
appor t  
de  r ech er ch e

IS
S

N
02

49
-6

39
9

IS
R

N
IN

R
IA

/R
R

--
75

21
--

FR
+E

N
G

Distributed and High Performance Computing

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

Energy-aware mappings of series-parallel workflows
onto chip multiprocessors

Anne Benoit — Rami Melhem — Paul Renaud-Goud — Yves Robert

N° 7521

April 2011

in
ria

-0
05

60
70

7,
 v

er
si

on
 2

 - 
4 

Ap
r 2

01
1

http://hal.inria.fr/inria-00560707/fr/
http://hal.archives-ouvertes.fr


in
ria

-0
05

60
70

7,
 v

er
si

on
 2

 - 
4 

Ap
r 2

01
1



Centre de recherche INRIA Grenoble – Rhône-Alpes
655, avenue de l’Europe, 38334 Montbonnot Saint Ismier

Téléphone : +33 4 76 61 52 00 — Télécopie +33 4 76 61 52 52

Energy-aware mappings of series-parallel
workflows onto chip multiprocessors

Anne Benoit , Rami Melhem , Paul Renaud-Goud , Yves Robert

Theme : Distributed and High Performance Computing
Équipe-Projet GRAAL

Rapport de recherche n° 7521 — April 2011 — 40 pages

Abstract: This paper studies the problem of mapping streaming applications
that can be modeled by a series-parallel graph, onto a 2-dimensional tiled CMP
architecture. The objective of the mapping is to minimize the energy consump-
tion, using dynamic voltage scaling techniques, while maintaining a given level
of performance, reflected by the rate of processing the data streams. This map-
ping problem turns out to be NP-hard, but we identify simpler instances, whose
optimal solution can be computed by a dynamic programming algorithm in
polynomial time. Several heuristics are proposed to tackle the general problem,
building upon the theoretical results. Finally, we assess the performance of the
heuristics through comprehensive simulations using the StreamIt workflow suite
and randomly generated series-parallel graphs, and various CMP grid sizes.

Key-words: series-parallel graph; DAG; mapping; multicore; CMP; energy;
power; period; throughput; DVS; DVFS; complexity; simulation; streaming ap-
plications; optimization.

in
ria

-0
05

60
70

7,
 v

er
si

on
 2

 - 
4 

Ap
r 2

01
1



Energy-aware mappings of series-parallel
workflows onto chip multiprocessors

Résumé : Dans ce rapport de recherche, nous nous intéressons au placement
d’applications de type streaming représentées sous la forme d’un graphe série-
parallèle sur un processeur multi-cœur, en essayant de minimiser l’énergie con-
sommée tout en n’excédant pas une borne sur un critère de performance, la
période. La partie théorique démontre la NP-complétude ou la polynomialité
du problème, selon des propriétés structurelles du multi-cœur (châıne de cœurs,
uni- ou bi-directionnelle, grille de cœurs) et la largeur du graphe de l’application
(bornée ou non). Le problème le moins contraint étant NP-complet, nous
décrivons dans la partie expérimentale cinq heuristiques, puis les comparons
entre elles, et donnons un programme linéaire en nombres entiers qui permet
d’obtenir la solution optimale en temps exponentiel.

Mots-clés : graphe serie-parallèle; DAG; mapping; multi-cœur; énergie; puis-
sance; période; DVS; DVFS; complexité; simulation; streaming; optimisation.

in
ria

-0
05

60
70

7,
 v

er
si

on
 2

 - 
4 

Ap
r 2

01
1



Energy-aware mappings of SPG workflows onto CMPs 3

Contents

1 Introduction 4

2 Related work 5

3 Framework 7
3.1 Applicative framework . . . . . . . . . . . . . . . . . . . . . . . . 7
3.2 Platform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.3 Mapping strategies . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.4 Period . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.5 Energy model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

4 Complexity results 12
4.1 Uni-directional uni-line CMP . . . . . . . . . . . . . . . . . . . . 13
4.2 Bi-directional uni-line CMP . . . . . . . . . . . . . . . . . . . . . 14
4.3 Square CMP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.4 Integer linear program . . . . . . . . . . . . . . . . . . . . . . . . 19

4.4.1 Constants . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.4.2 Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.4.3 Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.4.4 Objective function . . . . . . . . . . . . . . . . . . . . . . 22

5 Heuristics 22
5.1 Random heuristic . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
5.2 Greedy heuristic . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
5.3 2D dynamic programming algorithm . . . . . . . . . . . . . . . . 24
5.4 1D heuristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

6 Simulation results 26
6.1 Simulation setting . . . . . . . . . . . . . . . . . . . . . . . . . . 26

6.1.1 Streaming applications . . . . . . . . . . . . . . . . . . . . 26
6.1.2 CMP configuration . . . . . . . . . . . . . . . . . . . . . . 26
6.1.3 Period bound T . . . . . . . . . . . . . . . . . . . . . . . . 27

6.2 Simulation results . . . . . . . . . . . . . . . . . . . . . . . . . . 27
6.2.1 StreamIt suite . . . . . . . . . . . . . . . . . . . . . . . . . 27
6.2.2 Random SPGs . . . . . . . . . . . . . . . . . . . . . . . . 30

7 Conclusion 36

RR n° 7521

in
ria

-0
05

60
70

7,
 v

er
si

on
 2

 - 
4 

Ap
r 2

01
1



Energy-aware mappings of SPG workflows onto CMPs 4

1 Introduction

The energy consumption of computational platforms has recently become a crit-
ical problem, both for economic and environmental reasons [34]. To help reduce
energy consumption, processors can run at different speeds. Faster speeds al-
low for a faster execution, but they also lead to a much higher (superlinear)
power consumption. Energy-aware scheduling aims at minimizing the energy
consumed during the execution of the target application, both for computations
and for communications. Obviously, this approach makes sense only if coupled
with some performance bound to be achieved. Otherwise, the optimal solution
is to run each resource at the slowest possible speed. In other words, we have a
bi-criteria optimization problem, with one objective being energy minimization,
and the other being performance-related.

In this paper, we aim at minimizing the energy consumption of stream-
ing applications whose task graph is a series-parallel graph (SPG). Streaming
applications, or workflows, are ubiquitous in many domains, as for instance
image processing applications, astrophysics, meteorology, neuroscience, and so
on [16, 44, 43, 52]. Most of these applications have simple and regular task
graphs, such as linear chains, trees, fork-join graphs, or general SPGs (see Sec-
tion 3.1 for a formal definition of SPGs). For instance, all the benchmarks of
the StreamIt suite [45] are SPGs.

The performance-related objective coupled with energy minimization is the
period of the streaming application. Typically, a series of data sets enter the
input stage and progress from stage to stage, following the dependencies of the
application, until the final result is computed. Each stage has its own communi-
cation and computation requirements: it reads inputs from the previous stage(s),
processes the data and outputs results to the next stage(s). The pipeline oper-
ates in a dataflow mode: after a transient behavior due to the initialization delay,
a new data set is completed every period. The period, which corresponds to the
inverse of the throughput, is a key performance-related objective for streaming
applications [46, 16, 20]. Formally, the period is the time interval between the
arrival of two consecutive data sets in the application. Given a mapping of
the application onto a platform, the time spent in each resource (processor or
communication link) should not exceed the period.

Finally, the target platform for this study is a Chip MultiProcessor (CMP),
which is composed of p×q homogeneous cores arranged along a 2D grid. During
the last century, advances in integrated circuit technology have led chip design-
ers to increase microprocessor performance by increasing the integration density
thus allowing for higher clock rates and new innovations in micro-architectures.
Such innovations included wider instructions, speculative execution, branch pre-
diction and dynamic scheduling. However, in 1996, Olukotum et al. [38] argued
that such a trend would not continue because of the diminishing return caused
by limited instruction level parallelism and they argued that a better way for
using the denser integration would be to layout multiple simpler processors on
the same chip. Moreover, power consumption consideration prevented the push
towards faster clocks, thus leaving the design of chip multiprocessors as the only
alternative for increasing the on-chip computational capability. Specifically, in-
creasing the number of cores rather than the processor’s complexity translates
into slower growth in power consumption. Currently, chip multiprocessors are
commercially available and the trend is towards the continuous increase in the

RR n° 7521

in
ria

-0
05

60
70

7,
 v

er
si

on
 2

 - 
4 

Ap
r 2

01
1



Energy-aware mappings of SPG workflows onto CMPs 5

number of cores on single chips. The challenge is now to be able to efficiently
utilize the parallelism available on chip [8].

An essential step for exploring the parallelism available in a streaming appli-
cation is to provide algorithms and scheduling strategies for mapping a series-
parallel graph onto a CMP, with the objective of minimizing the energy con-
sumption while not exceeding a prescribed period. In some applications, data
sets arrive at fixed time intervals, and hence the period of the application is
given a priori, before any mapping is computed. In other applications, there is
the freedom to choose between a set of possible periods, which are prescribed
by the user. In all cases, the main goal is to reduce the energy consumption of
the mapping, while enforcing the constraint on the prescribed period.

The contribution of this paper is twofold. On the theoretical side, we assess
the complexity of the above-mentioned mapping problem, using a DAG-partition
mapping rule that partitions the application SPG into an acyclic graph of node
clusters. In turn, each cluster is mapped onto a different processor of the CMP.
Our cost model accounts for communication delays and cost (in terms of con-
sumed energy). The problem turns out to be NP-hard, so we also study the
complexity of simpler problem instances, either with a simpler target platform
(uni-directional or bi-directional uni-line CMP), or by restricting to particular
applications whose graph has a bounded degree of parallelism (bounded-elevation
SPGs). The only problem instance that can be solved in polynomial time, thanks
to a dynamic programming algorithm, is the mapping of bounded-elevation
SPGs onto a uni-directional uni-line CMP. For other problem instances, we pro-
vide sophisticated NP-completeness proofs. On the practical side, building upon
the theoretical results, we design some polynomial-time heuristics to solve the
most general problem, and we assess their performance through simulations.

The paper is organized as follows. We first survey related work in Section 2.
Then we detail the framework in Section 3, and we provide complexity results
in Section 4. The heuristics are described in Section 5, and simulation results
in Section 6. Finally, we conclude and discuss future research directions in
Section 7.

2 Related work

Reducing the energy consumption of computational platforms is an important
research topic, and many techniques at the process, circuit design, and micro-
architectural levels have been proposed [31, 29, 19]. The dynamic voltage and
frequency scaling (DVFS) technique has been extensively studied, since it may
lead to efficient energy/performance trade-offs [26, 18, 4, 12, 28, 51, 48]. Current
microprocessors (for instance, from AMD [2] and Intel [35]) allow the speed to
be set dynamically. Indeed, by lowering supply voltage, hence processor clock
frequency, it is possible to achieve important reductions in power consumption,
without necessarily increasing the execution time.

In this paper, we aim at minimizing the energy consumption for series-
parallel graph (SPG) applications which are mapped onto a chip multiprocessor
(CMP). We first discuss related work on SPG applications, then we review dif-
ferent energy minimization approaches. Finally, we relate work on mapping
problems on CMPs.

RR n° 7521

in
ria

-0
05

60
70

7,
 v

er
si

on
 2

 - 
4 

Ap
r 2

01
1



Energy-aware mappings of SPG workflows onto CMPs 6

Series-parallel workflow applications. Classical workflow applications
usually consists of a directed acyclic graph: the application is made of sev-
eral tasks, and there are dependencies between these tasks. However, it turns
out that many of these graphs are series-parallel graphs. For instance, in [33],
McClatchey et al. introduce a prototype scientific workflow management sys-
tem entitled CRISTAL, and the distributed scientific workflow applications that
they consider are SPGs. In [41], Qin and Fahringer discuss several scientific grid
workflow applications, which are all structured as SPGs: the WIEN2k workflow
performs electronic structure calculations of solids using density functional the-
ory [7], the MeteoAG workflow is a meteorology simulation application [43],
and the GRASIL workflow calculates the spectral energy distribution of galax-
ies [44]; this latter application has actually a fork-join graph. A last example is
the fMRI workflow [52], which is a cognitive neuroscience application.

