
appor t
de r ech er ch e

IS
S

N
02

49
-6

39
9

IS
R

N
IN

R
IA

/R
R

--
77

50
--

FR
+E

N
G

Distributed and High Performance Computing

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

Optimal algorithms and approximation algorithms
for replica placement with distance constraints in

tree networks

Anne Benoit — Hubert Larchevêque — Paul Renaud-Goud

N° 7750

September 2011

in
ria

-0
06

30
29

2,
 v

er
si

on
 2

 -
3

Fe
b

20
12

http://hal.inria.fr/inria-00630292
http://hal.archives-ouvertes.fr

in
ria

-0
06

30
29

2,
 v

er
si

on
 2

 -
3

Fe
b

20
12

Centre de recherche INRIA Grenoble – Rhône-Alpes
655, avenue de l’Europe, 38334 Montbonnot Saint Ismier

Téléphone : +33 4 76 61 52 00 — Télécopie +33 4 76 61 52 52

Optimal algorithms and approximation
algorithms for replica placement with distance

constraints in tree networks

Anne Benoit , Hubert Larchevêque , Paul Renaud-Goud

Theme : Distributed and High Performance Computing
Équipe-Projet GRAAL

Rapport de recherche n° 7750 — September 2011 — 26 pages

Abstract: In this paper, we study the problem of replica placement in tree
networks subject to server capacity and distance constraints. The client re-
quests are known beforehand, while the number and location of the servers are
to be determined. The Single policy enforces that all requests of a client are
served by a single server in the tree, while in the Multiple policy, the requests
of a given client can be processed by multiple servers, thus distributing the
processing of requests over the platform. For the Single policy, we prove that
all instances of the problem are NP-hard, and we propose approximation algo-
rithms. The problem with the Multiple policy was known to be NP-hard with
distance constraints, but we provide a polynomial time optimal algorithm to
solve the problem in the particular case of binary trees when no request exceeds
the server capacity.

Key-words: Replica placement, distance constraints, optimal algorithms,
approximation algorithms, tree networks, binary tree, single vs multiple policy.

in
ria

-0
06

30
29

2,
 v

er
si

on
 2

 -
3

Fe
b

20
12

Algorithmes optimaux et d’approximation pour
le placement de réplicats dans des réseaux
arborescents sous contraintes de distance

Résumé : Dans cet article, nous étudions le problème de placement de réplicats
dans des réseaux arborescents, soumis à des contraintes de capacités de serveurs
ainsi que des contraintes de distance. Le montant des requêtes des clients est
connu à l’avance, et le nombre ainsi que l’emplacement des serveurs doit être
décidé. La politique “Single” impose que toutes les requêtes d’un client soient
traitées par un même serveur dans l’arbre, tandis que la politique “Multiple”
permet que les requêtes d’un même client soient traitées par plusieurs serveurs,
répartissant ainsi le traitement des requêtes au sein de la plate-forme. Avec la
politique “Single”, nous démontrons que toutes les instances du problème sont
NP-difficiles, et nous proposons des algorithmes d’approximation. Le problème
avec la politique “Multiple” était connu comme NP-difficile avec contrainte de
distance, mais nous présentons un algorithme optimal s’exécutant en temps
polynomial pour le résoudre dans le cas particulier des arbres binaires, quand
aucun client n’a plus de requêtes que la capacité d’un serveur.

Mots-clés : Placement de réplicats, contrainte de distance, algorithme opti-
mal, algorithme d’approximation, arbre binaire, politique “single” vs politique
“multiple”.

in
ria

-0
06

30
29

2,
 v

er
si

on
 2

 -
3

Fe
b

20
12

Algorithms for replica placement in tree networks 3

Contents

1 Introduction 4

2 Framework 5

3 Single policy 6
3.1 NP-completeness result of Single-NoD-Bin 7
3.2 Inapproximability result with the Single policy 8
3.3 Approximation algorithm with distance constraints 8
3.4 Approximation algorithm without distance constraints 12

4 Multiple policy 18
4.1 NP-completeness of Multiple-Bin 18
4.2 A polynomial-time optimal algorithm 20

5 Conclusion 24

RR n° 7750

in
ria

-0
06

30
29

2,
 v

er
si

on
 2

 -
3

Fe
b

20
12

Algorithms for replica placement in tree networks 4

1 Introduction

We revisit the well-known replica placement problem in tree networks [6, 23, 3],
and derive new complexity results and approximation algorithms. In a nutshell,
the replica placement problem is the following: we are given a tree-shaped net-
work where clients are periodically issuing requests to be satisfied by servers. A
client is a leaf node of the tree, and it may either process its requests locally, or
forward them to a server further up in the tree. Note that the distribution tree
(clients, nodes, number of requests) is fixed in the approach. This key assump-
tion is quite natural for a broad spectrum of applications, such as electronic,
Internet Service Provider, or Video on Demand service delivery (see [11, 6, 16]
and additional references in [23]). The root server has the original copy of the
database but cannot serve all clients directly, so a distribution tree is deployed to
provide a hierarchical and distributed access to replicas of the original data. The
objective is to decide where to place replicas, and which requests each server will
be processing, so as to minimize the number of servers. When equipped with a
replica, a node can process a number of requests, up to its capacity limit, from
clients located in its subtree. In addition to these server capacity constraints,
we consider that the distance between a client and the server processing some
of its requests cannot exceed dmax. A weight assigned to each edge of the tree
represents the inter-node distance, it may for instance correspond to a com-
munication cost, or quality of service (QoS) requirements [22, 20]. Hence, the
requests must be served in limited time, thereby prohibiting too remote or hard-
to-reach replica locations. Moreover, we consider two policies: the Single policy
enforces that all requests of a client are served by a single server in the tree,
while in the Multiple policy, the requests of a given client can be processed by
multiple servers, thus distributing the processing of requests over the platform.

Many authors deal with variants of these replica placement problems in
networks. Some variants of server location problems can be found in [18, 21, 4,
12, 14, 5, 15, 19]. In most of these problems, a set of users in a network want
to have access to a given service. The aim is then to identify a set of service
providers able to offer a sufficient amount of resources in order to satisfy the
requests of the clients, where servers are subject to capacity constraints. In some
variants, a quality of service must be guaranteed, in terms of latencies to process
the requests. Hence, a smart repartition of the servers in the network may enable
to minimize the latencies between any client and its associated server, and also
to ensure good fault tolerance properties.

In general graphs, and when no distance constraints are imposed, those
problems are very similar to Bin-Packing, a classical optimization problem [9]
for which an APTAS (Asymptotic Polynomial Time Approximation Scheme) is
known [8]. The server capacities correspond to the size of the bins. The three
main features of our problem that differ with Bin-Packing are (i) the fact that
bins are associated to servers, and must be placed in the network; (ii) the tree
network, which imposes that a server can process only clients in its subtree; and
(iii) the distance constraints that we enforce.

The Bin-Packing problem with distance constraints has been studied in [2],
where groups of clients are built. The sum of the requests inside a group should
not exceed a fixed capacity, and a maximal distance is fixed between two clients
of a same group. The aim is therefore to build a minimum of groups (i.e., to use
a minimum number of servers) so that each client belongs to one group. The

RR n° 7750

in
ria

-0
06

30
29

2,
 v

er
si

on
 2

 -
3

Fe
b

20
12

Algorithms for replica placement in tree networks 5

difference with our problem is that the distance constraint is on the diameter
of each group, whereas in our case, a server has to be chosen, and the distance
constraint is between the server and its clients.

More generally, when tackling the replica placement problem in general
graphs, the aim is usually first to extract a “good” spanning tree, i.e., a spanning
tree that will optimize some global objective function, and then to place replicas
along the spanning tree, typically in order to optimize a more refined function.
However, the process of extracting a spanning tree is of combinatorial nature, as
it generalizes the well-known NP-hard K-center problem [10]. Therefore, sev-
eral authors propose sophisticated heuristics whose goal is to solve both steps
simultaneously (see [17] for a survey). In this context, some approximation al-
gorithms are provided in [1, 13] for the uniform weights capacitated K-center
problem.

In [7], the authors investigate hierarchical bin packing, and prove some ap-
proximation results. Even though this is the closest work to ours that we could
find, the problem is different since servers do not need to be physically placed
in the tree, but rather the objective is to minimize the dispersal of the bins in
the tree. Moreover, they do not consider any distance constraints.

