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The Computational Environment

e A “master’ computer C

e A cluster C of n heterogeneous computers
C, Co, ..., C,

that are available for dedicated “rental”

e a large "bag” of (arbitrarily but) equally complex tasks
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Two Simple Worksharing Problems

The Cluster-Exploitation Problem

e One has access to cluster C for L time units.

e One wants to accomplish as much work as possible
during that time.

The Cluster-Rental Problem

e One has W units of work to complete.

e One wishes to “rent” cluster C for as short a period
of time as necessary to complete that work.
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Our Contributions

Within HiIHCoHP — a heterogeneous, long-message analog

of the LogP architectural model — we offer:

A Generic Worksharing Protocol:

e works predictably for many variants of our model.

e determines all work-allocations and all communication times.

An Asymptotically Optimal Worksharing Protocol:

e solves the Cluster-Exploitation and -Rental Problems optimally

— as long as L is sufficiently long.
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Our Contributions — Details

Worksharing protocols:

e () supplies work to each “rented” (), in some order

e (; does the work — and returns its results

A symptotically optimal worksharing protocols:

e Computers start and finish computing in the same order-

— first started = first finished

e Optimality is independent of computers’ starting order:

— even if each C; is 10! times faster than C}.;



The Model

Calibration

e All units — time and packet size — are calibrated to the slowest computer’s
computation rate:

— This C does one “unit” of work in one “unit” of time.

e Each unit of work produces ¢ units of results (for simplicity).




Computation Rates

p; is the per-unit work time for computer C;

e p < pp < --- < p, (by convention)

[The smaller the index, the faster the computer.]

e p, = 1 (by our calibration)



The Costs of Communication, 1

Message Processing time for C;:

Transmission setup: o time units -per communication
Transmission packaging: m; time units -per packet
Reception unpackaging: 7, time units -per packet

e Subscripts reflect computers’ heterogeneity.



The Costs of Communication, 2

Message Transmission Time:

Latency: A time units —for first packet
Bandwidth limitation: 7 = 1/ time units/packet
—for remaining packets

e 3 = network’s end-to-end bandwidth.



The timeline as () shares work with C}
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A Generic Worksharing Protocol

Specifying a worksharing protocol

e () sends work to C, Cs, ..., C,, in the startup order:
Cq, Copy ...y C

Sn

o (1,05, ..., C, return results to C in the finishing order:
Cy, Cpyyooy Cf

n

(Note subscript-sequence s1, So, . . .

(Note subscript-sequence fi, fa, . ..



The timeline for three “rented” computers, Cy, Cy, Cs:

Lifespan
S ey < T >
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NOTE: Only one message in transit at a time




Some Useful Abbreviations

Quantity | Meaning
7| 7(1+9) |2-way network transmission rate
m | m+mo | C;'s 2-way message-packaging rate
(workload + results)
F | (0 4+ A\ —7) | fixed communication overhead
(becomes invisible as L grows)
V;| mg+7+m; | C;'s variable communication

overhead rate




Given:

Compute:
by solving

Vi+
By,

Bn—l,l
Bn,l

B; ; assesses: {

B
Vatpy o

Bn—1,2
Bn,Q

A Generic Protocol’s Work-Allocations

startup order: X = ($1,89,...,S,-1, Sn)

finishing order: ® = (f1, fo, ..., fu_1, fo)

Protocol (%, ®)'s work-allocations (wy, ws, ..., wy)

the nonsingular system of equations:
Bl,nfl Bl,n w1 L — (Cl + 2)F
BQ,nfl B2,n Wa L — (CQ + 2)F

Vn—l + Pn—1 Bn—l,n Wp—1 L - (Cn—l + 2)F

Byn-1 V., + pn W, L—(c, +2)F

mp+ 7 for each C} that starts before C; (j € SB;)
70  for each C; that finishes after C; (j € FA,)



Worksharing Protocols Are Self-Scheduling

Theorem.

Worksharing protocols are self-scheduling.



Worksharing Protocols Are Self-Scheduling

Theorem.

Worksharing protocols are self-scheduling.

Translation:

A protocol’s startup and finishing indexings determine:

e all work-allocations
e the times for all communications.



The Optimal FIFO Worksharing Protocol

Computers stop working — hence, return results — in the same order as they
start working.

