How to “Exploit” a Heterogeneous Cluster of Computers
(Asymptotically) Optimally

Arnold L. Rosenberg
Electrical & Computer Engineering

Colorado State University
Fort Collins, CO 80523, USA

rsnbrg@colostate.edu

Joint work with
Micah Adler
Ying Gong

The Computational Environment

e A “master’ computer C

(This is our computer.)

The Computational Environment

e A “master’ computer C

e A cluster C of n heterogeneous computers
017 027 R Cn
that are available for dedicated “rental”

(The C; differ in processor, memory speeds.)

The Computational Environment

e A “master’ computer C

e A cluster C of n heterogeneous computers
017 027 R Cn
that are available for dedicated “rental”

(The C; may be geographically dispersed.)

The Computational Environment

e A “master’ computer C

e A cluster C of n heterogeneous computers
C, Co, ..., C,

that are available for dedicated “rental”

e a large "bag” of (arbitrarily but) equally complex tasks

Two Simple Worksharing Problems

The Cluster-Exploitation Problem

e One has access to cluster C for L time units.

e One wants to accomplish as much work as possible
during that time.

Two Simple Worksharing Problems

The Cluster-Exploitation Problem

e One has access to cluster C for L time units.

e One wants to accomplish as much work as possible
during that time.

The Cluster-Rental Problem

e One has W units of work to complete.

e One wishes to “rent” cluster C for as short a period
of time as necessary to complete that work.

Our Contributions

Within HiIHCoHP — a heterogeneous, long-message analog

of the LogP architectural model — we offer:

Our Contributions

Within HiIHCoHP — a heterogeneous, long-message analog

of the LogP architectural model — we offer:

A Generic Worksharing Protocol:

e works predictably for many variants of our model.

e determines all work-allocations and all communication times.

Our Contributions

Within HiIHCoHP — a heterogeneous, long-message analog

of the LogP architectural model — we offer:

A Generic Worksharing Protocol:

e works predictably for many variants of our model.

e determines all work-allocations and all communication times.

An Asymptotically Optimal Worksharing Protocol:

e solves the Cluster-Exploitation and -Rental Problems optimally

— as long as L is sufficiently long.

Our Contributions — Details

Worksharing protocols:

e () supplies work to each “rented” (), in some order

— in a single message for each C;

Our Contributions — Details

Worksharing protocols:

e () supplies work to each “rented” (), in some order

e (; does the work — and returns its results

— in a single message from each C;

Our Contributions — Details

Worksharing protocols:

e () supplies work to each “rented” (), in some order

e (; does the work — and returns its results

A symptotically optimal worksharing protocols:

e Computers start and finish computing in the same order-

— first started = first finished

e Optimality is independent of computers’ starting order:

— even if each C; is 10! times faster than C}.;

The Model

Calibration

e All units — time and packet size — are calibrated to the slowest computer’s
computation rate:

— This C does one “unit” of work in one “unit” of time.

e Each unit of work produces ¢ units of results (for simplicity).

Computation Rates

p; is the per-unit work time for computer C;

e p < pp < --- < p, (by convention)

[The smaller the index, the faster the computer.]

e p, = 1 (by our calibration)

The Costs of Communication, 1

Message Processing time for C;:

Transmission setup: o time units -per communication
Transmission packaging: m; time units -per packet
Reception unpackaging: 7, time units -per packet

e Subscripts reflect computers’ heterogeneity.

The Costs of Communication, 2

Message Transmission Time:

Latency: A time units —for first packet
Bandwidth limitation: 7 = 1/ time units/packet
—for remaining packets

e 3 = network’s end-to-end bandwidth.

The timeline as () shares work with C}

G prepares | (- C | transmits C unpacks C does C prepares c transmits G unpacks

work for C| setup work work work |results for C results results
E ™ w, E o E)\:T(wi—1) E T w, p,w, T[l,éwi E)\ET(éwi—1) E "06w1 E
I I I I I ’ : :
: - - - - - - - - - E : - - - - - - - : --------- E : --------------------------------- > : - - - - - - - - =3 - : --------- - :
! , in ! C ! . ! !
1 in C | C;) P C 1 1 n i 1 n 1 in C 1
! 0 ! t 1 network ! ! 0 !
| ' and | | network | |
! 'metwork ! ! ! ! !

