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Problem Description



 
Online scheduling rj,online


 

Jobs are submitted over time.


 

At its submission rj , job Jj is immediately allocated to an eligible machine.



 
Parallel identical machines Pm


 

Each job Jj has the same processing time pj on each eligible machine.



 
Ordered machine eligibility 


 

There is a fixed order of the machines: 1,2,…,m


 

Using this order, the first machine eligible to execute job Jj is machine kj . 


 

Every machine i with i≥kj is also eligible to execute job Jj : Mj ={i|i≥kj } 



 
Makespan Cmax


 

It is the goal to minimize the makespan of the schedule.

Pm |rj,online ,Mj |Cmax
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Previous Results



 
Pm |Mj |Cmax with no restrictions on Mj .


 

The problem is NP-hard as Pm ||Cmax is already NP-hard.



 
Pm |pj =1,Mj |Cmax with nested machine eligibility constraints.


 

Mj = Mk , Mj 

 

Mk , Mj 

 

Mk , or Mj 

 

Mk = ø.


 

The Least Flexible Job First (LFJ) rule optimally solves this problem.


 

M. Pinedo: Scheduling: Theory, Algorithms, and Systems, Prentice Hall, 2002.



 
Pm |Mj |Cmax with ordered eligibility.


 

Least eligibility – longest processing time order guarantees the approximation 
factor 2-1/(m-1).



 

H-C. Hwang, S.Y. Chang, K. Lee. Parallel machine scheduling under a grade of 
service provision, Computer & Operations Research 31, 2055-2061 (2004).



 
Pm |rj,online ,Mj |Cmax with no restrictions on Mj .


 

Competitive ratio log n for deterministic and randomized cases.


 

Y. Azar, J. Naor, R. Ron. The Competitiveness of On-Line Assignments, 
Journal of Algorithms 18, 221-237 (1995).
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Relevance of the Problem



 
Shall I allocate my precious resources to somebody not paying enough for 
them or run the risk that these resources are not used at all? 



 
In practice, this is a fixed capacity problem with customer rejection.


 

This problem is different from the utilization of a fixed number of machines.


 

There is a close connection with utilization if there ins no rejection.


 

The makespan can represent this objective.  
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Application Examples



 
Packaging in lattice boxes


 

The granularity of the material determines the required size of 
the lattice.



 
Servers with different amount of main memory


 

The storage requirement of a job determines the eligibility of 
a server. 



 
Class of transportation 


 

The ticket determines the class of transportation. 
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Continuous Model for Large-scale Systems



 
We allow fractional machines and normalize the machine space.


 

The machine space is represented by the interval [0,1] of real numbers.


 

Job Jj can only be allocated to the interval [kj ,1] with 0≤kj ≤1.



 
Each job has a very short processing time. 


 

Job allocation does not need to consider individual processing times.



 
Machine eligibility is represented by the job density function p(x) 


 

p(x): [0,1] →ℝ≥0: Total processing time of jobs with kj

 

=x. 


 

Release dates are not considered within the job density function.



 
There is a completion time function that determines the makespan. 


 

cS (x): [0,1]→ℝ≥0: Completion time function of schedule S


 

Cmax (S)=max{cS (x)|0≤x≤1}: Makespan of schedule S


 

Idle times are included.
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Long and Short Processing times

machines machines

time
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Job Density and Completion Time Functions

0 1

cs (x)

Cmax (S)

 
1

0

1

0
S dx)x(cp(x)dx if there are no intermediate idle areas in the schedule.

idle areas in the schedule

0 1

p(x)

Job density function Completion time function
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Simple Approaches with Bad Results



 
Constant interval approach: A new job Jj is allocated such that the maximum 
of the function cs (x) is increased the least in the interval [kj , max{kj +ε,1}). 


 

The competitive factor is ε-1. 

0 1ε



 
Greedy approach: A new job Jj is allocated such that the maximum of the 
function cs(x) is increased the least in the interval [kj ,1). 


 

p(x)=1, jobs are submitted in quick succession in order of kj .


 

The competitive factor is not constant.

Constant interval schedule

Optimal schedule
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Greedy Approach
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Interval Approach



 
A job Jj is only executed in the interval [kj , kj +(1-kj )/α) with α>1.



 
In this approach, additional jobs cannot decrease the makespan of a 
schedule. 



 
Example: Assume that a group of jobs with k1 =0 is released at time 0 and 
immediately followed by another group of jobs with k2 =δ

0 1δ α+δ⋅(1-α)
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Making a Schedule Worse



 
Jobs are added until copt (x)=const for all x and the schedule contains no 
idle areas.


 

The ratio maxx {cS (x)} to maxx {copt (x)} cannot decrease.

0
1

copt (x)

Cmax (S)
1



 
We normalize the job density function such that copt (x)=1.
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Worst Case: Job Submission Order



 
The jobs are submitted in quick succession in increasing order of kj .


 

The difference between the starting values of two intervals k2 -k1 is larger than 
the difference between the ending values of these intervals (1-1/α)⋅(k2 -k1 ). 



 

An increasing order of kj produces larger Cmax values than a decreasing order.

0 1 0 1

Example with α=2

Increasing order of kj Decreasing order of kj
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Worse Case Input Data



 
Assume y=arg{maxx {cS (x)}}.


 

x≥y: Every job with that executes in the optimal schedule on a machine with a 
number greater than y is changed to a job with kj =y.


 

The makespan of the optimal schedule remains unchanged.


 

Cmax (S) cannot decrease as jobs with kj >y do not contribute to cs (y).



 

x<y: If the eligibility bound kj of a job Jj is less than the machine number x at 
which it is executed in the optimal schedule then kj is increased to x.


 

The makespan of the optimal schedule remains unchanged.


 

Cmax (S) cannot decrease as this transformation can only increase the 
machine number on which a job is executed in schedule S.



 
The job density function of worst case input data is 1 for x<y and a Dirac 
pulse for x=y such that the area of the pulse is (1-y).
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Job Density Function of Worst Case Input Data

0
1y

1
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Differential Equation of the Interval Approach

x)(cx)(1dt)t(cx S
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0
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x (1-x)⋅cs (x)/α
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Differential Equation of the Interval Approach
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Solution of the Differential Equation
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Interval Schedule S for α=2 and a Given y

0
1

cs (x)

Cmax (S)=cs (y)

y



20

robotics research institutedortmund university

Determination of the Optimal Value for α
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Transformation to the Discrete Case



 
The interval allocation is approximated by allowing a job to be allocated to 
a machine if the continuous interval of the job would contain at least of 
fraction of this machine and afterwards applying list scheduling. 


 

Some machines may receive more total processing time than in the continuous 
case.



 

The additional processing time is upper bounded by the processing time of the 
longest job.



 
Due to the different processing times of the individual jobs, not all 
machines of an interval may achieve the same makespan although this 
might have happen in the continuous case.


 

The difference between the makespan of such two machines is at most the 
processing time of the longest job (list scheduling).



 
Altogether the approximation cannot increase the competitive factor by 
more than 1. 
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Consequence of the Approximation

machines of an interval 

time
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Conclusion



 
For very large systems, online job scheduling on parallel identical 
machines with ordered machine eligibility achieves a competitive factors of 
5.



 
For the proof, we used a generalization to a continuous case and derived  
and solved a differential equation.



 
We approximated the continuous case by simply applying list scheduling.   



 
For systems with few machines, the competitive factor is smaller as the 
value of y in the continuous case is bounded by m-1. 
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