The defining startup and finishing orderings:

Foreachi € {1,2,....,n}: s;= f; = i




The FIFO timeline for three “rented” computers, Cy, Cy, Cs:

Lifespan L

. Gl i it P
Prepare Prepare Prepare |
Transmit Transmit Transmit | |
T T I I
C w, (oA TH qw oA TH w, 1o A-TH w 1 |
0 ™ S Twg ™ P Tw, ™ % L Tw, ! !
. : : 1 : : | 2 | | | 3\ I | |
B s T - - T T T T T T T T~ R S 1T T T T T T
Receive |\ Compute | Prepare | Transmit l
] 1 1 H ] ] !
_ I — .P |
C T w, 1 pw ;néwlcl)‘rw w
1 1 1 11 1 s S 1 s s ‘Téw 1 1
| ) | 1 1 | | 1 1, | S 1 |
| - - = —lm - — - = d o oo S \___4.___>1‘ !
[Receive |\ Compute {Prepare | Transmit |
) ] ] I ] ] ]
= - T+
C DT w | pw ' ow e} 1)\ o
Sy ! S %! ! % % S %) 1T6wsl
- - - - - le e = o L J.___l___)zl
[Receive | Compute ~[Prepare | Transmit
X | ] j ]
= ' ! l ‘)\_T+
CS ! T[sws I e s :T[séws O TOw
3 ! 33 3 3 ‘ 3 s




The FIFO Protocol’s Work-Allocations

Given: startup order, X = (s1,89,...,S,-1, Sn)

Compute: the FIFO work-allocations (wy,, ws,, ..., ws,)
by solving  the system of equations:

Vg, + ps, T4 T4 Wg, L—(n+1)(c+A—1)
mo+7T Ve+ps, - ) W, L—(n+1)(c+X—1)
To+T  mo+T - T ws, L—(n+1)(c+A—1)
T+ T m+T71 - Vs, +ps, W, L—(n+1)(c+AX—1)



Let

Then

The FIFO Protocol’s Work-Output

1 T+ T —TO
(FIFOY) = | o
ZV'—Fpi—Tél:[ Vj+pj—7'(5

1

(FIFO,) _
R = X

(L—(n+1)F).

WFIFOE) (1) IS INDEPENDENT OF THE STARTUP ORDER X!




What’s so Wonderful about the FIFO Protocol?

Theorem FIFO-Optimal.
The FIFO Protocol provides an asymptotically optimal solution to the

Cluster Exploitation Problem.



What’s so Wonderful about the FIFO Protocol?

Theorem FIFO-Optimal.
The FIFO Protocol provides an asymptotically optimal solution to the

Cluster Exploitation Problem.

Translation.

For all sufficiently long lifespans L, W({FTFO)(L) is at least as large as the work-

output of any other protocol.
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How long is “sufficiently long?”

Simulation experiments that compare the FIFO Protocol against 100 random
competitors lead to the following conclusions.

e The advantages of the FIFO regimen are often discernible within lifespans
whose durations are just minutes.

e The advantages of the FIFO regimen are seen earlier on:

— larger Clusters,

— Clusters of lesser degrees of heterogeneity.

e The advantages of the FIFO regimen are seen earlier when tasks are finer
grained.

e Even with coarse tasks, FIFO “wins” within (roughly) a weekend, except on
very small clusters.



FIFO vs. Random Competitors: “Practical” Lifespans‘

Power-Index Task Lifespan L <

Vector Grain n | 1 min ‘ 10 min ‘ 30 min ‘ 1 hr
pi =1 O.lsec| 8 1.00 1.00 1.00 | 1.00
pi=(1+2"")/2 8 | 048 | 052 | 0.64 |0.81
pi=1—1/(i+1) 8 | 0.50 0.51 0.63 | 0.70
pi=1-—27" 8 | 0.43 0.47 0.48 | 0.58
pi =1 32 | 1.00 1.00 1.00 | 1.00
pi=(1+2""7)/2 32 | 066 | 1.00 | 1.00 |[1.00
pi=1—1/(i+1) 32 | 0.53 0.78 1.00 | 1.00
pi=1-—2" 32 | 0.54 0.74 1.00 | 1.00
pi =1 128 | 1.00 1.00 1.00 | 1.00
pi=(1+27")/2 128 | 1.00 1.00 1.00 | 1.00
pi=1—1/(i+1) 128 | 0.93 1.00 1.00 | 1.00
pi=1-—27" 128 | 0.88 1.00 1.00 | 1.00
pi =1 1 sec 8 1.00 1.00 1.00 | 1.00
pi=(1+277)/2 8 | 0.49 0.49 0.49 | 0.50
pi=1—-1/(i+1) 8 | 0.49 0.49 0.49 | 0.49
pi=1-27" 8 | 0.58 0.58 0.58 | 0.58
pi =1 32 | 1.00 1.00 1.00 | 1.00
pi = (1+277)/2 32 | 0.54 0.55 0.57 | 0.59
pi=1—1/(i+1) 32 | 0.53 0.53 0.53 | 0.54
pi=1-—27" 32 | 0.46 0.47 0.48 | 0.49
pi =1 128 | 1.00 1.00 1.00 | 1.00
pi=(1+2"")/2 128 | 051 | 0.73 | 095 |1.00
pi=1—1/(i+1) 128 | 0.48 0.52 0.64 |0.75
pi=1-—27" 128 | 0.46 0.54 0.63 | 0.73