A Generic Worksharing Protocol

Specifying a worksharing protocol

e () sends work to C, Cs, ..., C,, in the startup order:
Cq, Copy ...y C

Sn

o (1,05, ..., C, return results to C in the finishing order:
Cy, Cpyyooy Cf

n

(Note subscript-sequence s1, So, . . .

(Note subscript-sequence fi, fa, . ..

The timeline for three “rented” computers, Cy, Cy, Cs:

Lifespan
S ey < T >
[Prepare ..
Transmit 3 3
PoIA-T Total compute tim ‘
CU T5w51 3 0’3 ‘[ws (p T) 3
- - - - e £ T T T T R Looooo- >
Transmit | |
Cs i A-T+H ! c
) : T6wf11 : fl
——— el et .
S Prepare | Transmit |
! | PA-TH
C ! o) 1 O | C
%y ‘J)rzwle Tyz wfz } } Tawf} A
I — — — e e e e PR SR
S Prepare [Transmit
| \ IA-TH
Cs %awfa :1}35wa | o :Téwf Cf
3 ! | ! 3
-~~~ — = ——— e o __ [-

NOTE: Only one message in transit at a time

Some Useful Abbreviations

Quantity | Meaning
7| 7(1+9) |2-way network transmission rate
m | m+mo | C;'s 2-way message-packaging rate
(workload + results)
F | (0 4+ A\ —7) | fixed communication overhead
(becomes invisible as L grows)
V;| mg+7+m; | C;'s variable communication

overhead rate

Given:

Compute:
by solving

Vi+
By,

Bn—l,l
Bn,l

B; ; assesses: {

B
Vatpy o

Bn—1,2
Bn,Q

A Generic Protocol’s Work-Allocations

startup order: X = ($1,89,...,S,-1, Sn)

finishing order: ® = (f1, fo, ..., fu_1, fo)

Protocol (%, ®)'s work-allocations (wy, ws, ..., wy)

the nonsingular system of equations:
Bl,nfl Bl,n w1 L — (Cl + 2)F
BQ,nfl B2,n Wa L — (CQ + 2)F

Vn—l + Pn—1 Bn—l,n Wp—1 L - (Cn—l + 2)F

Byn-1 V., + pn W, L—(c, +2)F

mp+ 7 for each C} that starts before C; (j € SB;)
70 for each C; that finishes after C; (j € FA,)

Worksharing Protocols Are Self-Scheduling

Theorem.

Worksharing protocols are self-scheduling.

Worksharing Protocols Are Self-Scheduling

Theorem.

Worksharing protocols are self-scheduling.

Translation:

A protocol’s startup and finishing indexings determine:

e all work-allocations
e the times for all communications.

The Optimal FIFO Worksharing Protocol

Computers stop working — hence, return results — in the same order as they
start working.

The defining startup and finishing orderings:

Foreachi € {1,2,....,n}: s;= f; = i

The FIFO timeline for three “rented” computers, Cy, Cy, Cs:

Lifespan L

. Gl i it P
Prepare Prepare Prepare |
Transmit Transmit Transmit | |
T T I I
C w, (oA TH qw oA TH w, 1o A-TH w 1 |
0 ™ S Twg ™ P Tw, ™ % L Tw, ! !
. : : 1 : : | 2 | | | 3\ I | |
B s T - - T T T T T T T T~ R S 1T T T T T T
Receive |\ Compute | Prepare | Transmit l
] 1 1 H]] !
_ I — .P |
C T w, 1 pw ;néwlcl)‘rw w
1 1 1 11 1 s S 1 s s ‘Téw 1 1
|) | 1 1 | | 1 1, | S 1 |
| - - = —lm - — - = d o oo S ___4.___>1‘ !
[Receive |\ Compute {Prepare | Transmit |
)]] I]]]
= - T+
C DT w | pw ' ow e} 1)\ o
Sy ! S %! ! % % S %) 1T6wsl
- - - - - le e = o L J.___l___)zl
[Receive | Compute ~[Prepare | Transmit
X |] j]
= ' ! l ‘)_T+
CS ! T[sws I e s :T[séws O TOw
3 ! 33 3 3 ‘ 3 s