DVFS and optimization problems. When dealing with energy con-
sumption, the most usual optimization function consists of minimizing the en-
ergy consumption, while ensuring some performance guarantees (real-time con-
straints, such as a bound on the total execution time, or a threshold throughput).
Specifically, in [37], Okuma et al. demonstrate that voltage scaling is far more
effective than the shutdown approach, which simply stops the power supply
when the system is inactive. De Langen and Juurlink [30] discuss leakage-aware
scheduling heuristics which investigate both DVS and processor shutdown, since
static power consumption due to leakage current is expected to increase signifi-
cantly. In the context of real-time embedded systems, Lee and Sakurai [31] show
how to exploit slack time arising from workload variation, thanks to a software
feedback control of supply voltage. Prathipati [40] discusses techniques to take
advantage of run-time variations in the execution time of tasks; it determines
the minimum voltage under which each task can be executed, while guaran-
teeing the deadlines of each task. In [50], dynamic programming algorithms
are given to minimize the expected energy consumption in real time systems
using frequency and voltage scaling. Yang and Lin [51] discuss algorithms with
preemption, using DVS techniques; substantial energy can be saved using these
algorithms, which succeed to claim the static and dynamic slack time, with lit-
tle overhead. Most of these papers deal with classical scheduling of task graph
applications, which are not streaming applications. The techniques are similar,
but the performance guarantee is a deadline on the total execution time. Rather,
we consider workflow applications, i.e., several data sets must be processed by
the task graph, and hence we bound the application period.

The problem of mapping workflow applications with the structure of a lin-
ear chain onto parallel platforms has already been widely studied, in particular
on homogeneous platforms (see the pioneering paper [47]) and later for het-
erogeneous platforms [6]. These results are extended to account for energy
consumption in [5], where the target problem is mapping several linear chain
applications on a fully interconnected platform, with three optimization criteria:
power, period, and latency (execution time for one data set).

Mapping applications to chip multiprocessors. Many researchers
have considered the mapping of tasks and threads to CMPs that are connected
by a 2-dimentional network on a chip. The work in [3] introduces an approach to
multi-objective exploration of mapping general task graphs to mesh-based CMPs
using evolutionary algorithms. The approach is an efficient and accurate way to

RR n° 7521

in
ria

-0
05

60
70

7,
 v

er
si

on
 2

 - 
4 

Ap
r 2

01
1



Energy-aware mappings of SPG workflows onto CMPs 7

obtain the Pareto mappings that optimize performance and power consumption.
In [25], an architecture-aware analytic mapping algorithm is presented. It uses
a metric space that exactly captures the CMP topology to efficiently solve the
problem. In [10], a compiler framework is presented to map the source code of an
application to a mesh-based chip multiprocessor system. Compiler techniques
are also used in [9] to dynamically change the speed of communication channels
in CMPs to reduce energy consumption. In [1], the mapping of applications to
heterogeneous multi-processor systems is performed by invoking runtime agents
that are distributed among the processors. None of the above work considers the
mapping of streaming applications onto CMP with the objective of minimizing
power consumption while maintaining a specified throughput (period).

Summary. In this paper, the application is a workflow whose structure is
series-parallel task graph, and the goal is to map this application onto a CMP,
with the objective of minimizing the energy consumption, given a threshold on
the period of the workflow. We are therefore extending previous work, which
was conducted for simpler application structures (linear chains instead of series-
parallel graphs), and for a realistic platform (the CMP) instead of virtual cliques.
To the best of our knowledge, this paper is the first to investigate the complexity
of this problem, and to propose practical solutions (polynomial time heuristics)
for applications modeled by series-parallel graphs. The work in [49] shares the
same objective as the work in this paper but is purely empirical. It presents a
two-phase heuristic for mapping a general acyclic graph onto a CMP by first
assigning the levels of the graph to the rows of the CMP and then mapping
the tasks in each level to the nodes of the row assigned to that level. The
heuristic described in Section 5.3 follows a similar two-phase strategy but obeys
the DAG-partition mapping rule (see Section 3.3).

3 Framework

In this section, we first describe the applicative framework (Section 3.1) and
the target platform (Section 3.2). Then we detail the mapping strategies in Sec-
tion 3.3. Finally, we formally define the bi-criteria optimization problem: we aim
at minimizing the energy consumption while not exceeding a prescribed period.
The formula to check that the period is not exceeded is given in Section 3.4,
and the model for energy consumption is outlined in Section 3.5.

3.1 Applicative framework

The application that is to be scheduled is a streaming application: it operates
on a collection of data sets that are executed in a pipelined fashion. In this
study, the application is a series-parallel graph G = (S, E), or SPG. Nodes of
the graph correspond to different application stages, and are denoted by Si,
with 1 ≤ i ≤ n, where n = |S| is the size of the graph. For each precedence
constraint in the application, say from stage Si to stage Sj , we have an edge
Li,j ∈ E . For 1 ≤ i ≤ n, wi is the computation requirement of stage Si, and for
each Li,j ∈ E , with 1 ≤ i, j ≤ n, δi,j is the volume of communication to be sent
from Si to Sj before Sj can start its computation.

A SPG is built from a sequence of compositions (parallel or series) of smaller-
size SPGs. The smallest SPG consists of two nodes connected by an edge. The

RR n° 7521

in
ria

-0
05

60
70

7,
 v

er
si

on
 2

 - 
4 

Ap
r 2

01
1



Energy-aware mappings of SPG workflows onto CMPs 8

first node is the source of the SPG while the second is its sink. When composing
two SPGs in series, we merge the sink of the first SPG with the source of the
second. For a parallel composition, the two sources are merged, as well as the
two sinks (see Figure 1 for illustrative examples).

We recursively define the label of each node in a SPG, which corresponds to
its coordinates along a 2D-grid in the recursive construction: `i = (xi, yi) is the
label of stage Si, for 1 ≤ i ≤ n. First, for a two-node SPG (S1 → S2), the label
of the source S1 is (1, 1), while the label of the sink S2 is (2, 1). The labels are
then updated when composing the SPG. Consider two SPGs, SPG1 with nodes

S
(1)
1 , . . . , S

(1)
n1 , and SPG2 with nodes S

(2)
1 , . . . , S

(2)
n2 , and their corresponding

labels `
(1)
i = (x

(1)
i , y

(1)
i ) and `

(2)
j = (x

(2)
j , y

(2)
j ), for 1 ≤ i ≤ n1 and 1 ≤ j ≤ n2.

• For a serial composition, we merge the sink of SPG1, S
(1)
n1 , with the source

of SPG2, S
(2)
1 . The resulting SPG has n = n1 + n2 − 1 nodes with the

following labels: for 1 ≤ i ≤ n1, Si = S
(1)
i and its label is `i = `

(1)
i , and for

1 < j ≤ n2, Sn1+j−1 = S
(2)
j and the x values of the labels are incremented

by x
(1)
n1 − 1, i.e., `n1+j−1 = (x

(2)
j + x

(1)
n1 − 1, y

(2)
j ).

• For a parallel composition, assume that x
(1)
n1 ≥ x

(2)
n2 (otherwise exchange

the two SPGs, so that the first contains the longest path). We merge both

sources (S
(1)
1 and S

(2)
1 ), and both sinks (S

(1)
n1 and S

(2)
n2 ). The resulting

SPG has n = n1 +n2− 2 nodes with the following labels: S1 is the source

and `1 = `
(1)
1 ; Sn is the sink and `n = `

(1)
n1 ; for 1 < i < n1, Si = S

(1)
i

and its label is `i = `
(1)
i ; for 1 < j < n2, Sn1+j−2 = S

(2)
j , and the

y values of the labels are incremented by y
(1)
max = max1≤i≤n1

(y
(1)
i ), i.e.,

`n1+j−2 = (x
(2)
j , y

(2)
j + y

(1)
max).

This construction is illustrated on the examples given in Figure 1. Note that
these rules ensure that the source is always stage S1, with `1 = (1, 1), and the
sink is always stage Sn, with `n = (xn, 1). Therefore, max1≤i≤n xi = xn, and we
denote by ymax = max1≤i≤n yi the maximum y value of the labels in the SPG,
which we call maximum elevation. Intuitively, the maximum elevation denotes
the maximal degree of parallelism of the SPG.

In the following, we focus the discussion on bounded-elevation SPGs, i.e.,
SPGs whose maximum elevation ymax is bounded by a constant. Indeed, deal-
ing with bounded-elevation SPGs, rather than arbitrary SPGs, or even arbitrary
DAGs, is a trade-off between tractability and generality. On the one hand,
bounded-elevation SPGs correspond to a wide spectrum of applications, and
nicely generalize linear chains and trees (a tree can easily be transformed into
a SPG by adding fake nodes mirroring the tree). For instance, all the bench-
marks of the StreamIt suite [45] are bounded-elevation SPGs: their maximum
elevations range from ymax = 1 (linear chain) to ymax = 17. On the other hand,
the problem of mapping a simple fork-join graph with n nodes (unbounded-
elevation graph) onto two processors, in order to minimize the energy given a
period bound, is NP-complete (reduction from 2-PARTITION, see Section 4.1).
Dealing with bounded-elevation graphs enables us to identify polynomial in-
stances, thus providing optimal solutions for some problem instances.

RR n° 7521

in
ria

-0
05

60
70

7,
 v

er
si

on
 2

 - 
4 

Ap
r 2

01
1



Energy-aware mappings of SPG workflows onto CMPs 9

(2, 5)

(1, 1)

(2, 2)

(2, 1) (3, 1) (4, 1) (1, 1) (2, 1) (3, 1)

(2, 2)

(2, 3)SPG1 SPG2

(1, 1)

(2, 2)

(2, 1) (3, 1) (4, 1) (5, 1) (6, 1)

(5, 2)

(5, 3)

(1, 1) (2, 1) (3, 1) (4, 1)

(2, 2)

(parallel composition)

(series composition)

(2, 3)

(2, 4)

Figure 1: Examples of SPG composition.

RR n° 7521

in
ria

-0
05

60
70

7,
 v

er
si

on
 2

 - 
4 

Ap
r 2

01
1



Energy-aware mappings of SPG workflows onto CMPs 10

3.2 Platform

The target platform is a CMP (Chip MultiProcessor), composed of p × q ho-
mogeneous cores Cu,v, with 1 ≤ u ≤ p, 1 ≤ v ≤ q, arranged along a rectangular
grid. There is a vertical (internal and bi-directional) communication link be-
tween Cu,v and Cu+1,v, for 1 ≤ u ≤ p − 1, 1 ≤ v ≤ q, and a horizontal link
between Cu,v and Cu,v+1, for 1 ≤ u ≤ p, 1 ≤ v ≤ q − 1. All links have the same
bandwidth BW (in each direction). This means that it takes a time δ

BW to
send δ bytes from one processor to a neighboring processor. It is possible to use
only some of the communication links, and for instance to configure the p × q
CMP as a 1× pq bi-directional linear array, called bi-directional uni-line CMP.

Although the cores of a CMP share the same memory space, it is possible
to implement the message passing models on CMPs [32] by writing and reading
from shared memory locations. However, for scalability purpose, CMPs with
large number of cores will be organized as a mesh of tiles, each with its own
cache [27]. Therefore, communication through shared memory ultimately trans-
lates to exchange of coherence traffic between the tiles [22, 14, 24]. Specifically,
in the streaming model assumed in this paper, when a stage Si, mapped to a
core Cu,v, writes into a shared variable, X, that shared variable is cached in
the local cache of Cu,v. Then, when a stage Sj with Li,j ∈ E , mapped to a
core Cu′,v′ 6= Cu,v, reads X, the cache coherence protocol guarantees that X
is cached in the local cache of Cu′,v′ . Therefore, the values of the cache line
containing X is sent from Cu,v to Cu′,v′ . In other words, if two stages Si and
Sj , connected with an edge Li,j , are mapped onto two distinct processors, a
communication of size δi,j must occur (implicit messages) to keep the cached
values coherent1. Hence, irrespectively of the programming model used to im-
plement the SPG, the weight on a directed edge between two nodes in the SPG
represents the volume of communication to be sent between the cores executing
the corresponding application stages.

As mentioned in Section 2, the voltage and frequency of each core of the
CMP can be set to different values. Altogether, there is a set of possible supply
voltages, together with a set of possible frequencies (or modes, or speeds), for
each core. Let S = {s(1), . . . , s(m)} denote the set of all possible speeds. It takes
a time wi

s(k) to execute one data set for stage Si at speed s(k) ∈ S on a given
core. Each speed induces a different dynamic power consumption, as discussed
in Section 3.5 below.

3.3 Mapping strategies

We discuss several mapping rules to map the SPG application onto the CMP.
As for the application graph, we use DAG-partition mappings, which represent
a trade-off between one-to-one and general mappings. The rationale is the
following. One-to-one mappings obey the simplest rule: each application stage
is mapped onto a distinct core. While easier to optimize and implement, this rule
may be unduly restrictive, and is likely to lead to high communication costs.
Obviously, it also requires that p × q ≥ n, thereby limiting its applicability
to large platforms or small applications. A natural extension is to search for

1It is assumed that the cache coherence protocol supports cache-to-cache transfer and
exploits communication locality by tracking in each core the location of frequently accessed
blocks [21].