The first contributions of this paper are targeting problems with the Single
policy. The simplest problem instance, with no distance constraints on a binary
tree, turns out to be NP-hard in the strong sense, and therefore we establish
approximation results. To the best of our knowledge, this is the first attempt
to derive approximation algorithms for this replica placement problem on tree
networks. We propose a (∆+1)-approximation algorithm for this problem with
the Single policy, where ∆ is the arity of the tree. For the problem without dis-
tance constraints, we design a 2-approximation algorithm that works for general
trees, and whose approximation ratio is independent of ∆.

Concerning problems with the Multiple policy, we establish several new com-
plexity results. While it is already known that the general problem is NP-
hard, and that it can be solved in polynomial time without distance constraints
(see [3]), we prove that, surprisingly, this problem with distance constraints in
the specific case of a binary tree can also be solved in polynomial time, by ex-
hibiting an involved polynomial time algorithm. Note that this result holds only
when all requests of a client can always entirely be served locally. Otherwise,
we prove that the problem remains NP-hard.

2 Framework

This section is devoted to a precise statement of the optimization problems that
we study in this paper.

We consider a distribution tree T = C ∪ N . The set of internal nodes
is N and the set of leaf nodes is C. The root of the tree is denoted by r.
For j ∈ C ∪ N \ {r}, parent(j) ∈ N is the parent of node j in the tree. For
j ∈ N , children(j) ⊂ C ∪ N is the set of children of node j in the tree, and
subtree(j) ⊆ C ∪N is the subtree rooted in j, including j. ∆ is the arity of the
tree. Moreover, for each node j ∈ C ∪N \ {r}, δj is the distance from node j to
parent(j): it can be seen as a weight assigned to each edge of the tree, and it
can correspond for instance to a communication cost. At the root of the tree,
we set δr = +∞.

RR n° 7750

in
ria

-0
06

30
29

2,
 v

er
si

on
 2

 -
3

Fe
b

20
12

Algorithms for replica placement in tree networks 6

Each node i ∈ C is sending ri requests per time unit to a database object
(note that the number of requests is usually assumed to be integer), and the
distance between node i and any node processing some of these ri requests
cannot exceed dmax. A node j ∈ C ∪ N may or may not have been provided
with a replica of the database. If node j has been equipped with a replica (i.e.,
it is a server), then it can process requests from any node i in its subtree, given
that the distance between node i and node j is not greater than dmax. Note that
it cannot process requests from a node that is not in its subtree, as for instance
its parent node. In other words, there is a unique path from a client node i to
the root r of the tree: i = i1 → i2 → · · · → ik = r, and each node i` in this
path (with 1 ≤ ` ≤ k) is eligible to process some or all the requests issued by i
when provided with a replica, given that

∑
1≤`′<` δi`′ ≤ dmax.

For each client i ∈ C, let servers(i) be the set of servers responsible for
processing at least one of its requests. There are two scenarios for the number of
servers assigned to each client. With the Single policy, each client i is assigned a
single server that is responsible for processing all its requests, and |servers(i)| =
1. With the Multiple policy, a client i may be assigned several servers, and
we let ri,s be the number of requests from client i processed by server s. All
requests must be processed, thus

∑
s∈servers(i) ri,s = ri. In the Single case, a

unique server si is handling all ri requests, and ri,si = ri.
Let R be the set of replicas: R = {s ∈ C ∪ N | ∃i ∈ C , s ∈ servers(i)} . The

processing capacity of each node is fixed to W , which is the total number of
requests that it can process per time unit when it has been assigned a replica.
In addition to the distance constraints, the constraints on server capacities must
be fulfilled: ∀s ∈ R,

∑
i∈C|s∈servers(i) ri,s ≤ W. Finally, the objective function

is to minimize the number of replicas that are placed, i.e., minimize |R|.
We are now ready to formally define the various instances of the problem.

The objective is to minimize the number of replicas, while ensuring that both
server capacities and distance constraints are enforced, either with the Single or
with the Multiple policy. The problem names are respectively Single or Mul-
tiple. For the distance constraints, we consider the particular case with no
constraint (NoD). Hence, Single-NoD (resp., Multiple-NoD) is the problem
with the single server (resp. multiple servers) policy and no distance constraints.
Finally, we give a particular attention to instances in which the distribution tree
is binary, i.e., ∆ = 2. For instance, the Multiple problem on binary trees is
denoted Multiple-Bin, and the Single problem with no distance constraints
on binary trees is denoted Single-NoD-Bin.

3 Single policy

In this section, we first prove that Single-NoD-Bin is NP-hard in the strong
sense, and therefore all problem instances with the Single policy are NP-hard,
since the reduction is done for the simplest problem instance (see Theorem 1).
Then, we prove that for all ε > 0, there is no (3

2 − ε)-approximation algo-
rithm for this problem, unless P=NP (see Theorem 2). We provide a (∆ + 1)-
approximation algorithm for the Single problem in general trees, where ∆ is
the arity of the tree (see Section 3.3). This algorithm is a ∆-approximation
algorithm when there are no distance constraints (Single-NoD). Then we re-
fine the previous algorithm in the case where there are no distance constraints

RR n° 7750

in
ria

-0
06

30
29

2,
 v

er
si

on
 2

 -
3

Fe
b

20
12

Algorithms for replica placement in tree networks 7

to obtain a 2-approximation algorithm, hence getting closer to the bound of
Theorem 2 (see Section 3.4).

Note that we assume that for all i ∈ C, ri ≤ W , otherwise there is no
solution. Also, the solution with servers(i) = {i} for all i ∈ C, and hence
R = C, is always a valid solution, in which no distance nor capacity constraints
are exceeded. However, our goal is to exploit the server nodes of N to reduce
the number of replicas.

3.1 NP-completeness result of Single-NoD-Bin

Theorem 1 Single-NoD-Bin is NP-hard in the strong sense.

Proof: We consider the associated decision problem: given an integer K, is there
a solution with no more than K servers? The problem is clearly in NP: given a
set of servers and for each server, the set of all requests handled by the server,
it is easy to check in polynomial time if the server capacities are not exceeded.

To establish the completeness, we use a reduction from 3-Partition. We
consider an instance I1 of 3-Partition [10]: given 3m + 1 positive integers
a1, a2, . . . , a3m and B such that B/4 < ai < B/2 for i ∈ {1, . . . , 3m} and∑3m

i=1 ai = mB, can we partition these integers into m triples, each of sum B?
We build the instance I2 of Single-NoD-Bin depicted in Fig. 1, and we let ci
be the client with ai requests. Finally we ask whether there exists a solution
with K = m replicas of capacity W = B. Clearly, the size of I2 is polynomial
in the size of I1.

We now show that I2 has a solution if and only if I1 does. Suppose first that
I1 has a solution. Let then (ak1 , ak2 , ak3) the kth triple in I1, for 1 ≤ k ≤ m.
We place a server at node nk, which is processing requests from ck1

, ck2
and ck3

.
Clearly, we have m servers, no server capacity is exceeded, and all requests are
handled, thus I2 has a solution.

Suppose now that I2 has a solution. There are at most m servers of capac-
ity B, and the sum of all requests is equal to mB, therefore exactly m replicas
are set, and each of them handles a sum B of requests. Since B/4 < ai < B/2
for i ∈ {1, . . . , 3m}, a server cannot handle neither more than three requests,
nor less than three requests. We conclude that I1 has a solution.

Figure 1: Instance I2.

RR n° 7750

in
ria

-0
06

30
29

2,
 v

er
si

on
 2

 -
3

Fe
b

20
12

Algorithms for replica placement in tree networks 8

Figure 2: Instance I4.

3.2 Inapproximability result with the Single policy

Theorem 2 Unless P=NP, for all ε > 0, there is no (3
2 − ε)-approximation

algorithm for Single-NoD-Bin.

Proof: Let us assume that there exists ε > 0 such that there is a (3/2 − ε)-
approximation to Single-NoD-Bin. We denote by algo this polynomial time
algorithm. We prove that this algorithm allows us to solve 2-Partition in
polynomial time, and since 2-Partition is NP-complete [10], this proves that
P=NP.

We consider an instance I3 of 2-Partition: given m positive integers a1, a2,
. . . , am, does there exist a subset I of {1, . . . ,m} such that

∑
i∈I ai =

∑
i/∈I ai?

Let S =
∑m

i=1 ai. We build the instance I4 of Single-NoD-Bin, see Fig. 2,
where the server capacity is W = S/2. Note that if I3 has a solution, then there
is a solution to I4 with two replicas, that can be placed at nodes r and n1.