The FIFO Protocol’s Work-Allocations

Given: startup order, X = (s1,89,...,S,-1, Sn)

Compute: the FIFO work-allocations (wy,, ws,, ..., ws,)
by solving the system of equations:

Vg, + ps, T4 T4 Wg, L—(n+1)(c+A—1)
mo+7T Ve+ps, -) W, L—(n+1)(c+X—1)
To+T mo+T - T ws, L—(n+1)(c+A—1)
T+ T m+T71 - Vs, +ps, W, L—(n+1)(c+AX—1)

Let

Then

The FIFO Protocol’s Work-Output

1 T+ T —TO
(FIFOY) = | o
ZV'—Fpi—Tél:[Vj+pj—7'(5

1

(FIFO,) _
R = X

(L—(n+1)F).

WFIFOE) (1) IS INDEPENDENT OF THE STARTUP ORDER X!

What’s so Wonderful about the FIFO Protocol?

Theorem FIFO-Optimal.
The FIFO Protocol provides an asymptotically optimal solution to the

Cluster Exploitation Problem.

What’s so Wonderful about the FIFO Protocol?

Theorem FIFO-Optimal.
The FIFO Protocol provides an asymptotically optimal solution to the

Cluster Exploitation Problem.

Translation.

For all sufficiently long lifespans L, W({FTFO)(L) is at least as large as the work-

output of any other protocol.

How long is “sufficiently long?”

Simulation experiments that compare the FIFO Protocol against 100 random
competitors lead to the following conclusions.

How long is “sufficiently long?”

Simulation experiments that compare the FIFO Protocol against 100 random
competitors lead to the following conclusions.

e The advantages of the FIFO regimen are often discernible within lifespans
whose durations are just minutes.

How long is “sufficiently long?”

Simulation experiments that compare the FIFO Protocol against 100 random
competitors lead to the following conclusions.

e The advantages of the FIFO regimen are often discernible within lifespans
whose durations are just minutes.

e The advantages of the FIFO regimen are seen earlier on:

— larger Clusters,

— Clusters of lesser degrees of heterogeneity.

How long is “sufficiently long?”

Simulation experiments that compare the FIFO Protocol against 100 random
competitors lead to the following conclusions.

e The advantages of the FIFO regimen are often discernible within lifespans
whose durations are just minutes.

e The advantages of the FIFO regimen are seen earlier on:

— larger Clusters,

— Clusters of lesser degrees of heterogeneity.

e The advantages of the FIFO regimen are seen earlier when tasks are finer
grained.

How long is “sufficiently long?”

Simulation experiments that compare the FIFO Protocol against 100 random
competitors lead to the following conclusions.

e The advantages of the FIFO regimen are often discernible within lifespans
whose durations are just minutes.

e The advantages of the FIFO regimen are seen earlier on:

— larger Clusters,

— Clusters of lesser degrees of heterogeneity.

e The advantages of the FIFO regimen are seen earlier when tasks are finer
grained.

e Even with coarse tasks, FIFO “wins” within (roughly) a weekend, except on
very small clusters.

