Scheduling algorithms for workflow optimization

Loïc Magnan

in collaboration with Kunal Agrawal, Anne Benoit & Yves Robert

École Normale Supérieure de Lyon
We represent a program by a linear graph:

\[\delta_0 S_1 \delta_1 S_2 \delta_2 \cdots \delta_{k-1} S_k \delta_k \cdots \delta_{n-1} S_n \delta_n \]

\[w_1 \quad w_2 \quad w_k \quad w_k \quad w_n \]

Goal: minimize period and/or latency

Loïc Magnan

Scheduling algorithms for workflow optimization
We represent a program by a linear graph:

\[
\begin{align*}
\delta_0 &\quad S_1 &\quad \delta_1 &\quad S_2 &\quad \delta_2 &\quad \ldots &\quad \delta_{k-1} &\quad S_k &\quad \delta_k &\quad \ldots &\quad \delta_{n-1} &\quad S_n &\quad \delta_n \\
&\quad w_1 &\quad w_2 &\quad w_k &\quad w_k &\quad &\quad w_n &\quad w_n \\
\end{align*}
\]

The platform consists of \(p \) processors:
We represent a program by a linear graph:

The platform consists of \(p \) processors:

Goal:

- minimize period
- minimize latency
1 Introduction: framework and goal

2 Finding the optimal schedule which minimizes the period in the one-port model is NP-hard

3 How to approximate the optimal period?
The platform consists of p processors:

![Diagram of the platform with processors P_1, P_2, P_3, and P_4 connected by edges s_2 and $b_{4,1}$]
The platform consists of p processors:

There are two platform models:

- one-port model (one processor can either compute or receive or send)
- multi-port model (one processor can compute, receive and send at the same time)
Let’s take an example in the one-port model:

\[
\begin{array}{c}
0 \rightarrow S_1 \rightarrow 1 \rightarrow S_2 \rightarrow 0 \\
\end{array}
\]

\[
\begin{array}{c}
P_1 \rightarrow P_2 \\
\end{array}
\]
Let’s take an example in the one-port model:

\[P \]

\[S \]

\[0 \]

\[0 \]

\[1 \]

\[1 \]

\[2 \]

\[2 \]

\[3 \]

\[3 \]

\[\rightarrow \]

\[\rightarrow \]

\[\text{mapping} \]
Let’s take an example in the one-port model:

Two schedules of period 4:

\[
P_1
\begin{align*}
0 & \quad 2 & \quad 3 & \quad 4 & \quad 7 & \quad \ldots \\
2 & \quad 3 & \quad 6 & \quad \ldots & \quad \ldots
\end{align*}
\]

\[
P_2
\begin{align*}
0 & \quad 2 & \quad 3 & \quad 6 & \quad \ldots \\
2 & \quad 3 & \quad 7 & \quad \ldots & \quad \ldots
\end{align*}
\]
Goal: minimize period and/or latency

More precisely:

- When the mapping is not given: most problems are NP-hard (related work)
Goal: minimize period and/or latency

More precisely:

- When the mapping is not given: most problems are NP-hard (related work)

- When the mapping is given: we search for a schedule which
 - minimizes period
 - minimizes latency
 - respects a period and a latency (bi-criteria)

 for the
 - one-port model
 - multi-port model
We will prove that for a given mapping, finding a schedule that minimizes the period is NP-hard.
We will prove that for a given mapping, finding a schedule that minimizes the period is NP-hard.

The 2-PARTITION problem

Given a set S of n integers $S = \{a_1, a_2, \ldots, a_n\}$ such that

$$\sum_{a_i \in S} a_i = P$$

Decide if it is possible to partition S into two subsets S_1 and S_2 such that

$$\sum_{a_i \in S_1} a_i = \sum_{a_i \in S_2} a_i = P/2$$

is NP-hard in the weak sense.
We want to prove that for some linear graphs and mappings, it’s equivalent to say:

- There exists a schedule of period P.