Then, we use algo to solve I4 in polynomial time. If the solution returns
two servers (algo(I4) = 2), then we have a solution to I3, since the solu-
tion is necessarily a 2-partition of the ai. Otherwise, the solution returns at
least three servers (algo(I4) ≥ 3), and since it is a (3/2 − ε)-approximation
algorithm, if opt(I4) is the optimal solution for this instance, it means that
3 ≤ algo(I4) < 3

2opt(I4), and therefore opt(I4) > 2, which means that there is
no solution to I3. Therefore, this (3/2− ε)-approximation algorithm allows us
to solve I3 in polynomial time, which concludes the proof.

3.3 Approximation algorithm with distance constraints

First we propose a polynomial time algorithm, named single-gen, to solve
the Single problem (see Algorithm 1). The solution is obtained by a call
to single-gen(r), where r is the root of the tree. Initially, the set of servers
is empty (R = ∅), and the procedure greedily adds servers to this set. It
works recursively: single-gen(j) performs one call to single-gen(j′) for each
j′ ∈ children(j), and then decides where to place servers. The procedure returns
a couple (req, dist), where req ≤ W is the number of requests that still need
to be processed at or above node j in the tree, and these requests have to be
served at a maximum distance dist from node j. The algorithm always returns
single-gen(r) = (0, dmax), i.e., all requests are processed by the servers that
have been placed.

RR n° 7750

in
ria

-0
06

30
29

2,
 v

er
si

on
 2

 -
3

Fe
b

20
12

Algorithms for replica placement in tree networks 9

Algorithm 1: (∆ + 1)-approximation algorithm for Single.

1 procedure single-gen(j)
2 begin
3 if j ∈ C then
4 return (rj , dmax);

5 else
6 for j′ ∈ children(j) do
7 (reqj′ , distj′) =single-gen(j′);
8 if δj′ > distj′ and reqj′ > 0 then
9 R = R∪ {j′};

10 reqj′ = 0; distj′ = dmax;

11 else distj′ = distj′ − δj′ ;
12 if

∑
j′∈children(j) reqj′ > W then

13 for j′ ∈ children(j) do
14 if reqj′ > 0 then R = R∪ {j′};
15 return (0, dmax);

16 else
17 if j = r then
18 if

∑
j′∈children(j) reqj′ > 0 then

19 R = R∪ {r};
20 return (0, dmax);

21 else return
(∑

j′∈children(j) reqj′ ,minj′∈children(j) distj′
)

;

RR n° 7750

in
ria

-0
06

30
29

2,
 v

er
si

on
 2

 -
3

Fe
b

20
12

Algorithms for replica placement in tree networks 10

The call to single-gen(i), where i ∈ C is a leaf node of the tree, returns
the result (ri, dmax). For any other node j ∈ N , we recursively call the proce-
dure on each child node j′ ∈ children(j), and collect the corresponding couples
(reqj′ , distj′). Then several cases occur.

1. First, we check whether the requests of a node j′ ∈ children(j) can be
processed at node j or above. If they cannot, i.e., δj′ > distj′ , we add
node j′ to the set of replicas: R = R ∪ {j′}, and we set reqj′ = 0 and
distj′ = dmax (i.e., no more requests are arriving to node j from node j′).
Otherwise, we update the distance distj′ = distj′ − δj′ .

2. If
∑

j′∈children(j) reqj′ > W , then we place a server on each child node

of j that has at least one request: R = R∪{j′ ∈ children(j)|reqj′ > 0}.
Therefore, no requests are going up in the tree, and the procedure re-
turns (0, dmax).

3. Otherwise,
∑

j′∈children(j) reqj′ ≤ W , and we operate differently, depend-
ing on whether j is the root of the tree or not.

(a) If j = r, (root of the tree), we place a server if needed (there is at
least one request to process), and the procedure returns (0, dmax):
if
∑

j′∈children(r) reqj′ > 0, then R = R∪ {r}.
(b) If j 6= r, there are

∑
j′∈children(j) reqj′ ≤ W requests that can be

processed at node j or above, and the maximum distance for these
requests is minj′∈children(j) distj′ . Therefore, the procedure returns(∑

j′∈children(j)

reqj′ , min
j′∈children(j)

distj′
)
.

Theorem 3 The call to single-gen(r) is a (∆ + 1)-approximation algorithm
for Single, and its time complexity is O(∆× |T |).

Proof: Consider an instance of Single. Let Ropt be the set of servers in an
optimal solution, and Ralgo is the set of servers returned by the call to single-
gen(r) (see Algorithm 1). The call to single-gen(j) may add some children of j
into the set of replicas, but it never adds j to Ralgo (except for the root node).
Hence, it is always possible, when going up in the tree, to add a replica to a
children node, since it is not yet in the set of replicas. Also, the procedure is
such that the number of requests going up in the tree is never greater than W ,
therefore it is always possible, by adding a replica to a child node, to cover all
requests in its subtree, and therefore the algorithm always succeeds.

Let R1 be the set of replicas that are added by the algorithm either at step 1
(line 9 of Algorithm 1) or at step 3a (line 19), while R2 is the set of replicas
that are added at step 2 (line 14). Note that Ralgo = R1 ∪R2, and we provide
upper bounds on the cardinality of these two sets.

Let j ∈ R1 be such that there is no other server in R1 in the subtree rooted
in j, subtree(j). This server is processing some requests that cannot be processed
upper in the tree. To process such requests, the optimal solution also needs to
place at least one server in subtree(j). Since the algorithm does not let any
request from the subtree traverse j, we consider the tree T \ subtree(j), and use
the same argument recursively, to prove that |R1| ≤ |Ropt |.

RR n° 7750

in
ria

-0
06

30
29

2,
 v

er
si

on
 2

 -
3

Fe
b

20
12

Algorithms for replica placement in tree networks 11

If some servers are added in R2, it means that at some point, a node j had
strictly more than W requests in its subtree, and we add at most ∆ servers to
process all these requests. Since a server cannot handle more than W requests,
the optimal solution must place at least one replica for each of such groups of
requests, and therefore |R2| ≤ ∆× |Ropt |. Finally,

|Ralgo | = |R1|+ |R2| ≤ |Ropt |+ ∆× |Ropt |
≤ (∆ + 1)|Ropt | ,

which concludes the proof.
Note that the algorithm performs exactly |N ∪ C| calls to single-gen, and

that all operations performed in single-gen can be done in time O(∆), and
therefore the algorithm has a time complexity in O(∆ × |T |), which is clearly
polynomial in the problem size.

We now show that this ∆ + 1 factor cannot be improved; in other words, we
prove that there does not exist ε > 0 such that Algorithm 1 is a (∆ + 1 − ε)-
approximation. Consider the instance Im depicted on Fig. 3 (n0 is the root of the
tree). Im is built by the concatenation of A1,A2, . . . ,Am. We set dmax = 4m;
in addition, all distances are set to 1, except the distance between ci,∆ and
ni,1, for 1 ≤ i ≤ m, which is equal to dmax. Therefore, all requests from ci,∆
must be processed either locally by ci,∆, or by its parent node ni,1, while all
other requests can be processed anywhere on the path from the node issuing
the requests to the root n0 of the tree. The number of requests of each node

(a) Notations

(b) Request values

(c) Instance Im

Figure 3: An instance on which single-gen reaches an approximation ratio
of ∆ + 1.

RR n° 7750

in
ria

-0
06

30
29

2,
 v

er
si

on
 2

 -
3

Fe
b

20
12

Algorithms for replica placement in tree networks 12

ci,j in C, for 1 ≤ i ≤ m and 1 ≤ j ≤ ∆ + 1, are given in Fig. 3. Finally, we fix
W = m∆ + ∆− 1.

The first servers that are placed by Algorithm 1 correspond to the call to
single-gen(nm,2), because the sum of requests of its children nodes is m∆ +
(∆ − 2) × 1 + 2 = m∆ + ∆ > W . Therefore, the algorithm adds ∆ servers
to R, at nodes cm,1, . . . , cm,∆−1 and nm,3. Then, a server is placed on nm,1,
because of the distance constraint, and there are no requests going up to Am−1.
We can therefore reiterate on Am−1, . . . ,A1, and the algorithm adds ∆ + 1
servers at each step. Overall, the algorithm places m× (∆ + 1) servers: Ralgo =
{ci,j , ni,1, ni,3}1≤i≤m, 1≤j≤∆−1.

Since the sum m × (m∆ + 2∆ − 1) of all requests is strictly greater than
m×W = m× (m∆ + ∆− 1), we must place at least m+ 1 servers to handle all
the requests. Let Ropt = {n0, ni,1}1≤i≤m be a set of m + 1 servers. Node ni,1
is processing the W requests of clients ci,∆ and ci,∆−1, for 1 ≤ i ≤ m, while
the root is processing the requests of ci,1, . . . , ci,∆−2 and ci,∆+1, for 1 ≤ i ≤ m,
hence a total of m∆ ≤W requests. This is an optimal solution since it involves
m+ 1 servers.