FIFO vs. Random Competitors: “Practical” Lifespans‘

Power-Index Task Lifespan L <

Vector Grain n | 1 min ‘ 10 min ‘ 30 min ‘ 1 hr
pi =1 O.lsec| 8 1.00 1.00 1.00 | 1.00
pi=(1+2"")/2 8 | 048 | 052 | 0.64 |0.81
pi=1—1/(i+1) 8 | 0.50 0.51 0.63 | 0.70
pi=1-—27" 8 | 0.43 0.47 0.48 | 0.58
pi =1 32 | 1.00 1.00 1.00 | 1.00
pi=(1+2""7)/2 32 | 066 | 1.00 | 1.00 |[1.00
pi=1—1/(i+1) 32 | 0.53 0.78 1.00 | 1.00
pi=1-—2" 32 | 0.54 0.74 1.00 | 1.00
pi =1 128 | 1.00 1.00 1.00 | 1.00
pi=(1+27")/2 128 | 1.00 1.00 1.00 | 1.00
pi=1—1/(i+1) 128 | 0.93 1.00 1.00 | 1.00
pi=1-—27" 128 | 0.88 1.00 1.00 | 1.00
pi =1 1 sec 8 1.00 1.00 1.00 | 1.00
pi=(1+277)/2 8 | 0.49 0.49 0.49 | 0.50
pi=1—-1/(i+1) 8 | 0.49 0.49 0.49 | 0.49
pi=1-27" 8 | 0.58 0.58 0.58 | 0.58
pi =1 32 | 1.00 1.00 1.00 | 1.00
pi = (1+277)/2 32 | 0.54 0.55 0.57 | 0.59
pi=1—1/(i+1) 32 | 0.53 0.53 0.53 | 0.54
pi=1-—27" 32 | 0.46 0.47 0.48 | 0.49
pi =1 128 | 1.00 1.00 1.00 | 1.00
pi=(1+2"")/2 128 | 051 | 0.73 | 095 |1.00
pi=1—1/(i+1) 128 | 0.48 0.52 0.64 |0.75
pi=1-—27" 128 | 0.46 0.54 0.63 | 0.73

FIFO vs. Random Competitors: “Realistic” Lifespans‘

Power-Index Task Lifespan L <
Vector Grain 2 hr ‘ 4 hr ‘ 8 hr ‘ 24 hr ‘ 48 hr

pi=1 0.1 sec 1.00 | 1.00 | 1.00 | 1.00 | 1.00

pi=1-1/G+1) 0.90 | 1.00 | 1.00 | 1.00 | 1.00

n
8

pi = (14+277)/2 8 1098 |1.00|1.00| 1.00 | 1.00
8
8

pi=1-—27" 0.80 [0.96 | 1.00 | 1.00 | 1.00
pi=1 32 [1.00|1.00]1.00| 1.00 | 1.00
pi=(1+2"")/2 32 [1.00 | 1.00 | 1.00 | 1.00 | 1.00
pi=1—1/(+1) 32 [1.00 | 1.00 [1.00 | 1.00 | 1.00
pi=1-—27" 32 [1.00 | 1.00 | 1.00 | 1.00 | 1.00
pi=1 128 [1.00 | 1.00 [1.00 [1.00 | 1.00
pi=(1+2"")/2 128 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00
pi=1—1/(i+1) 128 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00
pi=1-—27" 128 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00
pi=1 lsec | 8 [1.00]1.00][1.00(1.00 | 1.00
pi=(1+2"")/2 8 [040[040| 42 | 052 | 0.65
pi=1—1/(i+1) 8 [049]050]0.50] 051 | 057
pi=1-—27" 8 |0.53]053]0.53] 055 | 0.59
pi =1 32 [1.00 | 1.00 | 1.00 | 1.00 | 1.00
pi=(1+2"")/2 32 10.69|0.79 | 0.95| 1.00 | 1.00
pi=1—1/(+1) 32 [0.39]0.45[052] 086 | 1.00
pi=1-—27" 32 | 055]0.58]067] 083 | 0.96
pi=1 128 [1.00 | 1.00 [1.00 [1.00 | 1.00
pi=(1+2"")/2 128 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00
pi=1—1/(+1) 128 [0.83 10.97 [1.00 | 1.00 | 1.00

