A Moldable Online Scheduling Algorithm and Its

Application to Parallel Short Sequence Mapping

Erik Saule, Doruk Bozdag, Umit V. Catalyurek

Department of Biomedical Informatics, The Ohio State University
{esaule,bozdagd,umit}@bmi.osu.edu

Scheduling for Large Scale Systems, May 2009

Supported by the U.S. DOE SciDAC Institute, the U.S. National Science Foundation and the Ohio Supercomputing Center

Erik Saule (BMI OSU) Moldable Task Scheduling 1/29

[C[e[TTALC]

\wxy/(yﬂu%
s — ——
o, Z - _
g, o
%0 EEEEE ATAAR CTATE
®s ——
[clT[afc[c[T]c[A[T[A[A[A[T]T[c[c[T[A[T]A]
Sequencing Mapping
@ Next generation @ Map reads to a reference genome
sequencing instruments efficiently (Human genome: 3Gb)

(SOLID, Solexa, 454) can

S e v o 5 Ml @ Sequential mapping takes about a

bases a day day
o Hundreds of millions of o Need fast, parallel algorithms that
35-50 base reads) can handle mismatches)

Erik Saule (BMI OSU) Moldable Task Scheduling 2/29

Parallel Short Sequence Mapping[Bozdag et al., IPDPS 09]

Three partitioning dimensions:

G G
/—/% /—/%

P
Py P,

P2
Ry - R
Py P, P3
]
]
G R G R
P(mga my, ms) =Cgs—— +Cg—— +Cs— + (Cr + Cc
mg Mg Ms m, mgms’ m,mg

Partitioning on m processors is finding minimum P(mg, m,, ms) such that
mgmyms < m

Erik Saule (BMI OSU) Moldable Task Scheduling 3/29

This talk

A cost efficient approach

To reduce cost, Ohio SuperComputing Center is building a bioscience
dedicated cluster. It will host a Short Sequence Mapping service.

@ Laboratories submits mapping request over the network.
@ The service computes the mapping using the parallel algorithm.
@ And sends the result back.

Erik Saule (BMI OSU) Moldable Task Scheduling 4 /29

This talk

A cost efficient approach

To reduce cost, Ohio SuperComputing Center is building a bioscience
dedicated cluster. It will host a Short Sequence Mapping service.
@ Laboratories submits mapping request over the network.
@ The service computes the mapping using the parallel algorithm.
@ And sends the result back.

How to schedule the mapping request ?

Erik Saule (BMI OSU) Moldable Task Scheduling 4 /29

Outline of the Talk

@ Introduction

© A Moldable Scheduling Problem

© Deadline Based Online Scheduler (DBOS)
@ Experiments

© Conclusion

Erik Saule (BMI OSU) Moldable Task Scheduling 5/29

Parallel Short Sequence Mapping

The important facts:

@ can adapt to different number
of processor

@ good runtime prediction
function

@ no super linear speed up

@ non convex speedup function
(steps)
@ no preemption

Erik Saule (BMI OSU) Moldable Task Scheduling 6 /29

Moldable Scheduling

Instance
@ m processors

@ n tasks
@ Task / arrives at r;
o

The execution of i on j processors takes p;; time units

v

@ Task / is executed on 7; processors

@ Task / starts at o;
o Task i finishes at Cj = 0; + pir,

Erik Saule (BMI OSU) Moldable Task Scheduling 7 /29

Objective Function

The flow time is the time spent in the system per a task F; = C; — r;.

@ Does not take task size into account.
@ Optimizing the maximum flow time is unfair to small tasks.

@ Optimizing the average flow time should starve large tasks.

Erik Saule (BMI OSU) Moldable Task Scheduling 8 /29

Objective Function

The flow time is the time spent in the system per a task F; = C; — r;.

@ Does not take task size into account.
@ Optimizing the maximum flow time is unfair to small tasks.

@ Optimizing the average flow time should starve large tasks.

Stretch [Bender et al. SoDA 98]

The stretch is the flow time normalized by the processing time of the task
Ci—r:
S, = —L L
u Pi,1

It provides a better fairness between tasks.

Optimizing maximum stretch avoids starvation.