RR n° 7521

in
ria

-0
05

60
70

7,
 v

er
si

on
 2

 - 
4 

Ap
r 2

01
1



Energy-aware mappings of SPG workflows onto CMPs 11

DAG-partition mappings: we first partition the initial SPG into subsets, or
clusters, such that the resulting graph is acyclic. Hence this mapping rule
states that if two stages Si and Sj are in the same subset of the partition,
then any other stage Sk which has an incoming dependency from Si and an
outgoing dependency to Sj , must be in the same subset of the partition. Then
we map the subsets of the partition onto the cores in a one-to-one fashion. Using
this mapping rule, a core which is executing a subset I of stages {Si}i∈I will
perform at most one input and one output communication for each elevation
value {yi}i∈I . This is well in accordance with our initial assumption that the
SPG has bounded elevation ymax, because it ensures that each core has at most
ymax communications to perform at each period. In contrast, a fully general
mapping, that allow for arbitrary partitions of the original application graph,
would require an arbitrary number of communications, only bounded by the
total number of stages n, hence an unlimited amount of buffer space. Moreover,
even for bounded-elevation SPGs, the problem of finding the general mapping
which minimizes the energy given a period bound is trivially NP-complete (linear
chain onto two processors, reduction from 2-PARTITION [17]).

Formally, the mapping is defined by an allocation function

alloc : {1, . . . , n} → {1, . . . , p} × {1, . . . , q} ,

which maps stages onto cores. In other words, if stage Si is mapped onto core
Cu,v, we have alloc(i) = (u, v). Once application stages are mapped onto cores,
there remains to decide how to route communications between two cores which
need to communicate because of the stage assignment. Therefore, for each
application edge Li,j ∈ E , if alloc(i) 6= alloc(j), we define pathi,j as the set of
communication links that are used to communicate from core alloc(i) to core
alloc(j). Note that these paths must be defined for the mapping to be fully
determined.

3.4 Period

As motivated above, we assume that data sets arrive at regular time intervals,
which is called the period of the application, and denoted by T . Then, given a
mapping and an execution speed for each core, we can check whether the applica-
tion can be executed at the prescribed rate: we must ensure that the cycle-time
of each resource (computation or communication link) does not exceed T .

Let wu,v =
∑

1≤i≤n|alloc(i)=(u,v) wi be the total amount of work assigned to
core Cu,v, running at speed su,v ∈ S. The cycle-time of Cu,v for computations is
wu,v/su,v. For communications, b(u,v)→(u′,v′) =

∑
1≤i,j≤n|(u,v)→(u′,v′)∈pathi,j

δi,j

is the number of bits sent from Cu,v to a neighbor core Cu′,v′
2. The cycle-time

of the communication link (u, v)→ (u′, v′) is b(u,v)→(u′,v′)/BW .
We can then compute the maximum cycle-time, which is the maximum cycle-

time of all resources, and check that it is not greater than T .

2(u′=u + 1 and v′=v) or (u′=u − 1 and v′=v) or (u′=u and v′=v + 1) or (u′=u and
v′=v − 1).

RR n° 7521

in
ria

-0
05

60
70

7,
 v

er
si

on
 2

 - 
4 

Ap
r 2

01
1



Energy-aware mappings of SPG workflows onto CMPs 12

3.5 Energy model

Once a SPG application has been mapped onto the CMP, there are two sources
of energy consumption: the cores consume energy for computations and the
routers consume additional energy for communications.

For the computations, we assume that each core involved in the execution
consumes some static energy during the whole period T , and some dynamic
energy that depends on the amount of operations, and on the speed at which
these operations are executed. Let A be the set of active cores: A = {Cu,v, 1 ≤
u ≤ p, 1 ≤ v ≤ q | ∃ 1 ≤ i ≤ n, alloc(i) = (u, v)}. For each core Cu,v ∈ A, let
wu,v be its assigned work and su,v its speed. The total energy consumed for
computations is

E(comp) = |A| × P (comp)
leak × T +

∑
Cu,v∈A

wu,v
su,v

× P (comp)
su,v

,

where T is the prescribed period, P
(comp)
leak is the leakage power dissipated to-

gether with computations, and P
(comp)
su,v is the dynamic power associated with

speed su,v.
For the communications, there is also a static part due to leakage, which is

paid for all cores: even if a core is not enrolled in the computation, its routers
and communication links may be used to route data between remote processors.
The dynamic part is directly proportional to the number of bits that are sent
across each link. Hence,

E(comm) = P
(comm)
leak × T +

∑
u,v

∑
u′,v′

b(u,v)→(u′,v′)

× E(bit) ,

where T is the period, P
(comm)
leak is the aggregated leakage power dissipated by all

routers and links, and E(bit) is the energy to transfer a bit across neighboring
cores. Finally, the total energy consumption is E = E(comp) + E(comm).

We are ready to formally define the optimization problem:

Definition 1 (MinEnergy(T )) Given a bounded-elevation SPG and a period
threshold T , find a mapping whose maximal cycle-time does not exceed T and
whose energy E is minimum.

4 Complexity results

In this section, we assess the complexity of the MinEnergy(T ) problem for
various instances. We classify results depending upon the target CMP, which
may be uni-directional uni-line (see Section 4.1), bi-directional uni-line (see Sec-
tion 4.2), or bi-directional 2D mesh (see Section 4.3). The only polynomial in-
stance of MinEnergy(T ) is for the uni-directional uni-line CMP. In this case,
we exhibit a dynamic programming algorithm that finds the optimal solution.
It is worth noting that this polynomial instance becomes NP-complete for SPGs
of unbounded elevation. All other problem instances are NP-hard, and we for-
mulate the problem as an integer linear program in Section 4.4.

RR n° 7521

in
ria

-0
05

60
70

7,
 v

er
si

on
 2

 - 
4 

Ap
r 2

01
1



Energy-aware mappings of SPG workflows onto CMPs 13

4.1 Uni-directional uni-line CMP

In this section, we assume that the CMP is configured as a uni-directional linear
array of q processors. First we provide a polynomial algorithm to solve the case
of bounded-elevation SPGs. As a digression from the main focus of this paper
(bounded-elevation SPGs), we prove that the problem becomes NP-hard for
SPGs of unbounded elevation.

Theorem 1 The MinEnergy(T ) problem on a uni-directional uni-line CMP
has polynomial complexity.

Proof. We exhibit a dynamic programming algorithm which computes the
optimal solution. Let G be a bounded-elevation SPG. First we define admissible
subgraphs of G recursively:

• G is admissible;
• if a subgraph G of G is admissible, then any subgraph of G obtained by

deleting one node which has no successor in G is admissible too.
Let H be a set of one or several nodes deleted from G with this process, and let
G′ = G \H. Note that the partition {G′, H} is acyclic, and that any possible
acyclic partition of G into two subgraphs can be obtained with this construction.
If we iterate the construction on G′, we can build any DAG-partition of G.

How many admissible subgraphs can we have? Let ymax be the maximal
elevation of G. Consider any admissible subgraph G. By definition, two nodes
with the same y coordinate are linked by a dependence. Therefore, for each
value of y between 1 and ymax, there can be at most one node of elevation y and
without successor in G. Hence there are at most nymax admissible subgraphs
(and this bound is asymptotically met for a fork-join shaped graph composed
of ymax chains of length n/ymax assembled with a source and sink node).

For any admissible subgraph G of G, let E(G, k) be the minimum energy con-
sumption required to execute the subgraph G onto exactly the first k processors.
The goal is to determine minqk=1 E(G, k).

The dynamic programming formulation can be expressed as:

E(G, k) = min
G′⊆G

(
E(G′, k − 1)⊕ Ecal(G \G′)

)
,

with the initialization E(G, 1) = Ecal(G).
The minimum is taken over all admissible subgraphs G′ such that commu-

nications between G′ and G \ G′ do not exceed the bandwidth: Cout(G′)
BW ≤ T ,

where Cout(G′) denotes the aggregated output data volume of G′, i.e., the sum
of the output data δi of all stages Si ∈ G′ which have no successor in G′.
Ecal(H) represents the energy consumed for the computations of the nodes

in H when mapped to the same processor. Given such a node set H, we select
the minimum speed that allows for computing all the stages in H within the
period T , and we compute the corresponding energy consumption. If no such
speed exists, we let Ecal(H) = +∞. Finally, the ⊕ operator means that the
energy consumed by the induced communications is added to the sum.

At each step, there are no more than nymax admissible graphs G′, and
therefore we have at most nymax values of Ecal(H) to compute, which is done
in O(n). Altogether, we have designed an algorithm whose worst-case complex-
ity is O(q × n× nymax), which is polynomial since ymax is a constant.

RR n° 7521

in
ria

-0
05

60
70

7,
 v

er
si

on
 2

 - 
4 

Ap
r 2

01
1



Energy-aware mappings of SPG workflows onto CMPs 14

Figure 2: Unbounded-elevation SPG for the uni-directional uni-line CMP proof.

The previous theorem only holds for bounded-elevation SPGs. With unbounded-
elevation SPGs, the problem becomes NP-hard:

Proposition 1 The extension of MinEnergy(T ) to unbounded-elevation SPGs
on a uni-directional uni-line CMP is NP-complete.

Proof. In fact, without any energy consideration, the simpler mono-criterion
problem of matching a prescribed period is NP-complete. The associated deci-
sion problem is as follows: given a period T , is there a DAG-partition mapping
whose period is no more than T? The problem is obviously in NP: given a
period and a mapping, it is easy to check in polynomial time that it is valid by
computing its period.

To establish the completeness, we use a reduction from 2-partition [17].
We consider an instance I1 of 2-partition: given n strictly positive integers
a1, a2, . . . , an, does there exist a subset I of {1, . . . , n} such that

∑
i∈I ai =∑

i/∈I ai? Let S =
∑n
i=1 ai.

We build an instance I2 of our problem: the application consists of a fork-
join graph of elevation n, as illustrated in Figure 2. We denote by S0 the source
node, Sn+1 the sink node, and Si, for 1 ≤ i ≤ n, is the ith node of the fork-join.
For computation costs, we have w0 = wn+1 = 0, and wi = ai, and there are no
communication costs. The platform consists of two cores which can operate only
at a unique speed s = 1. Finally, we ask whether we can achieve a period S

2 .
Clearly, the size of I2 is polynomial in the size of I1. The equivalence between

both problems is straightforward: if I1 has a solution I, then we assign S0 and
{Si}i∈I to the first core, Sn+1 and {Si}i/∈I to the second core. The mapping
is a DAG-partition, and its period is S

2 , therefore we find a solution to I2. On
the other hand, if I2 has a solution, the period on each core must be exactly
S
2 because the total computation requirement is S, and therefore we have a
2-partition of the stages Si, for 1 ≤ i ≤ n. This concludes the proof.

4.2 Bi-directional uni-line CMP

Theorem 2 The MinEnergy(T ) problem on a bi-directional uni-line CMP is
NP-complete.

Proof. As for Proposition 1, the simpler mono-criterion problem of matching a
prescribed period T , without any energy consideration, is NP-complete. How-

RR n° 7521

in
ria

-0
05

60
70

7,
 v

er
si

on
 2

 - 
4 

Ap
r 2

01
1



Energy-aware mappings of SPG workflows onto CMPs 15

Figure 3: Bounded-elevation SPG and mapping for the bi-directional uni-line
CMP proof.

ever, the reduction proof becomes quite involved, since we consider a bounded-
elevation SPG.

The problem is obviously in NP: given a period and a mapping, it is easy to
check in polynomial time that it is valid by computing its period. To establish
the completeness, we use a reduction from 2-partition [17]. We consider an
instance I1 of 2-partition: given n strictly positive integers a1, a2, . . . , an,
does there exist a subset I of {1, . . . , n} such that

∑
i∈I ai =

∑
i/∈I ai? Let

S =
∑n
i=1 ai.

We build an instance I2 of our problem: the bounded-elevation SPG of the
application is represented in Figure 3. There are 3n + 3 stages, computation
costs of each stages are equal to 1, and communication costs are depicted in
the figure. The platform is a bi-directional uni-line CMP of 1 × q cores, where
q = 3n + 3. Each core can operate only at a unique speed s = 1, and the
bandwidth of each link is BW = 3S/2 + ε. Finally, we ask whether we can
achieve a period of 1. Clearly, the size of I2 is polynomial in the size of I1. We
now show that instance I1 has a solution if and only if instance I2 does. First
note that any solution of I2 is a one-to-one mapping, because of the constraint
on the period and the computation costs of stages. Indeed, if two or more stages
were mapped onto the same core, the period would be at least 2.