pi=1-27" 128 | 0.78 | 0.99 | 1.00 | 1.00 | 1.00

”‘

FIFO vs. Random Competitors: “Eventually

Power-Index Task Lifespan L <
Vector Grain 4 days ‘ 8 days ‘ 16 days ‘ 32 days

pi=1 0.1 sec 1.00 1.00 1.00 1.00

p=1-1/Gi+1) 1.00 | 1.00 | 1.00 | 1.00

n
8
pi=(1+277)/2 8 | 1.00 | 1.00 | 1.00 | 1.00
8
8

pi=1-—27" 1.00 | 100 | 1.00 1.00
pi=1 32 | 1.00 | 1.00 | 1.00 1.00
pi=(1+2"")/2 32 | 1.00 | 1.00 1.00 1.00
pi=1—1/(+1) 32 | 1.00 | 1.00 | 1.00 1.00
pi=1-—27" 32 | 1.00 | 1.00 | 1.00 1.00
pi=1 128 | 1.00 | 1.00 | 1.00 1.00
pi=(1+2"")/2 128 | 1.00 | 1.00 | 1.00 1.00
pi=1—1/(i+1) 128 | 1.00 | 1.00 | 1.00 1.00
pi=1-—27" 128 | 1.00 | 1.00 | 1.00 1.00
pi=1 lsec | 8 | 1.00 | 1.00 | 1.00 1.00
pi=(1+2"")/2 8 | 079 | 095 | 1.00 1.00
pi=1—1/(i+1) 8 | 072 | 0.89 | 0.98 1.00
pi=1-—27" 8 | 061 | 076 | 0.95 1.00
pi =1 32 | 1.00 | 1.00 | 1.00 1.00
pi=(1+2"")/2 32 | 1.00 | 1.00 | 1.00 1.00
pi=1—1/(+1) 32 | 1.00 | 1.00 | 1.00 1.00
pi=1-—27" 32 | 1.00 | 1.00 | 1.00 1.00
pi=1 128 | 1.00 | 1.00 | 1.00 1.00
pi=(1+2"")/2 128 | 1.00 | 1.00 1.00 1.00
pi=1—1/(+1) 128 | 1.00 | 1.00 | 1.00 1.00

pi=1—-27" 128 | 1.00 1.00 1.00 1.00

Proof Sketch for Theorem FIFO-Optimal

1. W{FIFO.LY) ig independent of ¥

Theorem FIFO-Optimal did not specify a startup order for the allegedly optimal
FIFO Protocol.

1. W{FIFO.LY) ig independent of ¥

Theorem FIFO-Optimal did not specify a startup order for the allegedly optimal
FIFO Protocol.

I'T DIDN'T HAVE TO!

1. W{FIFO.LY) ig independent of ¥

Theorem FIFO-Optimal did not specify a startup order for the allegedly optimal
FIFO Protocol. It didn't have to!

Lemma.

Over any lifespan L, for any two startup orders 31 and o,

W(FIFO,El)(L) _ W(FIFO7E2)(L).

1. W{FIFO.LY) ig independent of ¥

Theorem FIFO-Optimal did not specify a startup order for the allegedly optimal
FIFO Protocol. It didn't have to!

Lemma.

Over any lifespan L, for any two startup orders 31 and o,

W(FIFO,El)(L) _ W(FIFO7E2)(L).

N N N N N N N N N
e e Ve Wie Wie Wie Vie Vel

Proof Sketch. By direct calculation, X FTFO.21) — X (FIFO.X2)

n 1—1
1 o+ 7T —Td
X(FIFO,E) def 1 —
; Vitpi—70 =% Vj+p;—710

]:

2. “Flexible”-FIFO is Optimal

Lemma. (A rather bizarre result.)

If we make the FIFO Protocol flexible — allow it to slow down computers at will

(by increasing their p-values) — then the thus-empowered protocol can
(asymptotically) match the work-output of any other protocol.

2. “Flexible”-FIFO is Optimal

Lemma. (A rather bizarre result.)

If we make the FIFO Protocol flexible — allow it to slow down computers at will
(by increasing their p-values) — then the thus-empowered protocol can
(asymptotically) match the work-output of any other protocol.

In other words.

The Flexible FIFO Protocol solves the Cluster-Exploitation Problem asymptotically
optimally.

Proof Strategy

Start with a non-FIFO protocol P.

Proof Strategy

Start with a non-FIFO protocol P.

e Select the earliest violation of FIFO:

Some C, with s; > s; finishes working before Ci,.
— (All Cy, with s; < s; finish before C;.)

Proof Strategy

Start with a non-FIFO protocol P.

e Select the earliest violation of FIFO:
Some C, with s; > s; finishes working before Ci,.

e Flip the finishing orders of C; and of the U that finishes working
Just before Ci..