- We can 2-PARTITION the set $\{a_1, a_2, \ldots, a_n\}$ into two subsets of sum $P/2$.
We want to prove that for some linear graphs and mappings, it’s equivalent to say:

- There exists a schedule of period P.

- We can 2-PARTITION the set $\{a_1, a_2, \ldots, a_n\}$ into two subsets of sum $P/2$.

We explain this by constructing a schedule of period P.
We first add a **computation** of size P on processor P_0 and **communications** of size 0 between P_0 and P_{2k-1}.
Then we add on P_{2k-1} a computation of size $P/2$ and a communication of size $P/2$ with P_{2k}.
Then we add on P_{2k-1} a computation of size $P/2$ and a communication of size $P/2$ with P_{2k}.

Loïc Magnan
Scheduling algorithms for workflow optimization
Finally we add a communication of size a_k between P_{2k} and P_{2n+1}.
Finally we add a communication of size a_k between P_{2k} and P_{2n+1}.
Repeating the previous steps n times leads to:

\[P_0 \quad \vdots \quad P_{2n+1} \]

\[\text{time 0} \quad \text{P/2} \quad \text{P} \]

and is equivalent to the 2-PARTITION problem:

\[
\sum_{i \in \gamma} a_i = \sum_{i \notin \gamma} a_i = \frac{P}{2}
\]
Assuming that $P \neq NP$, there is no way to compute a schedule with optimal period in the one-port model in polynomial time.
Assuming that $P \neq NP$, there is no way to compute a schedule with optimal period in the one-port model in polynomial time.

Preliminary remark: in the one-port model for a given mapping,
- a communication between stages S_k and S_{k+1} mapped on P_u and P_v lasts $\delta_k \min\{b_{u,v}, B^i_v, B^o_u\}$ time-units.
- a computation on stage S_k mapped on P_u lasts $\frac{w_k}{s_u}$ time-units.
Assuming that $P \neq NP$, there is no way to compute a schedule with optimal period in the one-port model in polynomial time.

Preliminary remark: in the one-port model for a given mapping,

- a communication between stages S_k and S_{k+1} mapped on P_u and P_v lasts \(\frac{\delta_k}{\min\{b_{u,v},B_v^l,B_u^o\}} \) time-units.
- a computation on stage S_k mapped on P_u lasts \(\frac{w_k}{s_u} \) time-units.

Longest First algorithm:

for all tasks, communications and computations, from the longest to the shortest do

add the task as soon as possible in the schedule

end for
The Longest First algorithm constructs a schedule of period P, with $P \leq 4P_{opt}$.
By induction: let’s suppose that the result is true for the first k longest tasks.
The Longest First algorithm adds a new communication between P_u and P_v:
The Longest First algorithm adds a new communication between P_u and P_v:

\[
\begin{align*}
\vdots \\
P_u \\
\vdots \\
0 \\
\vdots \\
P_v \\
\vdots \\
4P_{\text{opt}}
\end{align*}
\]
Common gaps between P_u and P_v are smaller than the last communication:
The sum of common gaps sizes is smaller than $2P_{\text{opt}}$.

![Diagram showing the period P_{opt} and some experiments]
The sum of common gaps sizes is smaller than $2P_{opt}$. The size of the schedule minus common gaps is smaller than $2P_{opt}$.
The Longest First algorithm is a 4-APPROXIMATION for the period.
The Longest First algorithm is a 4-APPROXIMATION for the period.

This algorithm is not a k-APPROXIMATION for any constant $k < 4$.
Minimizing period in the one-port model is NP-hard
How to approximate the optimal period?

Description of a polynomial algorithm
This algorithm is a 4-APPROXIMATION

Some experiments

LF algo
A bound of the optimal period

Loïc Magnan
Scheduling algorithms for workflow optimization
Some results:

One-port model
- Latency is easy
- Period is NP-hard (proved)
- Bi-criteria is NP-hard

Multi-port model
- Latency is easy
- Period is polynomial
- Bi-criteria is conjectured NP-hard

Loïc Magnan
Scheduling algorithms for workflow optimization
Questions?