Assume first that I1 has a solution, I. We assume that I = {i1, . . . , ik} and

Ī = {1, . . . , n} \ I = {̄i1, . . . , īn−k}, with
∑k
j=1 aij =

∑n−k
j=1 aīj = S/2. For I2,

we map the application graph onto the CMP as illustrated in Figure 3: for all
j ∈ {1, . . . , k}, Cj is mapped onto C2j−1 and Bj onto C2j . Then the stage In is
mapped onto C2k+1, for all j ∈ {1, . . . , n+ 1}, Aj is mapped onto C2k+1+j , and
the stage Out is mapped onto C2k+n+3. Finally for all j ∈ {1, . . . , n− k}, Bj is
mapped onto C2k+n+2+2j , and Cj onto C2k+n+2j+3. The mapping is one-to-one
so that the period constraint is fulfilled for computations. We now show that,
on each link, the sum of communications does not exceed BW , and hence the
bound on the period is not violated.

Let us first consider the link `
(h)
2k+1+j , with j ∈ {1, . . . , n}: the amount of

communications on this link is equal to S/2 + ε (communication from Aj to
Aj+1), plus at most

∑n
i=1 ai = S (communications from Ai to Bi), therefore a

total of no more than 3S/2 + ε = BW .

Then we consider the link `
(h)
2j−1, with j ∈ {1, . . . , k}: the amount of commu-

nications is then S + ε (from Bij to Cij ) plus at most
∑
i∈I ai = S/2 (commu-

nications from Ai to Bi, for i ∈ I), which is no more than BW . Finally, on the

link `
(h)
2j , with j ∈ {1, . . . , k}, there are at most

∑
i∈I ai = S/2 communications

RR n° 7521

in
ria

-0
05

60
70

7,
 v

er
si

on
 2

 - 
4 

Ap
r 2

01
1



Energy-aware mappings of SPG workflows onto CMPs 16

(from Ai to Bi, for i ∈ I). Similarly, we can prove that the bandwidth is not

exceeded on link `
(h)
2k+n+2+j , for j ∈ {1, . . . , 2(n− k)}.

Only two links remain now: `
(h)
2k+1 and `

(h)
2k+n+2. The only communications

not equals to 0 that go through `
(h)
2k+1 are the communications from Ai to Bi,

for i ∈ I, thus the link bandwidth constraint is fulfilled. This holds true for

`
(h)
2k+n+2, reasoning with Ī instead of I. We conclude that I2 has a solution.

Assume now that I2 has a solution. We prove that the mapping is necessary
similar to that of Figure 3, and that stages Bi and Ci must be 2-partitioned.

Let σ be the permutation of {1, . . . , n+1} such that, for each i ∈ {1, . . . , n},
the core assigned to Aσ(i) is to the left of the one assigned to Aσ(i+1). First, let

us assume that there exists i(0) ∈ {1, . . . , n} such that the stage In is mapped
between Aσ(i(0)) and Aσ(i(0)+1). Since there is a path (with edges of weight
S/2 + ε) going through all the Aσ(i), a communication of size S/2 + ε occurs on
all links between the core assigned to Aσ(i(0)) and the core assigned to Aσ(i(0)+1).
Because of the mapping of In, we deduce that there is a link on which the
amount of communications is at least 3S/2 + 2ε, which leads to a contradiction.
Therefore, we showed that the core that is assigned to In is either to the left of
the core assigned to Aσ(1) or to the right of the core assigned to Aσ(n+1). The
same result holds for Out (similar proof).

Moreover note that In and Out cannot be on the same side, otherwise either
the link after the core assigned to Aσ(n+1) or the link before the core assigned to
Aσ(1) would transmit at least two communications of size S+ε. We can assume,
without loss of generality that In is mapped on the left, and Out on the right.

Similarly, for all i ∈ {1, . . . , n}, Bi and Ci cannot be mapped onto a core
between the core assigned to a Aσ(i′) and the one assigned to Aσ(i′+1), or In
and Aσ(1), or Aσ(n+1) and Out . The Bi are thus mapped either to the left of
In, or to the right of Out , similarly to Figure 3.

Finally, let I be a subset of {1, . . . , n} such that i ∈ I if and only if Bi
is mapped to the left of In. Then, since the bandwith bound is not exceeded
between the core assigned to In and the one assigned to Aσ(1) on one hand, and
between Aσ(1) and Out on the other hand, we have necessarily

∑
i∈I ai+S+ε ≤

3S/2 + ε and
∑
i/∈I ai + S + ε ≤ 3S/2 + ε. Therefore,

∑
i∈I ai =

∑
i/∈I ai = S/2,

I1 has a solution, which concludes the proof.

4.3 Square CMP

In this section, we focus on square CMPs. We know from Theorem 2 that the
problem is NP-hard for a 1×q CMP, hence for CMPs of arbitrary shapes. How-
ever, the problem complexity for a square CMP of size p×p is not a consequence
of Theorem 2. We now establish this complexity:

Theorem 3 The MinEnergy(T ) problem on a square CMP is NP-complete.

Proof. As for Theorem 2, the simpler mono-criterion problem of matching a
prescribed period T , without any energy consideration, is NP-complete. The
problem is obviously in NP: given a period and a mapping, it is easy to check
in polynomial time that it is valid by computing its period.

RR n° 7521

in
ria

-0
05

60
70

7,
 v

er
si

on
 2

 - 
4 

Ap
r 2

01
1



Energy-aware mappings of SPG workflows onto CMPs 17

To establish the completeness, we use a reduction from 2-partition [17].
We consider an instance I1 of 2-partition: given 3n + 1 strictly positive in-
tegers a1, a2, . . . , a3n+1, does there exist a subset I of {1, . . . , 3n+ 1} such that∑
i∈I ai =

∑
i/∈I ai? Let S =

∑3n+1
i=1 ai.

We build the following instance I2 for our problem, re-using the construction
proposed in Theorem 2. The CMP is composed of p × p cores with a single
speed 1, linked with a bandwidth BW = 3S/2+ε, where p = 6n+4. The series-
parallel graph is described as a directed acyclic graph (DAG) in Figure 5, using
some widgets introduced in Figure 4. To transform this DAG into a SPG, we use
the transformation explained in Figure 6: the blue nodes in widgets G can be
replaced by two nodes with computation cost 1/2, which must be mapped onto
the same core because of bandwidth constraints. All computation costs in the
DAG are equal to 1, and in the following we conduct the reasoning on the DAG.
The size of blue and green communications is equal to the bandwidth BW ,
and there is no communication between two Hi widgets, neither between E2

and H6n. The size of communications from E1 to E12 on the one side, and from
E13 to E2, on the other side, is equal to ε. The subgraph between E12 and E13

is the graph of Figure 3, replacing n by 3n+ 1. Finally, we ask whether we can
achieve a period of 1. Clearly, the size of I2 is polynomial in the size of I1.

We now show that instance I1 has a solution if and only if instance I2

does. First note that any solution of I2 is a one-to-one mapping, because of the
constraint on the period and the computation costs of stages. Indeed, if two or
more stages were mapped onto the same core, the period would be at least 2.

Assume first that I2 has a solution. We show that the red nodes are necessary
mapped onto a linear chain of cores, and communications never escape out of
this linear chain.

In each widget Gi,j , the two communications between Di,2k−1 and Di,2k, for
k ∈ {1, . . . , j}, must occur on at least 4 links and no other communications not
equal to 0 can use those links, because one communication fills entirely a link,
and the mapping is one-to-one. In the same way, in every widget Hi, the three
communications between Pi,2k−1, Pi,2k and Pi,2k+1, for k ∈ {1, . . . , i}, must
occur on at least 4 links and no other communication (not equal to 0) can use
those links. Moreover, there are 19 more communications of size BW , which
thus require at least 19 more communication links. Altogether, we need at least:

6n∑
i=1

4i+ 3× (15n− 1) + (15n+ 4) + 19 = 2(6n)(6n+ 1) + 60n+ 20

= 72n2 + 72n+ 20

= 2p(p− 1)− 2(p− 2)

communication links to map all communications except the red ones. If we
use more links to map blue or green communications, there would be at most
2(p−2)−1 free remaining links. Now the graph contains 2(p−2)+1 red nodes,
thus a red node would be isolated (i.e., it would have no available communication
link), which is not possible, because each red node must communicate with at
least one other red node. Thus, we have exactly 2(p − 2) communication links
for the red communications and 2p× (p− 1)− 2(p− 2) communication links for
blue and green communications.

The blue nodes of degree 3 are on the border of the CMP: those nodes cannot
be mapped onto a corner core, because they need at least 3 free communication

RR n° 7521

in
ria

-0
05

60
70

7,
 v

er
si

on
 2

 - 
4 

Ap
r 2

01
1



Energy-aware mappings of SPG workflows onto CMPs 18

Figure 4: Widgets.

Figure 5: DAG.

links, and they cannot be mapped onto a middle core either. In this case, three
of four communication links would be indeed used, and the remaining empty
communication link could not be used by another communication: an incoming
communication could not exit through another link. The nodes P3,1, . . . , P3,p−2

of the widget G3,3n+1 must be mapped in order on a border, otherwise we lose
at least one communication link. Without loss of generality, we can assume
that they are mapped respectively onto cores C2,1, . . . , Cp−1,1. The communi-

cation between P3,1 and P3,2 must occur on links `
(h)
2,1 , `

(v)
2,2 and `

(h)
3,1 in order

not to lose any communication link. In the same way, the communication be-

tween P3,p−3 and P3,p−2 takes the links `
(h)
p−2,1, `

(v)
p−2,2 and `

(h)
p−1,1. As a result,

again from the fact that we cannot lose any communication link, E4 is mapped
onto Cp,1, E3 onto C1,1 then E1 onto C1,2. In the same manner again, nodes
E5, E7, P4,1, . . . , P4,p−2 are mapped respectively onto cores Cp,2, . . . , Cp,p−1, E8

onto Cp,p and E2 onto Cp−1,p.
If the graph composed of the cores on which a red node is mapped, linked

with the communication links where a red communication occurs, is not a chain,
E1 and E2 cannot be connected, because there are only 2(p − 2) remaining
communication links and the Manhattan distance between E1 and E2 is 2(p−2).
Since the 2 additional nodes E1 and E2, and the two communications of weight
ε do not change anything, we are in the case of proof of Theorem 2. Therefore
I1 has a solution.

We assume now that I1 has a solution. We give the mapping for n = 1
in Figure 7, which can convince us that such a mapping, where red nodes and
communications are mapped onto a linear chain, can be found for any n > 1.
Then we use again the proof of Theorem 2 to conclude that I2 has a solution,
and hence conclude the proof.

RR n° 7521

in
ria

-0
05

60
70

7,
 v

er
si

on
 2

 - 
4 

Ap
r 2

01
1



Energy-aware mappings of SPG workflows onto CMPs 19

Figure 6: SPG to DAG.

Figure 7: Example 10× 10.

4.4 Integer linear program

The general problem of finding the optimal DAG-partition mapping, for a given
period, has been shown to be NP-hard. However, we formulate in this sec-
tion the problem as an integer linear program (ILP), which allows us to find
the optimal solution of the problem (in exponential time) for small problem in-
stances. Actually, this ILP can also find the optimal general mapping (without
the restriction of DAG-partition mappings), by removing the DAG-partition
constraint from the program.

Unfortunately, because of the large number of variables needed to express
communication paths in the CMP, we were unable to obtain results on a platform
larger than a 2× 2 CMP with ILOG CPLEX [15].

4.4.1 Constants

We first define the set of constant values that define our problem. The applica-
tion is composed of n stages S1, . . . , Sn, and a set of edges E :

• for 1 ≤ i ≤ n, w(i) is the amount of computations of node Si, i.e., it
corresponds to the wi parameter;

• for 1 ≤ i, j ≤ n, `(i, j) = 1 if there is a link between Si and Sj (i.e.,
if Li,j ∈ E), and then δ(i, j) is the amount of communications between
the two stages (it corresponds to the δi,j parameter); otherwise `(i, j) =
δ(i, j) = 0;

• we define `∗ as the transitive closure of `, i.e., for 1 ≤ i, j ≤ n, `∗(i, j) = 1
if there is a dependence path from Si to Sj , otherwise `∗(i, j) = 0.