Erik Saule (BMI OSU) Moldable Task Scheduling 8 /29

Online maximum stretch can not be approximated

Adversary technique on one processor

A large task enters in the system

Erik Saule (BMI OSU) Moldable Task Scheduling 9 /29

Online maximum stretch can not be approximated

Adversary technique on one processor

If it is scheduled immediately, a small task is sent

Erik Saule (BMI OSU) Moldable Task Scheduling 9 /29

Online maximum stretch can not be approximated

Adversary technique on one processor

It suffers a large delay (and an unbounded stretch)

Erik Saule (BMI OSU) Moldable Task Scheduling 9 /29

Online maximum stretch can not be approximated

Adversary technique on one processor

I
I
J

If the large task is scheduled later, a small task is sent accordingly

Erik Saule (BMI OSU) Moldable Task Scheduling 9 /29

Online maximum stretch can not be approximated

Adversary technique on one processor

I
N
J

It suffers a large delay (and an unbounded stretch)

Erik Saule (BMI OSU) Moldable Task Scheduling 9 /29

Online maximum stretch can not be approximated

Adversary technique on one processor

Adversary techniue on one processor]
B
I
J

It suffers a large delay (and an unbounded stretch)

On several processors

There are similar techniques on several processors but there are more
complicated and thus less prone to appear in practice.

The key point: if all processors are busy, a small task entering the system
will have a large stretch.

| A\

Erik Saule (BMI OSU) Moldable Task Scheduling 9 /29

Outline of the Talk

© Deadline Based Online Scheduler (DBOS)

Erik Saule (BMI OSU) Moldable Task Scheduling 10 / 29

Principle of the Deadline Based Online Scheduler (DBOS)

o All tasks running concurrently should get the same stretch to
maximize efficiency

@ Using the optimal maximum stretch as an instant measure of the load

@ Aim at a more efficient schedule than the optimal instant maximum
stretch one to deal with still-to-arrive tasks

Erik Saule (BMI OSU) Moldable Task Scheduling 11/29

The DBOS Algorithm

Targeting a maximum stretch S

Task i must complete before the deadline D; = r; 4+ p; 1S.

Erik Saule (BMI OSU) Moldable Task Scheduling 12 /29

The DBOS Algorithm

Targeting a maximum stretch S

Task i must complete before the deadline D; = r; 4+ p; 1S.

Moldable Earliest Deadline First (MEDF)

@ Considers task in deadline order.

@ Allocates the minimum number of processors to each task to
completes before the deadline.

@ Schedules the task as soon as possible without moving any other task.

Erik Saule (BMI OSU) Moldable Task Scheduling 12 /29

The DBOS Algorithm

Targeting a maximum stretch S

Task i must complete before the deadline D; = r; 4+ p; 1S.

Moldable Earliest Deadline First (MEDF)

@ Considers task in deadline order.

@ Allocates the minimum number of processors to each task to
completes before the deadline.

@ Schedules the task as soon as possible without moving any other task.

DBOS(p)

o Estimate the optimal maximum stretch S* using a binary search.

@ The deadline problem is solved by MEDF.
@ Build a schedule of good efficiency of stretch pS*.
e p is the online parameter

Erik Saule (BMI OSU) Moldable Task Scheduling 12 /29

An example

A system with two pending tasks

Erik Saule (BMI OSU) Moldable Task Scheduling 13 /29

An example

max stretch=2

Deadlines induced by a stretch of 2

Erik Saule (BMI OSU) Moldable Task Scheduling 13 /29

An example

max stretch=2

=

A maximum stretch of 2 is reachable

Erik Saule (BMI OSU) Moldable Task Scheduling 13 /29

An example

max stretch=1

But 1 is not

Erik Saule (BMI OSU) Moldable Task Scheduling 13 /29

An example

max stretch=1.5

Neither 1.5

Erik Saule (BMI OSU) Moldable Task Scheduling 13 /29

An example

max stretch=1.6

The optimal stretch is 1.6

Erik Saule (BMI OSU) Moldable Task Scheduling 13 /29

An example

max stretch=1.75

-

The online parameter p = 1.1 leaves much more space (thanks to MEDF).

Erik Saule (BMI OSU) Moldable Task Scheduling 13 /29

Outline of the Talk

@ Experiments

Erik Saule (BMI OSU) Moldable Task Scheduling 14 /29

An lterative Process [Sabin et al, JSSPP 06]

The algorithm

o Vi,m; < 1, mark[i] — false
@ o « schedule(r)
e while 37 | mark[i] = false
o Get unmarked / such that p; ». — pi » 11 is maximal and positive
o m; —m+1
o 0 « schedule(r)
o if avgflow(c') < avgflow(o)

’
@ 0 <O

o else
o 7; «— m; + 1; mark[i] — true
v
schedule

schedule is a conservative backfilling algorithm. Unspecified, we used
FCFS.