On this instance, the ratio between the solution found by the Algorithm 1
and the optimal solution is

ratio
(m)
single−gen =

m× (∆ + 1)

m+ 1
−→

m→+∞
∆ + 1.

This shows that the approximation factor of Algorithm 1 cannot be improved.

Corollary 1 Algorithm 1 is a ∆-approximation algorithm without distance con-
straints (Single-NoD).

Proof: The previous algorithm can be substantially simplified when there are no
distance constraints, since the condition on line 8 is never satisfied, and hence
R1 is either the empty set or it contains only the root of the tree. A set of at
most ∆ replicas is added each time a node j has strictly more than W requests
in its subtree, and we process all these requests. Since the inequality is strict,
|R2| < ∆ × |Ropt|, and Ralgo ≤ 1 + |R2| ≤ ∆ × |Ropt|, which concludes the
proof.

3.4 Approximation algorithm without distance constraints

Here we propose a polynomial time algorithm, named single-nod, to solve the
Single-NoD problem (see Algorithm 2). The solution is obtained by a call
to single-nod(r), where r is the root of the tree. Initially, the set of servers
is empty (R = ∅), and the procedure greedily adds servers to this set. The
procedure single-nod(j) returns a value req corresponding to the number of
requests that still need to be processed at or above node j in the tree. The
algorithm always returns single-nod(r) = 0, i.e., all requests are processed by
the servers that have been placed.

The call to single-nod(i), where i ∈ C is a leaf node of the tree, returns
the result ri. For any other node j ∈ N , we recursively call the procedure on
each child node j′ ∈ children(j), and collect the corresponding values reqj′ .
Also, we change the structure of the tree during the procedure, and hence we

RR n° 7750

in
ria

-0
06

30
29

2,
 v

er
si

on
 2

 -
3

Fe
b

20
12

Algorithms for replica placement in tree networks 13

keep an updated list of children for each node j, denoted by Cj , and initially
Cj = children(j). We may then add new children to a node. We also keep
a sorted list of requests still to be processed at node j, Lj (sorted by non-
decreasing number of requests). Then several cases occur.

1. If
∑

j′∈Cj
reqj′ > W , then we place a server on node j. We sort the nodes

of Cj by non-decreasing number of requests (list Lj), and we greedily
assign requests to server j (starting with the smallest requests), while the
total capacity W is not exceeded. We also add a server at node jmin,
where jmin is the first node of Cj whose requests could not be processed
by j. The procedure returns 0, and we consider two cases:

(a) if j is not the root of the tree, and if some requests of Cj have
not yet been handled by the two servers j and jmin, we add the
corresponding nodes to Cparent(j) (and we insert the corresponding
requests in Lparent(j));

(b) otherwise, if j is the root r of the tree, we add all nodes of Cr whose
requests are not yet processed in the set of servers R.

2. Otherwise,
∑

j′∈Cj
reqj′ ≤W , and those requests can be processed either

at node j or upper in the tree. Therefore,

(a) if j is not the root of the tree, the procedure returns
∑

j′∈Cj
reqj′ ;

(b) otherwise, if j = r, we add r in R and it can handle all remaining
requests; the procedure returns 0.

Theorem 4 The call to single-nod(r) is a 2-approximation algorithm for Single-
NoD, and its time complexity is O((∆ log ∆ + |C|)× |T |).

Proof: Consider an instance of Single-NoD. Let Ralgo be the set of servers
returned by the call to single-nod(r) (see Algorithm 2). We denote by R1

the set of servers j added at step 1 of the algorithm (line 11); R2 is the set of
servers added as extra servers at line 16 (jmin): to each j ∈ R1, we can associate
j′ ∈ R2 and proc(j) + proc(j′) > W , where proc(j) is the number of requests
processed by a server j ∈ Ralgo (with the allocation done by the algorithm).
Note that |R1| = |R2|. Finally, R3 is the set of servers that are eventually
added at step 1b (line 25).

If R3 = ∅ and we finished the procedure at step 2b (line 33), then we have
Ralgo = R1 ∪ R2 ∪ {r}, and hence |Ralgo | = 2 × |R1| + 1. Moreover, the total
number of requests in the tree is strictly greater than |R1|×W by construction,
and therefore the optimal solution needs at least |R1| + 1 servers, hence the
2-approximation.

Otherwise, we have Ralgo = R1 ∪ R2 ∪ R3 (note that r ∈ R1 in this case),
and we aim at proving that any solution must use at least |R1|+ |R3| servers.
Our aim is to provide a lower bound on the number of servers that must be
added in a subtree to cover all requests, by building a relaxed set of servers that
can process all requests in the tree. First, we formally define the lower bound,
and we establish a few properties. Note that if a client has no requests (ri = 0),
we suppress it from the tree, as well as any internal node that becomes a leaf of
the tree.

Definition 1. For all j ∈ N , nb(j) is a lower bound on the number of
nodes with requests that cannot be grouped together in subtree(j) (and hence,

RR n° 7750

in
ria

-0
06

30
29

2,
 v

er
si

on
 2

 -
3

Fe
b

20
12

Algorithms for replica placement in tree networks 14

Algorithm 2: 2-approximation algorithm for Single-NoD.

1 procedure single-nod(j)
2 begin
3 if j ∈ C then
4 return rj ;

5 else
6 Lj = ∅;
7 for j′ ∈ children(j) do
8 reqj′ =single-nod(j′);

/* Note that this may add nodes to Cj and Lj. */

9 if reqj′ 6= 0 then Lj = insert(Lj , (j
′, reqj′));

10 if
∑

j′∈Cj
reqj′ > W then

11 R = R∪ {j};
12 temp = 0;
13 while temp ≤W do
14 Let Lj = {(j′, req′), L′};
15 temp = temp+ req′;
16 if temp > W then R = R∪ {j′};
17 Lj = L′;

18 if j 6= r then while Lj 6= ∅ do
19 Let Lj = {(j′, req′), L′};
20 Lparent(j) = insert(Lparent(j), (j

′, req′));
21 Cparent(j) = Cparent(j) ∪ {j′};
22 Lj = L′;

23 else while Lj 6= ∅ do
24 Let Lj = {(j′, req′), L′};
25 R = R∪ {j′};
26 Lj = L′;

27 return 0;

28 else
/* We have

∑
j′∈Cj

reqj′ ≤W. */

29 if j 6= r then
30 return

∑
j′∈Cj

reqj′ ;

31 else
32 R = R∪ {r};
33 return 0;

34 procedure insert(L, (j, req)) begin
35 if L = ∅ then
36 return{(j, req)};
37 else
38 Let L = {(j′, req′), L′};
39 if req′ ≥ req then
40 return {(j, req), (j′, req′), L′};
41 else
42 return {(j′, req′),insert(L′, (j, req))};

RR n° 7750

in
ria

-0
06

30
29

2,
 v

er
si

on
 2

 -
3

Fe
b

20
12

Algorithms for replica placement in tree networks 15

either they will be grouped with other nodes higher in the tree, or it will be
necessary to cover each of these nodes with a server).

Property 1. For j ∈ N , if there are less than W requests in subtree(j), i.e.,
0 <

∑
i∈subtree(j)∩C ri ≤W , then there is an optimal solution with no replica in

subtree(j) \ {j}, and nb(j) = 0.
If there was a replica in subtree(j) \ {j}, we could always move it to node j,

and this replica would process the whole subtree, hence letting no requests go up
in the tree. All requests can be grouped at node j, and therefore nb(j) = 0. In
this case, we aggregate subtree(j) at node j, hence node j becomes a client node:
j ∈ C′, where C′ is the set of clients generated by aggregating requests. For such
nodes, we define rj =

∑
i∈subtree(j)∩C ri. We prove later that aggregation can

always be done in the relaxed solution.

Property 2. Let us consider j ∈ N , such that ∀i ∈ children(j), i ∈ C ∪ C′,
and

∑
i∈children(j) ri > W . Let i1, . . . , inj

be the nj children of j, ordered by

non-decreasing values of rik (i.e., 0 < ri1 ≤ ri2 ≤ · · · ≤ rinj
≤ W). Let

mj ≥ 2 be the index such that
∑mj−1

k=1 rik ≤ W and
∑mj

k=1 rik > W . Then
nb(j) = nj −mj + 1.

In this case, requests can only be covered together by a server if node j is
this server, and therefore the aim is to cover as many clients as possible with
a server at node j. This is done by covering the clients with the least number
of requests, hence clients i1, . . . , imj−1. There remain nj −mj + 1 nodes to be
covered.