RR n° 7521

in
ria

-0
05

60
70

7,
 v

er
si

on
 2

 - 
4 

Ap
r 2

01
1



Energy-aware mappings of SPG workflows onto CMPs 20

For the platform, we consider a p× q CMP, and we need to compute before-
hand the energy consumed by a core when running at any speed.

• for 1 ≤ k ≤ m, s(k) is the k-th possible speed of a core;

• for 1 ≤ k ≤ m, Estat = P
(comp)
leak × T (static energy consumption for one

core);

• for 1 ≤ k ≤ m, Edyn(k) = P
(comp)
s(k) /s(k) (it must be multiplied by the

amount of computation on the core to return the dynamic energy con-
sumption, see Section 3.5).

Finally, BW is the link bandwidth, and T is the bound on the period.

4.4.2 Variables

Now that we have defined the constants that define our problem, we define
unknown variables to be computed:

• for 1 ≤ i ≤ n, 1 ≤ k ≤ m, 1 ≤ u ≤ p and 1 ≤ v ≤ q, xi,k,u,v is a
boolean variable equal to 1 if stage Si is mapped onto core Cu,v, operated
at speed s(k), and 0 otherwise; there are n×m× p× q such variables;

• for 1 ≤ k ≤ m, mk,u,v is a boolean variable equal to 1 if core Cu,v is
operated at speed s(k), and 0 otherwise; there are m×p×q such variables;

• for 1 ≤ i, j ≤ n, 1 ≤ u ≤ p and 1 ≤ v ≤ q, cNi,j,u,v (resp. cSi,j,u,v, c
W
i,j,u,v

and cEi,j,u,v) is a boolean variable equal to 1 if there is a communication for
link Li,j between core Cu,v and its north (resp. south, west, east) neighbor
Cu−1,v (resp. Cu+1,v, Cu,v−1, Cu,v+1) and 0 otherwise; for u = 1 (resp.
u = p, v = 1, v = q), we enforce that the variable is set to 0 (no possible
communication because of the borders of the CMP); there are 4×n2×p×q
such variables.

For convenience, we note c+i,j,u,v = cNi,j,u,v + cSi,j,u,v + cWi,j,u,v + cEi,j,u,v.

4.4.3 Constraints

Finally, we must write all constraints involving our constants and variables.
In the following, unless stated otherwise, i, j, i′ span {1, . . . , n} (stage indices);
u, u′ span {1, . . . , p} and v, v′ span {1, . . . , q} (processor indices), and finally
k, k′ span {1, . . . ,m} (speed, or mode indices). First we need constraints to
guarantee that the allocation of stages to cores is a valid allocation, and that
the speed of each core is correctly set.

• ∀i, k,
∑
u,v xi,k,u,v = 1: each stage is allocated to exactly one core;

• ∀k, u, v, mk,u,v ≥
∑
i xi,k,u,v: if stage Si is mapped onto Cu,v operated at

speed s(k), then Cu,v must be operated at speed s(k);

• ∀u, v
∑
kmk,u,v ≤ 1: each core is operated at no more than one speed

(either the core is on and the sum equals 1, or it is off and the sum
equals 0).

RR n° 7521

in
ria

-0
05

60
70

7,
 v

er
si

on
 2

 - 
4 

Ap
r 2

01
1



Energy-aware mappings of SPG workflows onto CMPs 21

Then, we need to ensure that communications are correctly scheduled, by
enforcing constraints on the ci,j,u,v variables.

• ∀i, j, u, v, cNi,j,1,v = 0, cSi,j,p,v = 0, cWi,j,u,1 = 0, and cEi,j,u,q = 0: no commu-
nication is allowed outside the borders of the CMP;

• ∀i, j, u, v, c+i,j,u,v ≤ `(i, j): there is no communication from Si to Sj if
there is no dependence constraint between these two stages;

• ∀i, j, k, u, v, xi,k,u,v + xj,k,u,v + c+i,j,u,v ≤ 2: this condition enforces that if
Si and Sj are mapped onto the same core, Cu,v, then there is no commu-
nication for link Li,j initiated from Cu,v;

• ∀i, j, k, c+i,j,u,v ≥ xi,k,u,v +
∑
k′,(u,v)6=(u′,v′) xj,k′,u′,v′ + `(i, j)−2: this initi-

ates the communication for Li,j if Si and Sj are mapped onto two distinct
cores; the communication must occur into one of the directions (N,S,W
or E);

• ∀i, j, u < p, v, cSi,j,u,v ≤ c
+
i,j,u+1,v+

∑
k xj,k,u+1,v ≤ 2−cSi,j,u,v: if there was

a communication initiated from Cu,v to the south for Li,j (cSi,j,u,v = 1),
then either we reach the destination core (

∑
k xj,k,u+1,v = 1), or the com-

munication must be forwarded on one of the links from Cu+1,v (c+i,j,u+1,v =
1); otherwise there is no constraint; these constraints express both the for-
warding of communications and the stopping condition;

• there are similar constraints for other directions:
∀i, j, u > 1, v, cNi,j,u,v ≤ c

+
i,j,u−1,v +

∑
k xj,k,u−1,v ≤ 2− cNi,j,u,v;

∀i, j, u, v < q, cEi,j,u,v ≤ c
+
i,j,u,v+1 +

∑
k xj,k,u,v+1 ≤ 2− cEi,j,u,v;

∀i, j, u, v > 1, cWi,j,u,v ≤ c
+
i,j,u,v−1 +

∑
k xj,k,u,v−1 ≤ 2− cWi,j,u,v.

A set of constraints express the fact that no cycle can occur in the commu-
nications:

• ∀i, j, p>u>1, q>v>1, cNi,j,u+1,v+c
S
i,j,u−1,v+c

E
i,j,u,v−1+cWi,j,u,v+1 ≤

∑
k xi,k,u,v;

• ∀i, j, q > v > 1, cNi,j,2,v + cEi,j,1,v−1 + cWi,j,1,v+1 ≤
∑
k xi,k,1,v;

• ∀i, j, q > v > 1, cSi,j,p−1,v + cEi,j,p,v−1 + cWi,j,p,v+1 ≤
∑
k xi,k,p,v;

• ∀i, j, p > u > 1, cNi,j,u+1,1 + cSi,j,u−1,1 + cWi,j,u,2 ≤
∑
k xi,k,u,1;

• ∀i, j, p > u > 1, cNi,j,u+1,q + cSi,j,u−1,q + cEi,j,u,q−1 ≤
∑
k xi,k,u,q;

• ∀i, j, cNi,j,2,1 + cWi,j,1,2 ≤
∑
k xi,k,1,1;

• ∀i, j, cSi,j,p−1,1 + cWi,j,p,2 ≤
∑
k xi,k,p,1;

• ∀i, j, cNi,j,2,q + cEi,j,1,q−1 ≤
∑
k xi,k,1,q;

• ∀i, j, cSi,j,p−1,q + cEi,j,p,q−1 ≤
∑
k xi,k,p,q.

Another constraint expresses the fact that the mapping is a DAG-partition:

RR n° 7521

in
ria

-0
05

60
70

7,
 v

er
si

on
 2

 - 
4 

Ap
r 2

01
1



Energy-aware mappings of SPG workflows onto CMPs 22

• ∀i, i′, j, k, u, v, xi′,k,u,v ≥ `∗i,i′ × `∗i′,j × (xi,k,u,v +xj,k,u,v − 1): if two stages
Si and Sj are mapped onto the same core Cu,v, then any stage Si′ which
has an incoming dependency from Si and an outgoing dependency from Sj
must be mapped onto the same core, otherwise there would be a cycle in
the partition.

Finally, we express the fact that the constraint on the period is fulfilled:

• ∀u, v, k,
∑
i xi,k,u,v×w(i) ≤ T×mk,u,v×s(k): constraint on computations;

• ∀u, v
∑
i,j c

N
i,j,u,v×δ(i, j) ≤ T×BW : constraint on north communications;

• ∀u, v
∑
i,j c

S
i,j,u,v×δ(i, j) ≤ T×BW : constraint on south communications;

• ∀u, v
∑
i,j c

W
i,j,u,v×δ(i, j) ≤ T ×BW : constraint on west communications;

• ∀u, v
∑
i,j c

E
i,j,u,v× δ(i, j) ≤ T ×BW : constraint on east communications.

4.4.4 Objective function

We aim at minimizing the energy consumption, which writes:

min


∑
u,v

(∑
kmk,u,v × Estat

+
∑
i,k xi,k,u,v × w(i)× Edyn(k)

)
+
∑
u,v,i,j c

+
i,j,u,v × δ(i, j)× E(bit)

 .

The objective function is linear, as well as all the constraints. Since the
variables are boolean, this is an integer linear program.

5 Heuristics

In this section, we describe the five heuristics that we have designed and im-
plemented, thus providing practical solutions to the MinEnergy(T ) problem.
The first heuristic, Random (Section 5.1), performs a random mapping, and it
is used for comparison purposes. Then we propose a greedy heuristic, Greedy,
in Section 5.2, a heuristic based on a two-dimensional dynamic programming
algorithm, DPA2D, in Section 5.3. Finally, we design two one-dimensional
heuristics in Section 5.4: DPA1D builds upon the theoretical results of Sec-
tion 4.1 and computes the optimal one-dimensional solution, while DPA2D1D
computes the solution with the DPA2D heuristic, used in a one-dimensional
setting.

5.1 Random heuristic

This first heuristic calls a procedure which works in two steps. The procedure
first randomly builds a DAG-partition of the initial SPG, while ensuring that the
period is matched for computations: we choose randomly a speed for the core
which will handle the current subgraph G (initially, the source of the SPG), and
we keep a list of stages of the SPGs that can be added to G while maintaining a
DAG-partition. We pick a stage from this list randomly as long as computations

RR n° 7521

in
ria

-0
05

60
70

7,
 v

er
si

on
 2

 - 
4 

Ap
r 2

01
1



Energy-aware mappings of SPG workflows onto CMPs 23

do not exceed the period. When moving to the next core, we choose the first
stage in the current list and iterate. In the second step, we decide randomly on
which core each subgraph is mapped, and communications are done following a
XY routing: a communication from Cu,v to Cu′,v′ follows horizontal links from
Cu,v to Cu′,v, and then vertical links from Cu′,v to Cu′,v′ . If the period is not
exceeded on any communication link, then the mapping is valid, otherwise there
is no solution.

For each problem instance, Random calls ten times this procedure, and
keeps the solution which minimizes the energy consumption, if there is at least
one valid solution; otherwise it fails.

5.2 Greedy heuristic

Given a speed s ∈ S, this heuristic greedily assigns the SPG onto the platform,
on which all cores are running at speed s. The greedy assignment is done
through procedure greedy(s). The idea is to try all possible speed values, and
to keep the best solution.

The greedy procedure greedy(s) works as follows: we keep a list of cores
which are ready to be processed, and for each core, a list of successors, together
with the corresponding outgoing communications. Initially, the only core in the
list is C1,1, and we assign to this core the source stage S1. The corresponding
list of successors corresponds to the successors of S1 in the SPG, and they are
sorted by non-increasing communication volume to S1.

When we process a core Cu,v, we successively try to add some of the succes-
sors (from the current list) to this same core until the list is empty or the period
is exceeded for computations on Cu,v.

For each set of stages mapped onto Cu,v and the corresponding list of succes-
sors, we greedily share the corresponding communications between neighboring
cores Cu,v+1 and Cu+1,v: communications are taken from the sorted list and
assigned to the core which has currently the smallest amount of incoming com-
munications. Then, we check that the partitioning is correct (no cycles in the
dependence graph, i.e., we have a DAG-partition), and we check whether the
bound on the period is achieved, both for computations and communications.
If it is correct, we save the current solution before adding one more stage onto
core Cu,v and iterating with one more stage on Cu,v.

At the end of the iteration, we keep the last valid (saved) solution, i.e., the
valid solution with the most number of stages onto Cu,v. Cores Cu,v+1 and Cu+1,v

are then added to the list of ready cores, together with the list of successors
(i.e., the stages that can either be assigned to this core, or forwarded to the
neighboring cores).

The procedure finishes when the list of ready cores is empty, which means
that all stages have been processed. Otherwise, the heuristic fails, and we move
to the next speed. The energy for the mapping obtained with a given speed is
computed by first downgrading the speed of each core, if possible: the procedure
returns the mapping, and then we compute the amount of computations on each
core, and set the core to the slowest possible speed, in order to save energy.
Cores which are not used are turned off. Finally, the Greedy heuristic selects
the mapping which corresponds to the lowest energy consumption.