Erik Saule (BMI OSU) Moldable Task Scheduling 15 /29

An lterative Process [Sabin et al, JSSPP 06]

Properties

o Optimizing flow time
o Claimed to outperform fair
share

@ Parameter-less

Improvement

If the speedup function is non convex or has steps. The algorithm gets
stuck. (It was originally tested with a model where the speedup is convex)
Modification:
© Get unmarked i and k such that (pjx, — pi.r.+k)/k is maximal and
positive

o «—m+k

Erik Saule (BMI OSU) Moldable Task Scheduling 16 / 29

First Experimental Setting

Goal: assess performance on a well known setting

Downey model

Generation
Two parameters:

@ 512 processors
o First 5000 tasks of SDSC Par

96 (From the Feitelson
- archive)

@ Average parallelism (64)

@ Distance to linear speedup

L @ Sequential time : total
execution time

@ Average parallelism : between
number of used processor and
512

@ Distance to linear speedup :
woom® between 0 and 2

o’

Erik Saule (BMI OSU) Moldable Task Scheduling 17 /29

Downey model results

—Iterative
---DBOS p=1
+ DBOS p=1.5

Stretch

0.0001{

0.000001f{*

0.000000010 - -

2 3
Sorted tasks

DBOS generates less tasks with high stretch.

Erik Saule (BMI OSU)

Moldable Task Scheduling

Downey model results

10000000000
— lterative

100000000

1000000

Flow

10000

100 - ‘2 3
Sorted tasks x 10°
DBOS leads to better flow time. Iterative could be improved.

Erik Saule (BMI OSU) Moldable Task Scheduling 19 /29

Second Experimental Setting

Goal: test case reflecting the cluster usage

Generation

@ 512 processors

Each task corresponds to one lab studying one genome
@ Speedup according to the runtime prediction function
@ 2000 tasks are uniformly distributed in an time interval
°

Changing the span of the interval to control the load

v

Real data
Genome Size
E. Coli 4.6 million
Sequencing machine ‘ Reads Yeast 15 million
454 GS FLX Genome Analyzer 1 million A. Thaliana | 100 million
Solexa IG sequencer 200 million Mosquito 280 million
SOLiD system 400 million Rice 465 million
Chicken 1.2 billion
Human 3.4 billion

Erik Saule (BMI OSU) Moldable Task Scheduling 20 /29

—~~
2
@]

e

~—
(D)

2

+—
[
—
(O]
=
c
o
i)
c
(D)
&
()
>
(@]
el
o
£

Mapping :

1,000,000
100,0001
10,0001

Moy} abelrany

200-240 300-360 500-600 650-800

100-120

Load

The improvement really improves. The iterative got stuck.

21 / 29

Moldable Task Scheduling

Erik Saule (BMI OSU)

Mapping: Improvement on lterative (stretch)

..i....--"""“"' 2
I o

e

- T T T T T e =

0
A ¥

MM'
PR

Average stretch

|
|

|

|

I

|

|
*
I
il
|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|
|
|
|
|
|
|
|
|
|
|
|
!
0.1r |
|
|
|
|
|
|
|
|
|
|
!
0.01f !

|
|
|
|
|
I
|
|
+l
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
I

+ lterative
* Improved iterative

. . .
100-120 200-240 300-360 500-600 650-800
Load

Getting stuck is good for stretch since it avoids interrupting tasks. They
are just lucky.

Erik Saule (BMI OSU) Moldable Task Scheduling 22 /29

Mapping : online parameter (average stretch)

1t | | | | |
| | | | |
< : : : M:
g : : e :
7 : et :
g 0.1} 3...-“""’“"‘ x‘i‘::xx""x‘mw 3 3 3
® - e 1"] | ‘
[¥ °1M | | |
< '.nuﬂ"' xxx,.x ‘W‘ \ \)
R o Mﬂlﬂ" | | |
e | | | | |
2 ® -1} I I I I
i + DBOSp=1 |
! ! ! * DBOS p=1.1
| | | « DBOS p=1.3|,
0.01f ! 1 | a DBOS p=1.5|:

100-120 200-240 300-360 500-600 650-800

Load

Quickly drops with p. Step at p = 1.3.