Note that thanks to Property 1, even if a child node i is an aggregated node
(i ∈ C′), then we do not benefit of covering only a subset of the requests in
subtree(i). Indeed, if node j is covering only some of the requests of subtree(i)
(but not all of them), then there is at least one node i′ in subtree(i) that cannot
be grouped in subtree(j). We can rather assume that no request from subtree(i)
is covered by j, hence decreasing the load at node j and keeping the same (or
even decreasing) number of nodes that remain to be grouped higher in the tree
(by replacing i′, and eventually other nodes in subtree(i) that were not covered,
with i).

Next we need to extend this property recursively when going up in the tree.
Property 3. Let us consider a node j that has only children satisfying

Property 1 (children in P1) or Property 2 (children in P2): children(j) = P1∪P2.
Let Cj = P1 be the set of client nodes of j. For all j′ ∈ P2, we add nodes mj′ +1
to nj′ (as defined in Property 2) to the set Cj, and we order the nj nodes in Cj by
non-decreasing values of rik . If

∑nj

k=1 rik ≤W (Property 3a), then nb(j) = 0.

Otherwise (Property 3b), let mj ≥ 2 be the index such that
∑mj−1

k=1 rik ≤ W
and

∑mj

k=1 rik > W . Then nb(j) = nj −mj + 1 .
Property 3a comes directly from the fact that all requests can be grouped

at node j, similarly to Property 1.
Now we consider that we are in the case of Property 3b. Requests can be

grouped in subtree(j) by placing servers at each node j′ ∈ P2, and a server at
node j. First consider a node j′ ∈ P2. By definition of P2, there are strictly
more than W requests coming from j′, and hence potentially W of these requests
could be covered by a single server placed at node j′. Let X be the set of
children of node j′: X = {i1, . . . , inj′}, where the children are ordered by non-
decreasing number of requests as before. Consider that the set X1 ⊆ X of

RR n° 7750

in
ria

-0
06

30
29

2,
 v

er
si

on
 2

 -
3

Fe
b

20
12

Algorithms for replica placement in tree networks 16

children is covered by j′, and that the set X2 ⊆ X is covered by j. There remain
|X \(X1∪X2)| servers in subtree(j′) that cannot be grouped in subtree(j). First
note that if X1 ∪X2 does not contain the smallest children of X, i.e., there is
ia ∈ X1 ∪X2 and ib /∈ X1 ∪X2, with b < a, then we can exchange ia and ib: we
cover ia instead of ib, hence decreasing the amount of requests to be handled
by j or j′, and keeping identical the number of servers requested to cover the
subtree. Next, if X1 does not contain the smallest children of X1∪X2, we change
the assignment to process children 1 to mj′ with server j′ (this is actually not
possible since these children have a total of strictly more than W requests, but
we perform relaxed grouping so as to obtain a lower bound on the remaining
nodes that cannot be grouped). Since the sum of the other requests from X1∪X2

do not exceed the sum of the requests initially in X2, j can cover these requests
together with the requests that are coming from other children of j (even if
these requests may be individually larger than the previous requests assigned
to j).

We still need to discuss if it would not be beneficial to cover individually some
requests that have been aggregated in our reasoning. Let us consider an optimal
solution (that may not have necessarily aggregated nodes as we are doing with
Property 1 and 3a). Then the sum of the requests that can be grouped at node j′

is less or equal to W (since we are not considering a relaxed solution anymore,
but a valid solution). Even if this optimal solution is covering only some of the
requests of subtree(i), where i is a children node of j′ and i ∈ P1, the number
of nodes that cannot be grouped in subtree(j′) cannot be lower than nb(j′).
Moreover, the sum of the requests is greater than the sum of the requests that
comes from the relaxed solution. Since we cover always more than W requests
with the relaxed solution, any optimal solution cannot perform more grouping,
even by exploiting smaller requests that have not been aggregated.

If we proceed similarly with all children j′ ∈ P2, we decrease the amount of
requests to be processed by j, hence computing a lower bound on the number of
nodes with requests that cannot be grouped in subtree(j). Similarly to the proof
of Property 2, it is then easy to see that j should cover the smallest remaining
children in order to minimize this number, hence the result.

Building a relaxed replica set Rrel. Thanks to the properties that
have just been presented, we build an equivalent tree corresponding to a relaxed
solution where there is no problem to group requests, since servers can process
more than W requests. Indeed, as we have said at the beginning of the proof, it
is easy to see that the algorithm is a 2-approximation if R3 = ∅, but otherwise
the algorithm has failed to group requests in R3, and we need to prove that any
solution could not have done better.

Initially, Rrel = ∅, and we build recursively the tree T ′ of requests that
cannot be processed by a common node, starting with T ′ = T . First we replace
subtree(j) by j on nodes following Property 1, i.e., we aggregate these nodes.
Then, if a node j follows Property 2, following the insight of Property 3, the
relaxed solution groups the mj smallest children of j and processes them at
node j, hence we let Rrel = Rrel ∪ {j} and we remove node j and the pro-
cessed children from T ′. The remaining children of node j are then attached
to parent(j), which is the next node where these children may be potentially
grouped together. We go up in the tree until we reach the root r. Note that
when we encounter a node j following Property 3b, we have already added the

RR n° 7750

in
ria

-0
06

30
29

2,
 v

er
si

on
 2

 -
3

Fe
b

20
12

Algorithms for replica placement in tree networks 17

|P2| children of j to Rrel at a previous step, and then we keep only a single
node j with the sum of all requests that are remaining in its subtree (similarly
to the aggregation performed with Property 1).

At the end, since the algorithm follows the construction of Rrel, we have
Rrel = R1, and the difference is that the algorithm has added two replicas
instead of one at each node j following Property 2, in order to cover the same
amount of requests (strictly greater than W). Note that when going up in the
tree recursively, each node will either follow Property 1 (identical to Property 3a)
or Property 2 (identical to Property 3b).

Even in the relaxed solution that groups requests in the best possible way,
there may remain some requests to cover in T ′, and the nodes that are in T ′ at
the end of the tree transformation are by construction the nodes of R3 of the
algorithm. Therefore, any solution must use at least |Rrel|+ |R3| replicas, and
finally

|Ropt| ≥ |Rrel|+ |R3| = |R1|+ |R3| ≥
1

2
|Ralgo|,

which concludes the proof.
The algorithm performs exactly C ∪ N calls to single-nod, and all opera-

tions performed in single-nod can be done in time O(∆ log ∆ + |C|): in the
worst case, there are ∆ children nodes whose requests need to be sorted (in
O(∆ log ∆)). We do not sort Cj , but rather keep sorted lists and merge two
sorted lists when moving nodes in the tree. The cost of the merge procedure
can be in O(|C|) at each call of single-nod. All together, the time complexity
of the algorithm is O((∆ log ∆ + |C|)× |T |).

We now show that this factor of 2 cannot be improved. Consider the instance
depicted on Fig. 4, with W = K. Nodes n1, . . . , nK are satisfying Property 2
and hence they are added by the algorithm in set R1. Their client node with K
requests are added in set R2. Therefore, |Ralgo| = 2K. However, the optimal
solution processes exactly K requests at each node ni (with 1 ≤ i ≤ K), and
places one extra server at the root that can process the requests of all K clients
with only one request, hence |Ropt| = K + 1, and the ratio of 2.

Figure 4: An instance on which single-nod reaches an approximation ratio of 2.

RR n° 7750

in
ria

-0
06

30
29

2,
 v

er
si

on
 2

 -
3

Fe
b

20
12

Algorithms for replica placement in tree networks 18

4 Multiple policy

In this section, we target the problems with the Multiple policy. While it is
already known that Multiple-NoD can be solved in polynomial time and that
Multiple is NP-hard (see [3]), we prove that, surprisingly, Multiple-Bin can
also be solved in polynomial time, by exhibiting an involved polynomial time
algorithm. Note that this result holds only when all the ri’s are smaller or
equal to W , i.e., all the requests of a client i ∈ C can always be served locally
by adding a replica at node i. Otherwise, we prove that the problem remains
NP-hard.

4.1 NP-completeness of Multiple-Bin

Theorem 5 Multiple-Bin is NP-hard.

Proof: We consider the associated decision problem: given a maximum number
of servers K, is there a solution with no more than K servers? The problem is
clearly in NP: given a set of servers and for each server, the set of all requests
handled by this server, it is easy to check in polynomial time if the server
capacities are not exceeded and the distance constraints are satisfied.