RR n° 7521

in
ria

-0
05

60
70

7,
 v

er
si

on
 2

 - 
4 

Ap
r 2

01
1



Energy-aware mappings of SPG workflows onto CMPs 24

5.3 2D dynamic programming algorithm

This heuristic, called DPA2D, starts by mapping the initial SPG onto a xmax×
ymax grid, following the labels of the nodes (see Section 3.1). Then, this grid
is mapped onto the CMP, thanks to a double nested dynamic programming
algorithm.

First, we perform a dynamic programming algorithm to cut the grid into a
set of columns, which are to be mapped onto a column of cores. Let E(m, v,D)
be the optimal energy consumption to compute the first m levels of the SPG
(i.e., all stages Si with xi ≤ m), using v columns of cores, regardless of the
outgoing communications. D is then the corresponding distribution of outgoing
communications, i.e., a list of triplets (y, b, i), where y is the row from which
communication is outgoing (i.e., the communication is initiated by core Cy,v),
b is the amount of data, and Si is the destination stage. We enforce these
communications to go through Cy,v+1, and then the communication will be
redistributed to the destination core through vertical links. The solution is
E(xmax, q,D), and the recurrence is written as:

E(m, v,D) = min
m′<m

(
E(m′, v − 1, D′) + Ecomm(D′)

+Ecol(m′ + 1,m,D′, D)

)
,

with the initialization E(m, 1, D) = Ecol(1,m, ∅, D).

D′ is the distribution of outgoing communications corresponding to the m′

which leads to the optimal energy consumption, i.e., obtained with E(m′, v −
1, D′).
Ecomm(D′) is the energy consumption induced by communications from col-

umn v − 1 to column v (on horizontal links), given the distribution D′ of out-
going communications of column v + 1. If the bandwidth is exceeded on one of
these horizontal links (i.e., ∃1 ≤ y ≤ p such that

∑
(y,b,i)∈D′ b > BW ), we set

Ecomm(D′) = +∞.
Ecol(m1,m2, D

′, D) is the optimal energy consumption of the column of the
CMP which is processing stages Si with m1 ≤ xi ≤ m2: it accounts both
for computations, and for vertical communications in the column, given the
distribution of outgoing communications of the previous column, D′. The dis-
tribution of outgoing communications of this column is then D. Note that in
the recurrence, D is an output of Ecol(m′ + 1,m,D′, D), while D′ is an out-
put of E(m′, v − 1, D′). The values of Ecol (and therefore, distribution D)
are computed thanks to another dynamic programming algorithm: we com-
pute Ecol

(m1,m2,D′,D)(g, u), which corresponds to the mapping of stages Si, with
m1 ≤ xi ≤ m2 and yi ≤ g, onto the u first cores of a column of the CMP. As
before, D′ is an input, it corresponds to the distribution of outgoing communi-
cations arriving into the current column, while D is the distribution of outgoing
communications of the current column for the solution which minimizes the en-
ergy consumption. Then we have Ecol(m1,m2, D

′, D) = Ecol
(m1,m2,D′,D)(ymax, p).

For the distribution within a column, the recurrence writes:

Ecol
(m1,m2,D′,D)(g, u) = min

g′≤g

 Ecol
(m1,m2,D′,D)(g

′, u− 1)

+Ecal
(m1,m2,D)(g

′ + 1, g)

+Ever
(m1,m2,D′)(g

′ + 1, g, u− 1)

 ,

RR n° 7521

in
ria

-0
05

60
70

7,
 v

er
si

on
 2

 - 
4 

Ap
r 2

01
1



Energy-aware mappings of SPG workflows onto CMPs 25

with the initialization Ecol
(m1,m2,D′,D)(0, u) = 0, and no outgoing communications

from row 1 to row u, except the communications from D′ that must be forwarded
to the next column.
Ever

(m1,m2,D′)(g
′ + 1, g, u − 1) is the energy consumption of the vertical com-

munications between cores u − 1 and u in the column. These communications
can either come from two dependent stages of the column, or be forwarded from
the previous column (D′). If the bandwidth of the link is exceeded, we set the
value to +∞.

Finally, Ecal
(m1,m2,D)(g

′ + 1, g) is the optimal energy consumption of a core

which is computing all stages Si such that m1 ≤ xi ≤ m2, and g′ + 1 ≤ yi ≤ g.
If the period cannot be respected, or if the corresponding partition does not
respect the DAG-partition constraint, the value is set to +∞. Moreover, this
function is adding to distribution D the communications from a stage Si to
another stage Sj , with xj > m2. These communications will occur on row u.

Note that in the recursive computation of Ecol, we can have g′ = g, which
means that no stage is assigned to core Cu,v. This may happen if there are not
enough stages in the column, or if this would save communications.

5.4 1D heuristics

The two last heuristics configure the CMP as a uni-directional uni-line CMP
with r = p × q cores, by embedding it into the bi-directional platform as a
snake:

C1,1 → C1,2 → · · · → C1,q
↓

C2,1 ← · · · ← C2,q−1 ← C2,q
↓
C3,1 → C3,2 → . . .

The DPA1D heuristic builds upon the theoretical results of Section 4, and
computes the optimal solution of the dynamic programming algorithm of The-
orem 1 with r = p × q cores. The mapping is then done along the snake; no
other communication link is used.

Note that if the SPG is a linear chain, even if there are communication
costs, then this heuristic is optimal, since any other solution could not exploit
the communication links discarded with the snake structure. It is also optimal
for any SPG without communication. However, DPA1D may take wrong de-
cisions when communications are intensive, since it is restricted to a subset of
communication links. Moreover, its complexity of O(p × q × n × nymax) makes
it intractable for SPGs with large ymax.

Finally, the DPA2D1D heuristic computes the solution with the DPA2D
heuristic (Section 5.3) on a 1×r CMP, and then do the mapping along the snake,
similarly to DPA1D. The goal of this heuristic is to obtain efficient solutions
when communications are not too intensive, and when the optimal DPA1D
cannot find a solution in reasonable time.

RR n° 7521

in
ria

-0
05

60
70

7,
 v

er
si

on
 2

 - 
4 

Ap
r 2

01
1



Energy-aware mappings of SPG workflows onto CMPs 26

6 Simulation results

This section reports simulation results assessing the performance of the various
heuristics. As for the applications, we use both real-life applications taken from
the StreamIt suite [45], and randomly generated applications, which allows us
to cover a broader spectrum. As for the target platform, we use 4× 4 and 6× 6
CMP grids, whose hardware characteristics are representative of state-of-the-art
devices. The source code for all simulations is publicly available at [42].

6.1 Simulation setting

6.1.1 Streaming applications

StreamIt suite. There are 12 workflows in the StreamIt suite [45]. Their
main characteristics are summarized in Table 1, where we give the size n, the
maximum label values ymax and xmax, and their computation-to-communica-
tion ratio (CCR), defined as the sum

∑n
i=1 wi of all computations over the sum∑

Li,j∈E δi,j of all communications. We observe in Table 1 that all workflows
have a large CCR, hence are compute-intensive rather than data-intensive. In
the simulations, we first use the workflows as such, with the original CCR val-
ues, and then we scale communication weights (the δi,j) to change each CCR
successively to 10, 1, and 0.1, so as to assess the impact of the communications
on the performance of the heuristics.

Index Name n ymax xmax CCR
1 Beamformer 57 12 12 537
2 ChannelVocoder 55 17 8 453
3 Filterbank 85 16 14 535
4 FMRadio 43 12 12 330
5 Vocoder 114 17 32 38
6 BitonicSort 40 4 23 6
7 DCT 8 1 8 68
8 DES 53 3 45 7
9 FFT 17 1 17 17
10 MPEG2-noparser 23 5 18 9
11 Serpent 120 2 111 9
12 TDE 29 1 29 12

Table 1: Characteristics of the StreamIt workflows.

Randomly generated. We randomly build SPG applications (by apply-
ing recursively series and parallel compositions of SPG applications), and we
extract their size n, their elevation ymax, together with their computation-to-
communication ratio (CCR).

6.1.2 CMP configuration

For processor speeds and power consumption, we use the model of the Intel
Xscale [23], following [13, 11, 36]. There are five speeds for each core:

su,v = (0.15, 0.4, 0.6, 0.8, 1) GHz,

RR n° 7521

in
ria

-0
05

60
70

7,
 v

er
si

on
 2

 - 
4 

Ap
r 2

01
1



Energy-aware mappings of SPG workflows onto CMPs 27

with power consumption P
(comp)
su,v = (80, 170, 400, 900, 1600) mW . We assume

that the power consumption of the processor when it is idle is P
(comp)
leak = 80mW .

We use 16-byte wide communication links [39], whose bandwidths are BW =
16 × 1.2 Gbytes, which is reasonable according to [39]. Note that from the
communication prospective, decreasing CCR has the same effect on the results as
decreasing the width of the communication link below 16 bytes. The link energy
is assumed to be between 1 and 10 picojoule per bit [9]; we fix E(bit) = 6pJ .

Finally, we use P
(comm)
leak = 0 without loss of generality (because for all heuristics

the same quantity P
(comm)
leak × T will be added to the total energy).

6.1.3 Period bound T

We need to find a meaningful value of T for each workflow. Indeed, if T is
too large, all heuristics will map all stages onto a single processor running at
the slowest speed, while if T is too small, all heuristics will fail. We choose
T as follows: for each workflow, we start with T = 1s. With such a period,
we observe that at least one heuristic succeeds. Then we iteratively divide the
period by a factor of 10 and run all heuristics under this new value until all
heuristics fail. We retain the period as the penultimate value, which is the last
one before total failure. Note that this value depends upon the workflow, and
that it is chosen to give some tightness to the mapping problem: at least one
heuristic succeeds to find a mapping that matches the bound T , but none does
for T/10.

6.2 Simulation results

6.2.1 StreamIt suite

In Figures 8 and 9, we plot the energy computed by the four heuristics for
each application, given a CMP size (4×4 or 6×6) and a CCR ratio (set to the
original value, 10, 1 and 0.1). On the horizontal x axis, each group corresponds
to an application, and x is the number of the application in Table 1. On the
vertical axis, we plot the energy found by each heuristic, normalized by the
minimum value obtained over all heuristics (so that the best heuristic returns 1,
and the other ones return higher values). The DPA1D heuristic fails to return
a solution for the first four applications, because there are too many possible
splits to explore, and it is not plotted for those applications. More generally,
each time a heuristic fails on a given application, it does not appear on the
corresponding graph.

4×4 CMP grid. Results for a 4 × 4 CMP grid are given in Figure 8. When
computations are predominant, i.e., when the CCR is set to its original value,
or uniformly equal to 10, we observe that Greedy, DPA2D, DPA1D and
DPA2D1D return similar results, and that Random always is within a factor
of two. We also observe that DPA2D often fails on graphs with small elevation
(linear graphs), because it wastes a lot of cores. For instance, if the application
is exactly a pipeline (workflows numbered 7, 9 and 12), DPA2D can only enroll
4 cores over the 16 that are available. This fact holds true irrespective of the
CCR.

When communications are more important, i.e., when the CCR is uniformly
set to 1 or 0.1, Random gets much worse than the other heuristics: if it does

RR n° 7521

in
ria

-0
05

60
70

7,
 v

er
si

on
 2

 - 
4 

Ap
r 2

01
1



Energy-aware mappings of SPG workflows onto CMPs 28

Random Greedy
DPA2D DPA1D DPA2D1D

Original CCR

0

1

2

3

4

5

2 4 6 8 10 12

CCR = 10

0

1

2

3

4

5

2 4 6 8 10 12

CCR = 1

0

1

2

3

4

5

2 4 6 8 10 12

CCR = 0.1

0

1

2

3

4

5

2 4 6 8 10 12

Figure 8: Normalized energy on the set of applications for a 4× 4 CMP grid.

RR n° 7521

in
ria

-0
05

60
70

7,
 v

er
si

on
 2

 - 
4 

Ap
r 2

01
1



Energy-aware mappings of SPG workflows onto CMPs 29

Random Greedy
DPA2D DPA1D DPA2D1D

Original CCR

0

1

2

3

4

5

2 4 6 8 10 12

CCR = 10

0

1

2

3

4

5

2 4 6 8 10 12

CCR = 1

0

1

2

3

4

5

2 4 6 8 10 12

CCR = 0.1

0

1

2

3

4

5

2 4 6 8 10 12

Figure 9: Normalized energy on the set of applications for a 6× 6 CMP grid.