— but do not decrease aggregate work-output!!

Proof Strategy

Start with a non-FIFO protocol P.

e Select the earliest violation of FIFO:
Some C, with s; > s; finishes working before Ci,.
e Flip the finishing orders of C; and of the U that finishes working
Just before Ci..
— but do not decrease aggregate work-output!!

The new protocol is “closer to” a FIFO protocol than P was.

Proof Strategy

Start with a non-FIFO protocol P.

e Select the earliest violation of FIFO:

Some C, with s; > s; finishes working before Ci,.

e Flip the finishing orders of C; and of the U that finishes working
Just before Ci..

— but do not decrease aggregate work-output!!

e lterate ...

Proof Strategy

Start with a non-FIFO protocol P.

e Select the earliest violation of FIFO:

Some C, with s; > s; finishes working before Ci,.

e Flip the finishing orders of C; and of the U that finishes working
Just before Ci..

— but do not decrease aggregate work-output!!

e lterate ...

HOW DO WE DO THIS?

Implementing the Strategy, 1

1. Flip the finishing times of C; and C..

N
/\ F 1'5wsi C;,_
4
'
\
) F G
V4 T6ws
’ i /
/
. ‘
pd ! |
P F 1ow, !
AN i 1 i
‘\
\
4 ! |
J F tow, G
\] J

This forces us to shorten wy, and lengthen W,

Implementing the Strategy, 2

2. Changing w;; and wy; forces us to adjust the starting times of

Co Corirrovy Cs..

i1t j

G | rrer w, ~
’ i

G | PREP wj |
i =

We slow down computers when necessary, to take up slack times.

...AND IT ALL WORKS OUT!!

3. Full-Speed FIFO is Optimal

Lemma.
Over any lifespan L, W(WO)([) >y (Flex=FIFO)(1))

Proof Sketch. For all startup orders > and all p-value vectors:

W(FIFO,Z)(L) _ 1

70+ 1/ X (FIFOY) (L= (n+1F),

where

n 1—1
1 T+ T —T0
X(FIFO,Z) oot 2 : H (1 o) .
i—1 VSZ' + IOSZ' - 7_5 j=1 VS]' + psj - 7_5

Proof Sketch, Contd.

1. By the relation between W 1FO)(L) and X (FIFO);
[Maximizing W Fle—=FIFO)(1)] = [Maximizing X (Flex—FIFO)]

Proof Sketch, Contd.

1. By the relation between W 1FO)(L) and X (FIFO);
[Maximizing W Fle—=FIFO)(1)] = [Maximizing X (Flex—FIFO)]

2. The sum XFFOX) is maximized when p, is minimized.

Proof Sketch, Contd.

1. By the relation between W 1FO)(L) and X (FIFO);
[Maximizing W Fle—=FIFO)(1)] = [Maximizing X (Flex—FIFO)]

2. The sum XFFOX) is maximized when p, is minimized.

3. By Order-Independence, we can now cycle through all

starting orders

Proof Sketch, Contd.

1. By the relation between W 1FO)(L) and X (FIFO);
[Maximizing W Fle—=FIFO)(1)] = [Maximizing X (Flex—FIFO)]

2. The sum XFFOX) is maximized when p, is minimized.

3. By Order-Independence, we can now cycle through all
starting orders

—which makes us minimize all of the p-values

Proof Sketch, Contd.

1. By the relation between W 1FO)(L) and X (FIFO);
[Maximizing W Fle—=FIFO)(1)] = [Maximizing X (Flex—FIFO)]

2. The sum XFFOX) is maximized when p, is minimized.

3. By Order-Independence, we can now cycle through all
starting orders
—which makes us minimize all of the p-values

—which makes us have all computers run at full speed.

Proof Sketch, Contd.

1. By the relation between W 1FO)(L) and X (FIFO);
[Maximizing W Fle—=FIFO)(1)] = [Maximizing X (Flex—FIFO)]

2. The sum XFFOX) is maximized when p, is minimized.

3. By Order-Independence, we can now cycle through all
starting orders
—which makes us minimize all of the p-values

—which makes us have all computers run at full speed.

QED