To establish the completeness, we use a reduction from 2-PARTITION-
EQUAL [10]. We consider an instance I5 of 2-PARTITION-EQUAL: given
2m positive integers a1, a2, . . . , a2m, does there exist a subset I ⊂ {1, . . . , 2m}
of cardinal m such that

∑
i∈I ai =

∑
i/∈I ai. Let S =

∑2m
i=1 ai, W = S

2 + 1 and

bi = S
2 − 2ai for 1 ≤ i ≤ 2m. We build the following instance I6 of our problem

(see Fig. 5), with 5m clients and 5m− 1 internal nodes:

• Nodes: n5m−1 is the root of the tree; for 2m + 1 ≤ j ≤ 5m − 2, the
parent of node nj is node nj+1; for 1 ≤ j ≤ 2m, the parent of node nj is
node n2m+j .

• Clients and distance constraints: we set dmax = 3m, and unless stated
otherwise, all distances are set to 1; for 1 ≤ j ≤ 2m, node nj has two
client nodes, one with aj requests at distance j + (m − 2), and one with
bj requests (at distance 1); for 4m + 1 ≤ j ≤ 5m − 1, node nj has one
client with one request, at distance dmax; node n2m+1 has one client with
(2m+ 1)W requests, at distance m+ 1.

Figure 5: Instance I6.

RR n° 7750

in
ria

-0
06

30
29

2,
 v

er
si

on
 2

 -
3

Fe
b

20
12

Algorithms for replica placement in tree networks 19

Finally, we ask whether there exists a solution with 4m servers. Clearly, the
size of I6 is polynomial (and even linear) in the size of I5. We now show that
instance I6 has a solution if and only if instance I5 does.

Suppose first that I5 has a solution, I. We assign a replica to each node ni,
i ∈ I (by hypothesis there are m of them), a replica to each of the 3m − 1
other nodes n2m+1 to n5m−1, and a replica to the client of node n2m+1. All
m − 1 clients with one request are served by their parent, and nodes n2m+1

to n4m, together with the client of node n2m+1, are devoted to processing the
(2m + 1)W requests of this client. For 1 ≤ i ≤ 2m there are two cases. (i) If
i ∈ I, then both clients of ni are served directly by ni. Node ni serves a total
of ai + bi = S

2 − ai ≤ W requests. (ii) If i /∈ I, the client with ai requests
is served by node n4m+1, and the client with bi requests is served by one or
several ancestors of n4m+1, i.e., nodes n4m+2 to n5m−1. Node n4m+1, which
also serves the unique request of its client, serves a total of

∑
i/∈I ai + 1 = W

requests. The m − 2 ancestors of n4m+1 receive the load
∑

i/∈I bi = mS
2 − 2S

2 .
They also serve m − 2 clients with a single request, hence a a total load of
(m − 2)S

2 + m − 2 = (m − 2)W requests to distribute among them. This is
precisely the sum of their capacities, and any assignment will do the job.

Note that the allocation of requests to servers is compatible with all distance
constraints. All requests that are strongly constrained (distance dmax) are served
by the parent node. All clients with ai requests are served either by their parent
node (if i ∈ I), or by node n4m+1 (if i /∈ I), that is at distance dmax from the
client. Finally, the (2m+1)W requests are not processed higher than n4m, which
is compatible with the distance constraints. Altogether, we have a solution to I6.

Suppose now that I6 has a solution with 4m servers. Necessarily, there is
a replica located in each of the top m − 1 nodes n4m+1 to n5m−1, otherwise
some client with one request at distance dmax would not be served satisfactorily.
The other solution would be to have a replica at the client children nodes of
these top nodes, but then some processing capacity would be wasted and there
would be no solution. Each of these nodes serves one of these requests, hence
has remaining capacity W − 1 = S

2 . There must also be a replica located at
each of the nodes n2m+1 to n4m and at the client of node n2m+1, since these
are the only 2m + 1 servers capable of processing the requests of the client of
node n2m+1 with (2m+ 1)W requests.

There remain m servers, which are placed among nodes n1 to n2m. Indeed,
if one of them was placed at one of the client nodes, it would not process as
many requests as in one of the nodes n1 to n2m, and we would not be able
to process all remaining requests in the servers n4m+1 to n5m. Let I be the
set of indices of those m nodes ni that have received a replica. Necessarily,
requests ai, with i /∈ I, are served by node n4m+1, because of the distance con-
straint. Hence

∑
i/∈I ai ≤

S
2 . Next, all requests ai and bi, with i /∈ I, are served

by nodes n4m+1 to n5m−1, whose total remaining capacity is (m− 1)S
2 . There

are (
∑

i/∈I ai) + (mS
2 − 2

∑
i/∈I ai) such requests, hence

m
S

2
−
∑
i/∈I

ai ≤ (m− 1)
S

2
.

From this equation we derive that
∑

i/∈I ai ≥
S
2 . Finally we have

∑
i/∈I ai = S

2 ,
with |I| = m, hence a solution to I5.

RR n° 7750

in
ria

-0
06

30
29

2,
 v

er
si

on
 2

 -
3

Fe
b

20
12

Algorithms for replica placement in tree networks 20

4.2 A polynomial-time optimal algorithm

Theorem 6 Multiple-Bin can be solved in polynomial time if ri ≤W for all
i ∈ C (i.e., each client can entirely be served locally).

Proof: We exhibit a polynomial time algorithm, multiple-bin, which returns
the optimal solution to Multiple-Bin, for the special case where for all i ∈ C,
we have ri ≤W . The solution is obtained by a call to multiple-bin(r), where
r is the root of the binary tree. For each node j ∈ N∪C, we keep a list of requests
that are currently at this node and should still be processed, req(j), and also
a list of requests that are assigned to this node if it has been provided with
a replica, proc(j). These lists consist of triples (d,w, i), where an amount w
of requests is issued by client i ∈ C, and these requests can be served at a
distance dmax−d from node j. Each list is sorted by non-increasing values of d.
Moreover, the total number of requests in a list is never exceeding W , the server
capacity.

The procedure is recursively updating these lists: initially, all lists are empty,
and at the end, all client requests should appear in a list proc(j). Initially, the
set of servers is empty: R = ∅. The call to multiple-bin(j) may lead to several
cases.

1. If j ∈ C is a client node (i.e., a leaf node), and if δj > dmax, then the
requests must be processed locally, therefore we place a server at node j
(i.e., R = R ∪ {j}) and we set proc(j) = {(0, rj , j)} and req(j) = ∅.
Otherwise, we do not place any server yet, and we rather set req(j) =
{(0, rj , j)}. We will then attempt to process these requests further up in
the tree.

2. Otherwise, if j ∈ N is an internal node, we first recursively call the pro-
cedure on both children nodes (recall that the tree is binary), denoted re-
spectively lchild(j) and rchild(j), and therefore update all lists for nodes
in subtree(j), excluding j. We merge req(lchild(j)) and req(rchild(j))
as a temporary list temp (remember that the lists are sorted by non-
increasing d). Note that we add δlchild(j) (resp. δrchild(j)) to the distances
of the list req(lchild(j)) (resp. req(rchild(j))). If the first element of temp
is such that d + δj > dmax, some requests of the subtree cannot be pro-
cessed upper in the tree, and therefore we add a server at node j. We
also add a server at node j if there are more than W requests in temp,
so that we keep less than W requests going up in the tree. In both cases,
this server will be processing the first requests of the list, up to the server
capacity, hence processing the requests that are the most constrained by
distance. Because of the Multiple policy, we can process only a subset
of the requests of a client to reach the exact capacity W , if there are
more than W requests in the temp list. We define proc(j) as the first (at
most) W requests of the list, and req(j) contains the remaining requests.
Note that there are no more than W requests in req(j). Then, several
cases occur.

(a) If req(j) is empty, we were able to process all requests of subtree(j)
at node j.

(b) Otherwise, if the first request of the list req(j) is such that d+ δj >
dmax, then there are more requests that cannot be processed upper

RR n° 7750

in
ria

-0
06

30
29

2,
 v

er
si

on
 2

 -
3

Fe
b

20
12

Algorithms for replica placement in tree networks 21

in the tree. In this case, we place a new server in subtree(j) and
we may need to modify the assignment of requests to servers. This
step is detailed below, it is done through a call to the procedure
extra-server(j).

(c) Otherwise, all requests of req(j) may be processed by parent(j), and
we are ready to handle node parent(j).