FIFO vs. Random Competitors: “Realistic” Lifespans‘

Power-Index Task Lifespan L <
Vector Grain 2 hr ‘ 4 hr ‘ 8 hr ‘ 24 hr ‘ 48 hr

pi=1 0.1 sec 1.00 | 1.00 | 1.00 | 1.00 | 1.00

pi=1-1/G+1) 0.90 | 1.00 | 1.00 | 1.00 | 1.00

n
8

pi = (14+277)/2 8 1098 |1.00|1.00| 1.00 | 1.00
8
8

pi=1-—27" 0.80 [ 0.96 | 1.00 | 1.00 | 1.00
pi=1 32 [1.00|1.00]1.00| 1.00 | 1.00
pi=(1+2"")/2 32 [ 1.00 | 1.00 | 1.00 | 1.00 | 1.00
pi=1—1/(+1) 32 [1.00 | 1.00 [ 1.00 | 1.00 | 1.00
pi=1-—27" 32 [1.00 | 1.00 | 1.00 | 1.00 | 1.00
pi=1 128 [ 1.00 | 1.00 [ 1.00 [ 1.00 | 1.00
pi=(1+2"")/2 128 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00
pi=1—1/(i+1) 128 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00
pi=1-—27" 128 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00
pi=1 lsec | 8 [1.00]1.00][1.00( 1.00 | 1.00
pi=(1+2"")/2 8 [040[040| 42 | 052 | 0.65
pi=1—1/(i+1) 8 [049]050]0.50] 051 | 057
pi=1-—27" 8 |0.53]053]0.53] 055 | 0.59
pi =1 32 [1.00 | 1.00 | 1.00 | 1.00 | 1.00
pi=(1+2"")/2 32 10.69|0.79 | 0.95| 1.00 | 1.00
pi=1—1/(+1) 32 [0.39]0.45[052] 086 | 1.00
pi=1-—27" 32 | 055]0.58]067] 083 | 0.96
pi=1 128 [ 1.00 | 1.00 [ 1.00 [ 1.00 | 1.00
pi=(1+2"")/2 128 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00
pi=1—1/(+1) 128 [ 0.83 10.97 [ 1.00 | 1.00 | 1.00