Erik Saule (BMI OSU) Moldable Task Scheduling

Mapping : the online parameter (maximum stretch)

100+ | | | | |
X . L K :
‘ vl ol : .
e S) | |
< 1ot Yoo et o g e o
[3) A o o +
% et DT W e i)
:: “'o % :o %% :xx'“ ..‘ : 'mxx‘ f : :

0 + - * . o 4 e
R N R :
R e R i |
E N R e | |
3 x I ! ! !
s 1 mm commrrTn L] | | I
i : : : :
S i | | | |

-
" = + DBOSp=1 |
! ! ! - DBOS p=1.1
! ! ! + DBOS p=1.3/
0.1f | | | a DBOS p=1.5|:
100-120 200-240 300-360 500-600 650-800
Load

Max stretch is kept at a reasonable level. The online parameter p is very

helpful here.
Erik Saule (BMI OSU) Moldable Task Scheduling 24 /' 29

=15
650-800

.
e
fi
Iterative
* Improved iterative

= DBOS p

500-600

”,,..M.

2

HHF -
+

b0
=
=
o
51
<
O]
(2]
~
G
=
-
3
©
3
o
=

0s00®®
I
200-240

M
I
100-120

Erik Saule (BMI OSU)

0
0.011

yolaais abelany

MM
300L360
Load
DBOS leads to much better stretch (even when iterative got stuck).

—~~
=
-
(&)
e
-
wn
()
o0
[
.
()
>
()
~—
()
>
-
[
—
(<]
=
w0
>
9]
O
m
Q
0]
=
o
o
[
=

Mapping : DBOS vs lterative (average flow)

1,000,000

‘ ‘ ‘ ‘ ‘
l l l l			
		"	
		L	
		i “-1	
			ol

g) .-m: .:M .:M |
= e Pt e | |
o | | £ '\ |
S 100,000} ! ! Lssssossssssee®*™™" |
© | goessasvssensene®®t 1 | |

Z | Ml" | | |
| | | | |

o I | | |

| | | | |

i i i ! |

| | | | |

| | | ‘ |

| | | + Iterative |

| | | Improved iterative|,

10,000- ! 1 | s DBOS p=15 |

‘ ‘ ‘ ‘ ‘ ‘ : ‘ ‘ ‘
100-120 200-240 300-360 500-600 650-800

Load

Confirm there is room for improvement for Iterative. DBOS is not bad.

Erik Saule (BMI OSU) Moldable Task Scheduling

Mapping : DBOS vs lIterative (Fairness Issues)

Il iterative il Il iterative
[improved iterative| [improved iterative|
40
30| [IDBOS p=1 [IDBOS p=1
ElDBOS p=1.5 ElDBOS p=1.5

BN on ow oo
a8 & 8 &

Percentage of tasks with stretch > 1
5

Percentage of tasks with stretch > 1

@

) MM ll-ﬂ- n o [l

1-16 16-256 256-4K 4K-64K 64K-1M >1M O 256-aK aK-6aK _ 64K-IM IM-4M AM-16M >16M
Sequential task execution time (sec.) Sequential task execution time (sec.)

Downey model Short Sequence Mapping

The lterative algorithm leads to high stretch for a lot of the smaller tasks.
DBOS has better performance and less fairness issues thanks to stretch
optimization.

Erik Saule (BMI OSU) Moldable Task Scheduling 27 /29

Outline of the Talk

© Conclusion

Erik Saule (BMI OSU) Moldable Task Scheduling

The end

Conclusion

@ A cluster dedicated to bioscience will be built.

@ To provide fairness stretch should be considered instead of flow time.

@ An scheduling algorithm is proposed to optimize stretch and avoid
worst case online scenario.

@ Which performs well on Short Sequence Mapping application.

Erik Saule (BMI OSU) Moldable Task Scheduling 29 /29

Conclusion

@ A cluster dedicated to bioscience will be built.
@ To provide fairness stretch should be considered instead of flow time.

@ An scheduling algorithm is proposed to optimize stretch and avoid
worst case online scenario.

@ Which performs well on Short Sequence Mapping application.

Perspective
@ Investigate other way to avoid worst case scenarios.

@ Study more simple algorithm to get reference points.

@ Build the service !

Erik Saule (BMI OSU) Moldable Task Scheduling 29 /29

	Introduction
	A Moldable Scheduling Problem
	Deadline Based Online Scheduler (DBOS)
	Experiments
	Conclusion