The procedure extra-server(j) works as follows. It adds a server on the first
node that has not yet a server on the rightmost path of subtree(j). To do so, we
assign requests in a different way as was done at the beginning of step 2. Since
all requests need to be processed in subtree(j), and all requests in req(lchild(j))
and req(rchild(j)) can be processed at node j (otherwise, they would have been
processed directly at the child node), we assign all requests from req(lchild(j))
to node j (i.e., we add these requests to proc(j)). If rchild(j) /∈ R, we just need
to place a server at this node. Otherwise, we perform the recursive call extra-
server(rchild(j)), which will eventually move requests in subtree(rchild(j)).
Note that the requests that may then be moved to rchild(j) were going upper
in the tree, and therefore they can be processed at node rchild(j) without
violating the distance constraint. Since the client nodes are leaves of the tree,
with no more than W requests, we eventually reach a node that has no server
and that can handle the remaining requests (it might be the rightmost client in
subtree(j)).

This algorithm is formalized as Algorithm 3. We now prove that it returns
an optimal solution to Multiple-Bin. Given a problem instance, let Ropt be
the set of servers chosen by an optimal solution, and let Ralgo be the set of
servers returned by our algorithm. Moreover, let Wtot =

∑
i∈C ri be the total

number of requests. Finally, let K be the set of servers that follow one of these
properties: (i) it has been added at line 5 of the algorithm; (ii) it has been added
at line 12 and it is processing strictly less than W requests (wproc < W at the
end of the loop); (iii) it leads to a call to extra-server at line 24. In all cases,
if j ∈ K, then req(j) = ∅.

First note that, for all j ∈ C ∪ N , we have
∑

(d,w,i)∈req(j) w ≤ W . This

property is true for j ∈ C (see line 6) since rj ≤ W by definition. For j ∈ N ,
if there are too many pending requests arriving to the node, we place a server
at node j processing W requests, and since the tree is binary, the remaining
requests that are in temp, and then req(j) (see line 21) are not exceeding W .
Moreover, requests in req(j) can always be processed by parent(j) because of the
distance constraint. Otherwise, either a server is placed line 5, or the procedure
extra-server is called line 24. Note that at the root of the tree (j = r), we
have δr = +∞, and therefore req(j) = ∅ at the end.

We partition the servers according to the set K: we assign each server j ∈ R
to its closest ancestor k ∈ K. Let serv(k) be the set of servers whose closest
ancestor in K is k. Then, p(k) = ∪j∈serv(k)proc(j) is the set of requests pro-
cessed by servers in serv(k), and r(k) =

∑
(d,w,i)∈serv(k) w is the total number

of requests processed in the subtree of k from which we have removed subtrees
rooted in nodes k′ ∈ K. By definition of K, no request is going through a
node k ∈ K. We have therefore partitioned the tree: Wtot =

∑
k∈K r(k), and

|Ralgo| =
∑

k∈K |serv(k)|.

RR n° 7750

in
ria

-0
06

30
29

2,
 v

er
si

on
 2

 -
3

Fe
b

20
12

Algorithms for replica placement in tree networks 22

Algorithm 3: Optimal algorithm for Multiple-Bin.

1 procedure multiple-bin(j)
2 begin
3 proc(j) = ∅; req(j) = ∅;
4 if j ∈ C then
5 if δj > dmax then R = R∪ {j}; proc(j) = {(0, rj , j)};
6 else req(j) = {(0, rj , j)};
7 else
8 multiple-bin(lchild(j)); multiple-bin(rchild(j));
9 temp = merge(add-dist(req(lchild(j)), δlchild(j)),

add-dist(req(rchild(j)), δrchild(j)));
10 Let temp = {(d,w, i), temp′} and wtot =

∑
(d′,w′,i′)∈temp w

′;

11 if d+ δj > dmax or wtot > W then
12 R = R∪ {j}; wproc = 0;
13 while temp 6= ∅ and wproc < W do
14 Let temp = {(d,w, i), temp′};
15 if wproc+ w ≤W then
16 wproc = wproc+ w;
17 temp = temp′; proc(j) = {proc(j), (d,w, i)};
18 else
19 w′ = W − wproc; wproc = W ;
20 temp = {(d,w − w′, i), temp′};

proc(j) = {proc(j), (d,w′, i)};
21 req(j) = temp; /* At this point,

∑
(d′,w′,i′)∈req(j) w

′ < W */

22 if req(j) 6= ∅ then
23 Let req(j) = {(d,w, i), req′};
24 if d+ δj > dmax then extra-server(j); req(j) = ∅;
25 procedure merge(req1, req2)
26 begin
27 if req1 = ∅ then return req2;
28 else if req2 = ∅ then return req1;
29 else
30 Let req1 = {(d1, w1, i1), req′1} and req2 = {(d2, w2, i2), req′2};
31 if d1 ≥ d2 then
32 return {(d1, w1, i1), (d2, w2, i2), merge(req′1, req

′
2)};

33 else return {(d2, w2, i2), (d1, w1, i1), merge(req′1, req
′
2)};

34 procedure add-dist(req, dist)
35 begin
36 if req = ∅ then return ∅;
37 else
38 Let req = {(d,w, i), req′};
39 return {(d+ dist, w, i), add-dist(req′, dist)};
40 procedure extra-server(j)
41 begin
42 proc(j) = req(lchild(j));
43 if rchild(j) /∈ R then R = R∪ {rchild(j)};

proc(rchild(j)) = req(rchild(j));
44 else extra-server(rchild(j));

RR n° 7750

in
ria

-0
06

30
29

2,
 v

er
si

on
 2

 -
3

Fe
b

20
12

Algorithms for replica placement in tree networks 23

Given a node k ∈ K, we now show that an amount of requests strictly greater
than (|serv(k)| − 1)W included in r(k) could not have been handled by a node
upper in the tree than k, even by an optimal solution. We differentiate two
cases.

• If k has been added on line 5 or 12, all servers in serv(k) (excepting k)
are processing exactly W requests, and by construction, these requests
are more constrained by distance than the requests processed by node k.
Since some of the requests processed by node k cannot be handled by a
node upper in the tree because of the distance constraint, it is also the
case for those (|serv(k)| − 1)W requests.

• If k leads to a call to extra-server(k), the reasoning is the same before
the call to extra-server. At this moment we had |serv(k)| − 1 servers,
including k, each of them processing exactly W requests, but some more
requests could not be handled higher in the tree. The total amount of
requests processed in the subtree (from which we remove subtrees rooted
in nodes in K) is therefore strictly greater than (|serv(k)| − 1)W .

We further need to prove that the extra-server procedure always succeeds
in re-arranging requests and adding an extra server. The key is that we never
violate a distance constraint. Indeed, we consider the requests in req(j′), and
these requests can always be processed by parent(j′). Therefore, when calling
extra-server(j), it is always possible to process at node j all the requests
from req(lchild(j)). We do not need to fill server j to W requests, since we
already have a lower bound on the total number of requests in the subtree
rooted in k ∈ K. If there is already a server at node rchild(j), by construction
it is processing W requests, but we can iterate the procedure. We will eventually
reach the case rchild(j) /∈ R: if rchild(j) ∈ C, then it is not in R, otherwise
we would have req(rchild(j)) = ∅, and therefore j could process all the requests
(coming only from req(lchild(j))), and therefore we would not need an extra
server in the subtree, hence having at most (|serv(k)| − 1)W , which leads to a
contradiction.

Finally, we proceed to a recursive bottom up analysis: consider the lowest
node k ∈ K in the tree T . In the subtree rooted at k, an amount of requests
strictly greater than (|serv(k)| − 1)W cannot be handled upper in the tree.
Thus, even an optimal solution requires the use of at least |serv(k)| servers to
be put in this subtree. Since no requests are sent from k to a node upper in the
tree (req(k) = ∅), we can now consider for our analysis the tree T without the
subtree rooted at k, and apply the same argument recursively to prove that an
optimal solution requires at least as many servers as Algorithm 3.

Note that the algorithm performs exactly |C ∪ N | calls to multiple-bin.
The complexity of the merge and add-dist procedures is in O(|C|) (at most
one triple per client node), and similarly the while loop takes no more than
O(|C|) iterations. Finally, the call to extra-server cannot be made several
times on a same node, so there are no more than |C ∪N | calls to this procedure.
Overall, the complexity of this algorithm is in O(|T |2), and therefore it is poly-
nomial in the problem size, which concludes the proof.

RR n° 7750

in
ria

-0
06

30
29

2,
 v

er
si

on
 2

 -
3

Fe
b

20
12

Algorithms for replica placement in tree networks 24

5 Conclusion

In this paper, we have investigated the problem of replica placement in tree
network. While several instances of this problem have already been studied,
there were still some complexity gaps. We have focused on two policies: either
all requests of a client must be served by a single server in the tree, on the
path between the client and the root of the tree (Single policy), or the requests
of a given client can be processed by multiple servers (Multiple policy), still
on this path. Moreover, we have considered problem instances with distance
constraints, hence expressing guarantees on the quality of service.