RR n° 7521

in
ria

-0
05

60
70

7,
 v

er
si

on
 2

 - 
4 

Ap
r 2

01
1



Energy-aware mappings of SPG workflows onto CMPs 30

Platform size Random Greedy DPA2D DPA1D DPA2D1D

4× 4 5 4 16 20 16
6× 6 0 0 17 20 8

Table 2: Number of failures for each heuristic (out of 48 instances per CMP
grid size).

not fail, its energy is between 2 and 4 times worse than the best one. In a
general manner, we see that DPA2D is the best heuristic when the application
graph has a high elevation.

We point out that DPA1D and DPA2D1D are the only successful heuris-
tics for the workflow 11, whatever the CCR ratio is. This workflow fits very
well with the main design idea of DPA1D and DPA2D1D: it is a pipeline-
like graph (its elevation is only 2) with numerous stages. The other heuristics
fail to find a good load-balance of computations and communications for this
application.

The difference between DPA1D and DPA2D1D is tiny: when DPA1D
finds a solution, DPA2D1D finds a close one, and there is only one graph
(numbered 5) on which DPA2D1D suceeds, whereas DPA1D fails, because of
the high memory complexity. Note that, in some cases, the solution of DPA1D
is better than that of DPA2D1D, confirming that DPA2D1D does not return
the optimal 1D mapping.

Altogether, Greedy seems to be a general-purpose heuristic that succeeds on
most graphs, and it is always superior to Random. On the contrary, DPA1D,
DPA2D1D and DPA2D are “specialized” heuristics, the first two heuristics
are very efficient for long and almost linear graphs but not good for fat graphs
of large elevation, and the last one behaving just as the opposite.

6×6 CMP grid. Results for a 6×6 CMP grid are given in Figure 9. Because the
target grid is larger, it is easier to find a mapping that matches the period bound,
especially for applications with a small number of stages. This is quantified in
Table 2, where we report the number of failures for each heuristic.

We observe that the difference between solutions of DPA2D1D and solu-
tions of DPA1D almost disappears. Otherwise, the conclusion remains more or
less the same as on the 4×4 CMP grid, with Greedy always successful but also
always inferior to one of the three specialized heuristics, DPA1D, DPA2D1D
and DPA2D, depending upon the graph shape.

6.2.2 Random SPGs

For the randomly generated SPGs, we plot four sets of three graphs; in each set,
the three graphs are obtained for a given CCR (10, 1 or 0.1), whereas each set
corresponds to a value of the couple (n, p), where the number of nodes n can be
50 or 150 and the number of cores p in a row of the square CMP can be 4 or 6.

On the horizontal axis, we represent the elevation of the SPG. For each value
of the elevation, we average the results obtained on 100 randomly generated
applications. On the vertical axis, we plot the inverse of the energy found by
each heuristic, normalized to the minimum value obtained over all heuristics (so
that the best heuristic returns 1, and the other ones return smaller values).

RR n° 7521

in
ria

-0
05

60
70

7,
 v

er
si

on
 2

 - 
4 

Ap
r 2

01
1



Energy-aware mappings of SPG workflows onto CMPs 31

Random Greedy
DPA2D DPA1D DPA2D1D

CCR = 10

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20

1/
E

elevation

CCR = 1

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20

1/
E

elevation

CCR = 0.1

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20

1/
E

elevation

Figure 10: Normalized energy inverse on a random set of applications of 50
nodes for a 4× 4 CMP grid.

RR n° 7521

in
ria

-0
05

60
70

7,
 v

er
si

on
 2

 - 
4 

Ap
r 2

01
1



Energy-aware mappings of SPG workflows onto CMPs 32

Random Greedy
DPA2D DPA1D DPA2D1D

CCR = 10

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20

1/
E

elevation

CCR = 1

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20

1/
E

elevation

CCR = 0.1

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20

1/
E

elevation

Figure 11: Normalized energy inverse on a random set of applications of 50
nodes for a 6× 6 CMP grid.

RR n° 7521

in
ria

-0
05

60
70

7,
 v

er
si

on
 2

 - 
4 

Ap
r 2

01
1



Energy-aware mappings of SPG workflows onto CMPs 33

Random Greedy
DPA2D DPA1D DPA2D1D

CCR = 10

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20 25 30

1/
E

elevation

CCR = 1

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20 25 30

1/
E

elevation

CCR = 0.1

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20 25 30

1/
E

elevation

Figure 12: Normalized energy inverse on a random set of applications of 150
nodes for a 4× 4 CMP grid.

RR n° 7521

in
ria

-0
05

60
70

7,
 v

er
si

on
 2

 - 
4 

Ap
r 2

01
1



Energy-aware mappings of SPG workflows onto CMPs 34

Random Greedy
DPA2D DPA1D DPA2D1D

CCR = 10

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20 25 30

1/
E

elevation

CCR = 1

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20 25 30

1/
E

elevation

CCR = 0.1

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20 25 30

1/
E

elevation

Figure 13: Normalized energy inverse on a random set of applications of 150
nodes for a 6× 6 CMP grid.

RR n° 7521

in
ria

-0
05

60
70

7,
 v

er
si

on
 2

 - 
4 

Ap
r 2

01
1



Energy-aware mappings of SPG workflows onto CMPs 35

With 50 nodes and a 4×4 CMP grid. Results are given in Figure 10.
When computations are predominant, i.e., when the CCR is uniformly equal
to 10, we observe that the two 1D heuristics always return good results. For
small elevations, DPA1D is the best, but it often fails as soon as the elevation
is greater than 4, thus leading to poor results. DPA2D1D returns very good
results whatever the elevation of the graph. The 2D heuristic DPA2D is the
best for elevations greater than 6, but it often fails on graphs with small eleva-
tion, because it wastes a lot of cores. For instance, if the application is exactly
a pipeline (elevation 1), DPA2D can only enroll 4 cores over the 16 that are
available. This fact holds true irrespective of the CCR. Greedy and Random
are not as good, but Greedy always outperforms Random.

When communications and computations are more balanced (CCR of 1),
similar results can be observed, but DPA2D1D is a bit further from the
best solution, since it cannot utilize all the communication links. Finally, for
communication-intensive applications (CCR of 0.1), Random gets much worse
than the other heuristics: its energy can be up to 10 times worse than the best
one. Also, the 1D heuristics do not perform well, except for small elevation
graphs, because of their restriction in the communication pattern. In a general
manner, we see that DPA2D is the best heuristic when the application graph
has a high elevation.

Number of failures. In Table 3, we report the number of failures for each
heuristic, again with 50 nodes and a 4×4 CMP grid. With a large CCR (10
or 1), DPA2D1D almost always succeeds to find a solution, which are in turn
pretty good (see Figure 10). Greedy is always reasonably robust, whatever the
CCR, and is followed closely by Random. DPA2D fails a bit more frequently
because it does not often succeed with graphs of small elevation, as explained
earlier. Finally, DPA1D succeeds only for graphs of small elevation, which
leads to a very high failure rate.

Other results. We have performed further simulations on larger applications
and/or different CMP grid sizes, see Figures 11, 12, and 13. Overall, the con-
clusions remain the same, and they confirm the results derived from the real-life
StreamIt applications.

CCR Random Greedy DPA2D DPA1D DPA2D1D

10 58 56 156 1516 2

1 58 56 156 1520 4

0.1 300 287 348 1340 916

Table 3: Number of failures (out of 2000 instances per CCR value).

RR n° 7521

in
ria

-0
05

60
70

7,
 v

er
si

on
 2

 - 
4 

Ap
r 2

01
1



Energy-aware mappings of SPG workflows onto CMPs 36

7 Conclusion

This paper contributes to the efficient utilization of multicores by consider-
ing an important class of streaming applications that can be modeled by a
series-parallel graph, and studying the problem of mapping these applications
to 2-dimensional tiled CMP architectures. The objective of the mapping is
to minimize the energy consumption while maintaining a given level of perfor-
mance, reflected by the rate of processing the data streams. Both processing
and communication capabilities and power consumption are considered during
the mapping, but it is assumed that only the processing power can be managed
through dynamic voltage and frequency scaling. We will consider systems in
which the communication power can also be managed in future work.

From a theoretical angle, we showed that most of the bi-criteria mapping
problems were NP-complete, with the notable exception of uni-directional uni-
line CMPs, for which an elaborated dynamic programming algorithm returns
the optimal solution. The latter result holds true only for bounded-elevation
SPGs, and the problem becomes NP-complete otherwise, which provides yet
another evidence of the interest to restrict to particular graph structures rather
than to deal with arbitrary DAGs. We strongly believe that bounded-elevation
SPGs represent a very interesting trade-off, as they combine a large practical
significance while being amenable to rigorous analysis.

From a practical angle, the simulations conducted with the StreamIt suite [45]
and the randomly generated SPGs confirmed the efficiency of the main design
principles underlying the various heuristics. While Greedy is the most robust
approach, it is always superseded by at least one of the three specialized algo-
rithms, DPA1D for long pipeline-like graphs, DPA2D for fat graphs of large
elevation or DPA2D1D for any graph containing low communication weights
and for graphs of low elevation.

Finally, our future research will investigate general mappings, and assess
the difference with DAG-partition mappings, both from a theoretical and a
practical perspective. We also hope to succeed in simplifying the integer linear
program for some problem instances, thereby providing an absolute measure of
the quality of the various heuristics.

RR n° 7521

in
ria

-0
05

60
70

7,
 v

er
si

on
 2

 - 
4 

Ap
r 2

01
1



Energy-aware mappings of SPG workflows onto CMPs 37

References

[1] M. Al Faruque, R. Krist, and J. Henkel. ADAM: Run-time agent-based
distributed application mapping for on-chip communication. In Proc. of
DAC’08, the 45th Design Automation Conf., pages 760–765, June 2008.

[2] AMD. ACP - The Truth About Power Consumption Starts Here. http:

//www.amd.com/us/Documents/ 43761C_ACP_WP_EE.pdf, 2010.

[3] G. Ascia, V. Catania, and M. Palesi. Multi-objective mapping for mesh-
based NoC architectures. In Proc. of CODES+ISSS’04, the Int. Conf. on
Hardware/ Software Codesign and System Synthesis, pages 182–187, Sept.
2004.

[4] N. Bansal, T. Kimbrel, and K. Pruhs. Speed scaling to manage energy and
temperature. Journal of the ACM, 54(1):1–39, 2007.

[5] A. Benoit, P. Renaud-Goud, and Y. Robert. Performance and energy opti-
mization of concurrent pipelined applications. In Proc. of IPDPS, the Int.
Parallel and Distributed Processing Symp. IEEE CS Press, May 2010.

[6] A. Benoit and Y. Robert. Mapping pipeline skeletons onto heteroge-
neous platforms. Journal of Parallel and Distributed Computing (JPDC),
68(6):790–808, 2008.

[7] P. Blaha, K. Schwarz, G. Madsen, D. Kvasnicka, and J. Luitz. WIEN2k:
An Augmented Plane Wave Plus Local Orbitals Program for Calculating
Crystal Properties - User’s guide, 2001. Vienna Univ. of Technology, Aus-
tria.

[8] G. Blake, R. Dreslinski, and T. Mudge. A survey of multicore processors.
Signal Processing Magazine, 26(6):26–37, Nov. 2009.

[9] G. Chen, F. Li, M. Kandemir, and M. J. Irwin. Reducing NoC energy
consumption through compiler-directed channel voltage scaling. SIGPLAN
Not., 41:193–203, 2006.

[10] G. Chen, F. Li, S. Son, and M. Kandemir. Application mapping for chip
multiprocessors. In Proc. of DAC’08, the 45th Design Automation Conf.,
pages 620–625, June 2008.

[11] J.-J. Chen. Expected energy consumption minimization in DVS systems
with discrete frequencies. In Proc. of SAC’08, Symp. on Applied Comput-
ing, pages 1720–1725, 2008.

[12] J.-J. Chen and C.-F. Kuo. Energy-Efficient Scheduling for Real-Time Sys-
tems on Dynamic Voltage Scaling (DVS) Platforms. In Proc. of the Int.
Workshop on Real-Time Computing Systems and Applications, pages 28–
38, 2007.

[13] J.-J. Chen and T.-W. Kuo. Procrastination determination for periodic real-
time tasks in leakage-aware dynamic voltage scaling systems. In Proc. of
ICCAD’07, the Int. Conf. on Computer-aided design, pages 289–294, 2007.

