w

If CMLT does not return a schedule then there is no schedule 7 with
Coox(T) <w
o M(i)={j | pj < w}
@ If task / cannot be executed on any processors of
M(i) = Vje M(i),G >w
e Vi, i" € T such that p; < py, M(i") C M(i)
@ Vi’ < i such that py > p; must have been schedule to a processor of
M(i).

v

E. Jeannot (LORIA INRIA) Makespan and Reliability Optimization Knoxville 19 /28

Properties of CMLT

@ Tasks are ranked by non-increasing duration

@ Processor j is used until (; > w

If CMLT does not return a schedule then there is no schedule 7 with

Coax(T) < w

max

o M(i) ={j|pj <w}

@ If task / cannot be executed on any processors of
M(i) = Vje M(i),G >w

e Vi, i" € T such that p; < py, M(i") C M(i)

@ Vi’ < i such that py > p; must have been schedule to a processor of
M(i).

@ There is more operations in the set of tasks {/’ < i} than processors
in M(i) can execute in w units of time.

v

E. Jeannot (LORIA INRIA) Makespan and Reliability Optimization Knoxville 19 /28

Properties of CMLT

CMLT generates a schedule such that rel < rel*“~

Idea: tasks are scheduled on the processor that have the minimum A7
product which is known to be optimal for unitary tasks.

CMLT a <§, 1>-approximation algorithm J

E. Jeannot (LORIA INRIA) Makespan and Reliability Optimization Knoxville 20 / 28

Properties of CMLT

CMLT generates a schedule such that rel < re/*“~

Idea: tasks are scheduled on the processor that have the minimum At
product which is known to be optimal for unitary tasks.

CMLT a <§, 1>-approximation algorithm J

The time complexity of CMLT is in O(nlog n+ mlog m)

@ cost of sorting tasks: O(nlog n)
@ cost of sorting processors: O(mlog m)
@ Adding elements to heap: O(mlog m)

o Getting and removing elements from heap 0(1 * n)

E. Jeannot (LORIA INRIA) Makespan and Reliability Optimization Knoxville 20 / 28

Outline of the talk

© Independent tasks: Pareto front approximation

E. Jeannot (LORIA INRIA) Makespan and Reliability Optimization Knoxville 21 /28

Back to Definition

In multi-criteria, k functions are optimized f; ... f,. Solution S’ is Pareto
dominated by S if Vi, f;(S) < £;(S’). A solution which is not dominated is
Pareto-optimal.

E. Jeannot (LORIA INRIA) Makespan and Reliability Optimization Knoxville 22 /28

Back to Definition

In multi-criteria, k functions are optimized f; ... f,. Solution S’ is Pareto
dominated by S if Vi, f;(S) < £;(S’). A solution which is not dominated is
Pareto-optimal.

N

Reliability

Pareto Front

The Pareto front is
the set P of all Pareto
optimal solution. We
should remark that
the size of P can be
exponential.

/.

Makespan

22/ 28

E. Jeannot (LORIA INRIA) Makespan and Reliability Optimization Knoxville

Approximating the Pareto front

Definition

Informally, P is a p = (p1, p2,- .., pk) approximation of P* if each solution
S* € P* is p approximated by a solution S € P. Formally,
VS* € P*,3S € P, Vi, fi(S) < pifi(S*).

rel
+
N +
" i + * +
- =
+ + .
— .
1 N +
AT 4 4
S + + *
y T ‘ T
+ 1 4 + o+ o+
¥ T+ +
P
: T, o+ s
SR + +
an , + s
x X C

”n max

Bold crosses are a (p1, p2)-approximation of the Pareto set.

E. Jeannot (LORIA INRIA) Makespan and Reliability Optimization Knoxville

Pareto front approximation algorithm

Papadimitriou and Yannakakis approximation method of the Pareto

front

Data: ¢ a positive real number

Result: S a set of solutions

min _ 2 Pi
Cmax - Zj %
Crax = 2 Pi max; 7j
begin
i=0
S=0

while i < [log;.../2 (%ﬂ do
w; = (1 4 g)icmm

max
mi = CMLT (w;)
5 = 5 U T
I=i+1
return S

end

y
E. Jeannot (LORIA INRIA) Makespan and Reliability Optimization Knoxville 24 /28

A (2 + €,1) approximation algorithm of the Pareto front

rel
rel*(w,), ,,,
rel*(wig1)d ... rrrrrrrrrrrrrrrrrrrrrrrrrr rr
: : < x1
! ! ><(2 + 6) CMLT((A}[+1)
i i
(4 Wijt1 = (1 + %)UJ,‘ Crnax
(] CmaX(CMLT(w,’+1)) < 2.w,~+1