For the Single policy, we have established the NP-completeness in the strong
sense of the simplest problem instance, namely Single-NoD-Bin. Moreover,
we have shown that unless P=NP, for all ε > 0, there is no (3

2−ε)-approximation
algorithm for this problem. Therefore, we have designed two approximation al-
gorithms for Single. The first one solves the most general problem instance,
and it is a (∆ + 1)-approximation algorithm, where ∆ is the arity of the tree.
Then we have refined the previous algorithm in the case without distance con-
straints, hence proposing a 2-approximation algorithm for Single-NoD. While
the algorithms are greedy and easy to implement, the proofs of the approx-
imation ratios are quite involved. Then, focusing on the Multiple policy, we
proposed a sophisticated polynomial time algorithm that optimally solves the
Multiple-Bin problem, while Multiple is known to be NP-hard. In fact, this
algorithm works only when each request can be processed entirely by a single
server, i.e., it does not exceed the server capacity. Otherwise, we prove that the
problem remains NP-hard.

As future work, there remain some complexity gaps to fill. In particular, we
believe that we can design a 3/2-approximation algorithm for Single-NoD-Bin,
hence closing the gap, but we have not yet been able to prove the approxima-
tion ratio. A greedy algorithm is unlikely to be good enough, and we rather
envision to push servers towards the root of the tree, whenever possible. As for
Multiple, we plan to design approximation algorithms for the general NP-hard
problem.

Acknowledgment: A. Benoit is with the Institut Universitaire de France. This
work was supported in part by the ANR RESCUE project.

RR n° 7750

in
ria

-0
06

30
29

2,
 v

er
si

on
 2

 -
3

Fe
b

20
12

Algorithms for replica placement in tree networks 25

References

[1] J. Bar-Ilan, G. Kortzars, and D. Peleg. How to allocate network centers.
J. Algorithms, pages 15:385–415, 1993.

[2] O. Beaumont, N. Bonichon, and H. Larchevêque. Modeling and Practical
Evaluation of a Service Location Problem in Large Scale Networks. In
Proceedings of ICPP’11, pages 482–491, 2011.

[3] A. Benoit, V. Rehn-Sonigo, and Y. Robert. Replica placement and access
policies in tree networks. IEEE Trans. Parallel and Distributed Systems,
19(12):1614–1627, 2008.

[4] F. A. Chudak and D. P. Williamson. Improved approximation algorithms
for capacitated facility location problems. In Proceedings of IPCO, pages
99–113, 1999.

[5] J. Chuzhoy. Covering problems with hard capacities. SIAM J. Comput.,
36(2):498–515, 2006.

[6] I. Cidon, S. Kutten, and R. Soffer. Optimal allocation of electronic content.
Computer Networks, 40:205–218, 2002.

[7] B. Codenotti, G. D. Marco, M. Leoncini, M. Montangero, and M. San-
tini. Approximation algorithms for a hierarchically structured bin packing
problem. Inf. Process. Lett., 89(5):215–221, 2004.

[8] W. F. de la Vega and G. Lueker. Bin packing can be solved within 1 + ε
in linear time. Combinatorica, pages 1:349–355, 1981.

[9] J. E. G. Coffman, M. R. Garey, and D. S. Johnson. Approximation algo-
rithms for bin packing: a survey. In Approximation algorithms for NP-hard
problems, pages 46–93. PWS Publishing Co., 1997.

[10] M. R. Garey and D. S. Johnson. Computers and Intractability, a Guide to
the Theory of NP-Completeness. W.H. Freeman and Company, 1979.

[11] K. Kalpakis, K. Dasgupta, and O. Wolfson. Optimal placement of replicas
in trees with read, write, and storage costs. IEEE Trans. Parallel and
Distributed Systems, 12(6):628–637, 2001.

[12] M. Kao, C. Liao, and D. Lee. Capacitated domination problem. Algorith-
mica, pages 1–27, 2009.

[13] S. Khuller and Y. Sussmann. The Capacitated K-Center Problem. SIAM
Journal on Discrete Mathematics, 13:403, 2000.

[14] M. Korupolu, C. Plaxton, and R. Rajaraman. Analysis of a Local Search
Heuristic for Facility Location Problems. Journal of Algorithms, 37:146188,
2000.

[15] F. Kuhn and T. Moscibroda. Distributed approximation of capacitated
dominating sets. In Proceedings of SPAA’07, the 19th ACM symp. on
Parallel algorithms and architectures, pages 161–170, 2007.

RR n° 7750

in
ria

-0
06

30
29

2,
 v

er
si

on
 2

 -
3

Fe
b

20
12

Algorithms for replica placement in tree networks 26

[16] P. Liu, Y.-F. Lin, and J.-J. Wu. Optimal placement of replicas in data
grid environments with locality assurance. In Int. Conf. on Parallel and
Distributed Systems (ICPADS). IEEE CS Press, 2006.

[17] T. Loukopoulos, I. Ahmad, and D. Papadias. An overview of data repli-
cation on the Internet. In Proceedings of ISPAN’02, the Int. Symp. on
Parallel Architectures, Algorithms and Networks, 2002.

[18] M. Pál, E. Tardos, and T. Wexler. Facility location with nonuniform hard
capacities. In Proceedings of FOCS’01, the 42nd IEEE symp. on Founda-
tions of Computer Science, page 329, 2001.

[19] R. Raz and S. Safra. A sub-constant error-probability low-degree test, and a
sub-constant error-probability PCP characterization of NP. In Proceedings
of the 29th ACM symp. on Theory of computing, pages 475–484, 1997.

[20] G. Rodolakis, S. Siachalou, and L. Georgiadis. Replicated server place-
ment with QoS constraints. IEEE Trans. Parallel and Distributed Systems,
17(10):1151–1162, 2006.

[21] D. Shmoys, E. Tardos, and K. Aardal. Approximation algorithms for fa-
cility location problems. In Proceedings of the 29th Symp. on Theory of
Computing, 1997.

[22] X. Tang and J. Xu. QoS-Aware Replica Placement for Content Distribu-
tion. IEEE Trans. Parallel Distributed Systems, 16(10):921–932, 2005.

[23] J.-J. Wu, Y.-F. Lin, and P. Liu. Optimal replica placement in hierarchical
Data Grids with locality assurance. J. Parallel and Distributed Computing,
68(12):1517–1538, 2008.

RR n° 7750

in
ria

-0
06

30
29

2,
 v

er
si

on
 2

 -
3

Fe
b

20
12

Centre de recherche INRIA Grenoble – Rhône-Alpes
655, avenue de l’Europe - 38334 Montbonnot Saint-Ismier (France)

Centre de recherche INRIA Bordeaux – Sud Ouest : Domaine Universitaire - 351, cours de la Libération - 33405 Talence Cedex
Centre de recherche INRIA Lille – Nord Europe : Parc Scientifique de la Haute Borne - 40, avenue Halley - 59650 Villeneuve d’Ascq

Centre de recherche INRIA Nancy – Grand Est : LORIA, Technopôle de Nancy-Brabois - Campus scientifique
615, rue du Jardin Botanique - BP 101 - 54602 Villers-lès-Nancy Cedex

Centre de recherche INRIA Paris – Rocquencourt : Domaine de Voluceau - Rocquencourt - BP 105 - 78153 Le Chesnay Cedex
Centre de recherche INRIA Rennes – Bretagne Atlantique : IRISA, Campus universitaire de Beaulieu - 35042 Rennes Cedex

Centre de recherche INRIA Saclay – Île-de-France : Parc Orsay Université - ZAC des Vignes : 4, rue Jacques Monod - 91893 Orsay Cedex
Centre de recherche INRIA Sophia Antipolis – Méditerranée : 2004, route des Lucioles - BP 93 - 06902 Sophia Antipolis Cedex

Éditeur
INRIA - Domaine de Voluceau - Rocquencourt, BP 105 - 78153 Le Chesnay Cedex (France)

http://www.inria.fr

ISSN 0249-6399

in
ria

-0
06

30
29

2,
 v

er
si

on
 2

 -
3

Fe
b

20
12

	1 Introduction
	2 Framework
	3 Single policy
	3.1 NP-completeness result of Single-NoD-Bin
	3.2 Inapproximability result with the Single policy
	3.3 Approximation algorithm with distance constraints
	3.4 Approximation algorithm without distance constraints

	4 Multiple policy
	4.1 NP-completeness of Multiple-Bin
	4.2 A polynomial-time optimal algorithm

	5 Conclusion