RR n° 7521

in
ria

-0
05

60
70

7,
 v

er
si

on
 2

 - 
4 

Ap
r 2

01
1

http://www.amd.com/us/Documents/
http://www.amd.com/us/Documents/
43761C_ACP_WP_EE.pdf


Energy-aware mappings of SPG workflows onto CMPs 38

[14] Z. Chishti, M. Powell, and T. Vijaykumar. Optimizing replication, commu-
nication, and capacity allocation in CMPs. In Proc. of ISCA’05, the 32nd
Int. Symp. on Computer Architecture, pages 357–368, June 2005.

[15] Cplex. ILOG CPLEX: High-performance software for mathematical pro-
gramming and optimization. http://www.ilog.com/products/cplex/.

[16] DataCutter. DataCutter Project: Middleware for Filtering Large Archival
Scientific Datasets in a Grid Environment. http://www.cs.umd.edu/

projects/hpsl/ResearchAreas/DataCutter.htm.

[17] M. R. Garey and D. S. Johnson. Computers and Intractability; A Guide to
the Theory of NP-Completeness. W. H. Freeman & Co., New York, NY,
USA, 1990.

[18] R. Ge, X. Feng, and K. W. Cameron. Performance- constrained distributed
DVS scheduling for scientific applications on power-aware clusters. In Proc.
of the Conf. on SuperComputing (SC), page 34. IEEE CS, 2005.

[19] P. Grosse, Y. Durand, and P. Feautrier. Methods for power optimization in
SOC-based data flow systems. ACM Trans. Des. Autom. Electron. Syst.,
14:38:1–20, June 2009.

[20] Y. Gu and Q. Wu. Maximizing workflow throughput for streaming appli-
cations in distributed environments. In Proc. of ICCCN’10, the Int. Conf.
on Computer Communication Networks. IEEE CS, 2010.

[21] M. Hammoud, S. Cho, and R. Melhem. ACM: An Efficient Approach
for Managing Shared Caches in Chip Multi- processors. In Proc. of
HiPEAC’09, the 4th Int. Conf. on High Performance Embedded Architec-
tures and Compilers, pages 355–372, 2009.

[22] M. Hammoud, S. Cho, and R. Melhem. A dynamic pressure-aware asso-
ciative placement strategy for large scale chip multiprocessors. Computer
Architecture Letters, 9(1):29–32, Jan. 2010.

[23] Intel XScale technology. http://www.intel.com/design/intelxscale.

[24] J. Jaehyuk Huh, C. Changkyu Kim, H. Shafi, L. Lixin Zhang, D. Burger,
and S. Keckler. A NUCA Substrate for Flexible CMP Cache Sharing. IEEE
Trans. on Parallel and Distributed Systems, 18(8):1028–1040, 2007.

[25] W. Jang and D. Pan. A3MAP: Architecture-Aware Analytic Mapping for
Networks-on-Chip. In Proc. of DAC’10, the 15th Asia and South Pacific
Design Automation Conference, pages 523–528, Jan. 2010.

[26] R. Jejurikar, C. Pereira, and R. Gupta. Leakage aware dynamic voltage
scaling for real-time embedded systems. In Proc. of DAC’04, the 41st
annual Design Automation Conference, pages 275–280, 2004.

[27] C. Kim, D. Burger, and S. W. Keckler. An adaptive, non- uniform cache
structure for wire-delay dominated on-chip caches. SIGOPS Oper. Syst.
Rev., 36:211–222, Oct. 2002.

RR n° 7521

in
ria

-0
05

60
70

7,
 v

er
si

on
 2

 - 
4 

Ap
r 2

01
1

http://www.ilog.com/products/cplex/
http://www.cs.umd.edu/projects/hpsl/ResearchAreas/DataCutter.htm
http://www.cs.umd.edu/projects/hpsl/ResearchAreas/DataCutter.htm
http://www.intel.com/design/intelxscale


Energy-aware mappings of SPG workflows onto CMPs 39

[28] K. H. Kim, R. Buyya, and J. Kim. Power Aware Scheduling of Bag-of-Tasks
Applications with Deadline Constraints on DVS-enabled Clusters. In Proc.
of CCGRID 2007, the 7th IEEE Int. Symp. on Cluster Computing and the
Grid, pages 541–548, May 2007.

[29] K. Lahiri, A. Raghunathan, S. Dey, and D. Panigrahi. Battery-driven
system design: a new frontier in low power design. In Proc. of DAC’02,
the 7th Design Automation Conference and the 15th Int. Conf. on VLSI
Design, pages 261–267, 2002.

[30] P. Langen and B. Juurlink. Leakage-aware multiprocessor scheduling. J.
Signal Process. Syst., 57(1):73–88, 2009.

[31] S. Lee and T. Sakurai. Run-time voltage hopping for low-power real-time
systems. In Proc. of DAC’00, the 37th Design Automation Conference,
pages 806–809, 2000.

[32] P. Mahr, C. Lorchner, H. Ishebabi, and C. Bobda. SoC- MPI: A Flexible
Message Passing Library for Multiprocessor Systems-on-Chips. In Proc.
of ReConFig’08, the Int. Conf. on Reconfigurable Computing and FPGAs,
pages 187–192, Dec. 2008.

[33] R. McClatchey, F. Estrella, J.-M. Le Goff, Z. Kovacs, and N. Baker. Object
databases in a distributed scientific workflow application. In Proc. of BI-
WIT’97, the 3rd Basque Int. Workshop on Information Technology, pages
11–21, July 1997.

[34] M. P. Mills. The internet begins with coal. Environment and Climate News,
1999.

[35] A. Naveh, E. Rotem, A. Mendelson, S. Gochman, R. Chabukswar, K. Krish-
nan, and A. Kumar. Power and Thermal Management in the Intel CoreTM
Duo Processor. Intel Technology Journal, 10(2):109–122, May 2006.

[36] L. Niu. Energy Efficient Scheduling for Real-Time Embedded Systems with
QoS Guarantee. In Proc. of RTCSA, the 16th Int. Conf. on Embedded and
Real-Time Computing Systems and App., pages 163 –172, Aug. 2010.

[37] T. Okuma, H. Yasuura, and T. Ishihara. Software energy reduction tech-
niques for variable-voltage processors. Design Test of Computers, IEEE,
18(2):31–41, Mar. 2001.

[38] K. Olukotun, B. A. Nayfeh, L. Hammond, K. Wilson, and K. Chang. The
case for a single-chip multiprocessor. SIGPLAN Not., 31:2–11, Sept. 1996.

[39] J. D. Owens, W. J. Dally, R. Ho, D. N. J. Jayasimha, S. W. Keckler, and L.-
S. Peh. Research Challenges for On-Chip Interconnection Networks. IEEE
Micro, 27:96–108, 2007.

[40] R. B. Prathipati. Energy efficient scheduling techniques for real-time em-
bedded systems. Master’s thesis, Texas A&M University, May 2004.

[41] J. Qin and T. Fahringer. Advanced data flow support for scientific grid
workflow applications. In Proc. of SC’07, the Conf. on Supercomputing,
pages 1–12, Nov. 2007.

RR n° 7521

in
ria

-0
05

60
70

7,
 v

er
si

on
 2

 - 
4 

Ap
r 2

01
1



Energy-aware mappings of SPG workflows onto CMPs 40

[42] P. Renaud-Goud. Source Code for the Experiments. http://graal.

ens-lyon.fr/~prenaud/sp-cmp/.

[43] F. Schueller, J. Qin, F. Nadeem, R. Prodan, T. Fahringer, and G. Mayr.
Performance, Scalability and Quality of the Meteorological Grid Workflow
MeteoAG. In Proc. of 2nd Austrian Grid Symp., Univ. Innsbruck, Sept.
2006.

[44] L. Silva, G. Granato, A. Bressan, C. Lacey, C. Baugh, S. Cole, and C. Frenk.
Modelling dust in galactic seds: Application to semi-analytical galaxy for-
mation models. Astrophysics and Space Science, 276:1073–1078, 2001.

[45] StreamIt Project. http://groups.csail.mit.edu/cag/streamit/apps/

stream-graphs.

[46] J. Subhlok and G. Vondran. Optimal mapping of sequences of data parallel
tasks. In Proc. of PPoPP’95, the 5th Symp. on Principles and Practice of
Parallel Programming, 1995.

[47] J. Subhlok and G. Vondran. Optimal latency-throughput tradeoffs for data
parallel pipelines. In Proc. of SPAA, the Symp. on Parallelism in Algo-
rithms and Archi., 1996.

[48] L. Wang, G. von Laszewski, J. Dayal, and F. Wang. Towards Energy
Aware Scheduling for Precedence Constrained Parallel Tasks in a Cluster
with DVFS. In Proc. of CCGrid’2010, the 10th Int. Conf. on Cluster, Cloud
and Grid Computing, pages 368–377, May 2010.

[49] R. Xu, R. Melhem, and D. Mossé. Energy-aware scheduling for streaming
applications on chip multiprocessors. In Proc. of RTSS’07, the 28th IEEE
Int. Real-Time Systems Symp., pages 25–38, 2007.

[50] R. Xu, D. Mossé, and R. Melhem. Minimizing expected energy consump-
tion in real-time systems through dynamic voltage scaling. ACM Trans.
Comput. Syst., 25(4):9, 2007.

[51] L. Yang and L. Man. On-Line and Off-Line DVS for Fixed Priority with
Preemption Threshold Scheduling. In Proc. of ICESS’09, the Int. Conf. on
Embedded Software and Systems, pages 273–280, May 2009.

[52] Y. Zhao, M. Wilde, I. Foster, J. Voeckler, T. Jordan, E. Quigg, and J. Dob-
son. Grid middleware services for virtual data discovery, composition, and
integration. In Proc. of MGC’04, the 2nd workshop on Middleware for Grid
Computing, pages 57–62. ACM, 2004.

RR n° 7521

in
ria

-0
05

60
70

7,
 v

er
si

on
 2

 - 
4 

Ap
r 2

01
1

http://graal.ens-lyon.fr/~prenaud/sp-cmp/
http://graal.ens-lyon.fr/~prenaud/sp-cmp/
http://groups.csail.mit.edu/cag/streamit/apps/stream-graphs
http://groups.csail.mit.edu/cag/streamit/apps/stream-graphs


Centre de recherche INRIA Grenoble – Rhône-Alpes
655, avenue de l’Europe - 38334 Montbonnot Saint-Ismier (France)

Centre de recherche INRIA Bordeaux – Sud Ouest : Domaine Universitaire - 351, cours de la Libération - 33405 Talence Cedex
Centre de recherche INRIA Lille – Nord Europe : Parc Scientifique de la Haute Borne - 40, avenue Halley - 59650 Villeneuve d’Ascq

Centre de recherche INRIA Nancy – Grand Est : LORIA, Technopôle de Nancy-Brabois - Campus scientifique
615, rue du Jardin Botanique - BP 101 - 54602 Villers-lès-Nancy Cedex

Centre de recherche INRIA Paris – Rocquencourt : Domaine de Voluceau - Rocquencourt - BP 105 - 78153 Le Chesnay Cedex
Centre de recherche INRIA Rennes – Bretagne Atlantique : IRISA, Campus universitaire de Beaulieu - 35042 Rennes Cedex

Centre de recherche INRIA Saclay – Île-de-France : Parc Orsay Université - ZAC des Vignes : 4, rue Jacques Monod - 91893 Orsay Cedex
Centre de recherche INRIA Sophia Antipolis – Méditerranée : 2004, route des Lucioles - BP 93 - 06902 Sophia Antipolis Cedex

Éditeur
INRIA - Domaine de Voluceau - Rocquencourt, BP 105 - 78153 Le Chesnay Cedex (France)

http://www.inria.fr

ISSN 0249-6399

in
ria

-0
05

60
70

7,
 v

er
si

on
 2

 - 
4 

Ap
r 2

01
1


	1 Introduction
	2 Related work
	3 Framework
	3.1 Applicative framework
	3.2 Platform
	3.3 Mapping strategies
	3.4 Period
	3.5 Energy model

	4 Complexity results
	4.1 Uni-directional uni-line CMP
	4.2 Bi-directional uni-line CMP
	4.3 Square CMP
	4.4 Integer linear program
	4.4.1 Constants
	4.4.2 Variables
	4.4.3 Constraints
	4.4.4 Objective function


	5 Heuristics
	5.1 Random heuristic
	5.2 Greedy heuristic
	5.3 2D dynamic programming algorithm
	5.4 1D heuristics

	6 Simulation results
	6.1 Simulation setting
	6.1.1 Streaming applications
	6.1.2 CMP configuration
	6.1.3 Period bound T

	6.2 Simulation results
	6.2.1 StreamIt suite
	6.2.2 Random SPGs


	7 Conclusion