E. Jeannot (LORIA INRIA) Makespan and Reliability Optimization Knoxville 25 /28

A (2 + €,1) approximation algorithm of the Pareto front

rel
rel*(w,), ,,,
rel*(wig1)d ... rrrrrrrrrrrrrrrrrrrrrrrrrr rr
: : < x1
! ! ><(2 + 6) CMLT((A}[+1)
i i
(4 Wijt1 = (1 + %)UJ,‘ Crnax
(] CmaX(CMLT(w,’+1)) < 2.w,~+1

@ Wiyl = (1 + %)w,- — CmaX(CMLT(w,'Jr]_)) < (2 + E)W,'

E. Jeannot (LORIA INRIA) Makespan and Reliability Optimization Knoxville 25/

A (2 + €,1) approximation algorithm of the Pareto front

rel
rel*(w,), ,,,
rel*(wig1)d ... rrrrrrrrrrrrrrrrrrrrrrrrrr rr
: : < x1
! ! ><(2 + 6) CMLT((A}[+1)
i i
(4 Wijt1 = (1 + %)UJ,‘ Crnax
(] CmaX(CMLT(w,’+1)) < 2.w,~+1

@ Wiyl = (1 + %)w,- — CmaX(CMLT(w,'Jr]_)) < (2 + E)W,'
(] re/(CMLT(w,-H)) < re/*(w,-+1)

E. Jeannot (LORIA INRIA) Makespan and Reliability Optimization Knoxville 25/

A (2 + €,1) approximation algorithm of the Pareto front

rel
rel*(w,), ,,,
rel*(wig1)d ... rrrrrrrrrrrrrrrrrrrrrrrrrr rr
: : < x1
! ! ><(2 + 6) CMLT((A}[+1)
i i
(4 Wijt1 = (1 + %)UJ,‘ Crnax
(] CmaX(CMLT(w,’+1)) < 2.w,~+1

@ Wiyl = (1 + %)w,- — CmaX(CMLT(w,'Jr]_)) < (2 + E)W,'
4 re/(CMLT(w,-H)) < re/*(w,-+1)
@ CMLT (wjt1) is a (2 + ¢, 1)-approximation of (wj, re/*(wi+1))

E. Jeannot (LORIA INRIA) Makespan and Reliability Optimization Knoxville 25 /28

Cardinality and complexity

Cardinality

@ Number of solutions less than:
Crss . . max;;
|0g1+§ C—’,nni < ’7|Og1+§ max;T; ZJ]./’TJ—‘ < ’7|0g1+§ mm-‘

@ polynomial in 1/e and in m

E. Jeannot (LORIA INRIA) Makespan and Reliability Optimization Knoxville 26 / 28

Cardinality and complexity

Cardinality

@ Number of solutions less than:

max

Cmax . . .
logy 4 ¢ o | < {IogH% maxiT;) 1/7‘1—‘ < {IogH_e mo

@ polynomial in 1/e and in m

max;T; -‘

Complexity

@ Sorting the tasks:independent of w (can be done once for all)
o Complexity of the Pareto front approximation algorithm:
O(nlog n + [logy.../2(&) | (n + mlog m))

A\

E. Jeannot (LORIA INRIA) Makespan and Reliability Optimization Knoxville 26 / 28

Outline of the talk

@ Conclusion

E. Jeannot (LORIA INRIA) Makespan and Reliability Optimization Knoxville 27 / 28

Conclusion

Problem
@ Reliability is a crucial issue
@ Scheduling independent tasks on related processors

@ Optimizing makespan and reliability

@ These criteria are conflicting

E. Jeannot (LORIA INRIA) Makespan and Reliability Optimization Knoxville

Conclusion

Reliability is a crucial issue

@ Scheduling independent tasks on related processors
o Optimizing makespan and reliability
°

These criteria are conflicting

v

Contribution

e a (@, 1)-approximation with a € [1, 400[for unitary independant
tasks

o CMLT: a <§, 1>—approximation for non unitary independant tasks
algorithm

@ A (2 + ¢, 1)-approximation of the Pareto front
@ Exemplify the role of the At product

A\

E. Jeannot (LORIA INRIA) Makespan and Reliability Optimization Knoxville 28 /28

	Introduction, related work and modeling
	The problem
	Independent unitary tasks
	Independent tasks: a bi-approximation algorithm
	Independent tasks: Pareto front approximation
	Conclusion