pi=1-27" 128 | 0.78 | 0.99 | 1.00 | 1.00 | 1.00




”‘

FIFO vs. Random Competitors: “Eventually

Power-Index Task Lifespan L <
Vector Grain 4 days ‘ 8 days ‘ 16 days ‘ 32 days

pi=1 0.1 sec 1.00 1.00 1.00 1.00

p=1-1/Gi+1) 1.00 | 1.00 | 1.00 | 1.00

n
8
pi=(1+277)/2 8 | 1.00 | 1.00 | 1.00 | 1.00
8
8

pi=1-—27" 1.00 | 100 | 1.00 1.00
pi=1 32 | 1.00 | 1.00 | 1.00 1.00
pi=(1+2"")/2 32 | 1.00 | 1.00 1.00 1.00
pi=1—1/(+1) 32 | 1.00 | 1.00 | 1.00 1.00
pi=1-—27" 32 | 1.00 | 1.00 | 1.00 1.00
pi=1 128 | 1.00 | 1.00 | 1.00 1.00
pi=(1+2"")/2 128 | 1.00 | 1.00 | 1.00 1.00
pi=1—1/(i+1) 128 | 1.00 | 1.00 | 1.00 1.00
pi=1-—27" 128 | 1.00 | 1.00 | 1.00 1.00
pi=1 lsec | 8 | 1.00 | 1.00 | 1.00 1.00
pi=(1+2"")/2 8 | 079 | 095 | 1.00 1.00
pi=1—1/(i+1) 8 | 072 | 0.89 | 0.98 1.00
pi=1-—27" 8 | 061 | 076 | 0.95 1.00
pi =1 32 | 1.00 | 1.00 | 1.00 1.00
pi=(1+2"")/2 32 | 1.00 | 1.00 | 1.00 1.00
pi=1—1/(+1) 32 | 1.00 | 1.00 | 1.00 1.00
pi=1-—27" 32 | 1.00 | 1.00 | 1.00 1.00
pi=1 128 | 1.00 | 1.00 | 1.00 1.00
pi=(1+2"")/2 128 | 1.00 | 1.00 1.00 1.00
pi=1—1/(+1) 128 | 1.00 | 1.00 | 1.00 1.00

pi=1—-27" 128 | 1.00 1.00 1.00 1.00




Proof Sketch for Theorem FIFO-Optimal
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1. W{FIFO.LY) ig independent of ¥

Theorem FIFO-Optimal did not specify a startup order for the allegedly optimal
FIFO Protocol. It didn't have to!

Lemma.

Over any lifespan L, for any two startup orders 31 and o,

W(FIFO,El)(L) _ W(FIFO7E2)(L).

N N N N N N N N N
e e Ve Wie Wie Wie Vie Vel

Proof Sketch. By direct calculation, X FTFO.21) — X (FIFO.X2)

n 1—1
1 o+ 7T —Td
X(FIFO,E) def 1 —
; Vitpi—70 =% Vj+p;—710

]:



2. “Flexible”-FIFO is Optimal

Lemma. (A rather bizarre result.)

If we make the FIFO Protocol flexible — allow it to slow down computers at will

(by increasing their p-values) — then the thus-empowered protocol can
(asymptotically) match the work-output of any other protocol.



2. “Flexible”-FIFO is Optimal

Lemma. (A rather bizarre result.)

If we make the FIFO Protocol flexible — allow it to slow down computers at will
(by increasing their p-values) — then the thus-empowered protocol can
(asymptotically) match the work-output of any other protocol.

In other words.

The Flexible FIFO Protocol solves the Cluster-Exploitation Problem asymptotically
optimally.
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Proof Strategy

Start with a non-FIFO protocol P.

e Select the earliest violation of FIFO:

Some C, with s; > s; finishes working before Ci,.

e Flip the finishing orders of C; and of the U that finishes working
Just before Ci..

— but do not decrease aggregate work-output!!

e lterate ...

HOW DO WE DO THIS?



Implementing the Strategy, 1

1. Flip the finishing times of C; and C..

N
/\ F 1'5wsi C;,_
4
'
\
) F G
V4 T6ws
’ i /
/
. ‘
pd ! |
P F 1ow, !
AN i 1 i
‘\
\
4 ! |
J F tow, G
\ ] J

This forces us to shorten wy, and lengthen W,



Implementing the Strategy, 2

2. Changing w;; and wy; forces us to adjust the starting times of

Co Corirrovy Cs..

i1t j

G | rrer w, ~
’ i

G | PREP wj |
i =

We slow down computers when necessary, to take up slack times.

...AND IT ALL WORKS OUT!!



3. Full-Speed FIFO is Optimal

Lemma.
Over any lifespan L, W(WO)([) >y (Flex=FIFO)(1))

Proof Sketch. For all startup orders > and all p-value vectors:

W(FIFO,Z)(L) _ 1

70+ 1/ X (FIFOY) (L= (n+1F),

where

n 1—1
1 T+ T —T0
X(FIFO,Z) oot 2 : H (1 o ) .
i—1 VSZ' + IOSZ' - 7_5 j=1 VS]' + psj - 7_5
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Proof Sketch, Contd.

1. By the relation between W 1FO)(L) and X (FIFO);
[Maximizing W Fle—=FIFO)(1)] = [Maximizing X (Flex—FIFO)]

2. The sum XFFOX) is maximized when p, is minimized.

3. By Order-Independence, we can now cycle through all
starting orders
—which makes us minimize all of the p-values

—which makes us have all computers run at full speed.

QED




