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Placement de répliques dans des réseaux en
forme d’arbre sous contraintes de puissance avec

plusieurs serveurs par client

Résumé : Dans ce papier, nous revisitons le problème de placement de
répliques dans des réseaux en forme d’arbre. Plutôt que de minimiser le nombre
de serveurs requis pour satisfaire toutes les requêtes des clients, nous visons
à minimiser la puissance totale consommée par ces serveurs. Nous utilisons la
politique d’assignation la plus générale où les requêtes d’un client peuvent être
servies sur plusieurs serveurs, tous placés sur le chemin entre ce client et la racine
de l’arbre. Nous considérons des serveurs multi-modaux qui peuvent travailler à
plusieurs vitesses (ensemble discret de vitesses), en employant la technique du
DVFS (Dynamic Voltage and Frequency Scaling). Le problème d’optimisation
revient à choisir un placement optimal des serveurs sur les nœuds de l’arbre,
ainsi qu’à déterminer leurs vitesses d’exécution. Alors que le problème de mini-
misation du nombre de serveurs pouvait être résolu en temps polynomial, nous
montrons que ce nouveau problème est NP-complet. Nous formulons toutefois un
programme linéaire en nombres entiers permettant de résoudre ce problème de
façon optimale (mais en un temps exponentiel), ainsi que plusieures heuristiques
polynomiales. Par de multiples simulations, nous avons étudié ces heuristiques,
en les comparant pour des instances de tailles moyenne (jusqu’à 30 nœuds) à la
solution optimale obtenue par le programme linéaire. Les heuristiques les plus
efficaces sont en moyenne à un facteur de 30% de la solution optimale.

Mots-clés : placement de répliques, arbres, serveurs multiples, puissance,
complexité, vitesses discrètes.
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1 Introduction

In this paper, we revisit the well-studied problem of replica placement in tree
networks. Replica placement in tree networks is an important problem [7, 19, 2],
with a broad spectrum of applications, such as electronic, ISP, or VOD service
delivery (see [11, 7, 13] and additional references in [19]). The problem is the
following: one is given a tree-shaped network where clients are periodically
issuing requests to be satisfied by servers. The clients are known (both their
position in the tree and their number of requests per time unit), while the
number and location of the replicas (also called servers) are to be determined.
Clients are leaves of the tree, and requests can be served by one or several
internal nodes. Note that the distribution tree (clients and nodes) is fixed in
the approach.

Initially, there is no replica; when a node is equipped with a replica, it can
process a number of requests, up to its capacity limit. Nodes equipped with
a replica, also called servers, can only serve clients located in their subtree (so
that the root, if equipped with a replica, can serve any client); this restriction
is usually adopted to enforce the hierarchical nature of the target application
platforms, where a node has knowledge only of its parent and children in the
tree. More precisely, there are three classical policies to serve the requests of a
client [2]: (i) Closest : All requests of a client must be served by the first server
located in the path from this client to the root; (ii) Single: All requests of a
client must be served by a single server, located anywhere in the path from this
client to the root; and (iii) Multiple: The requests of a client can be served by
several servers, all located in the path from this client to the root. For instance
in the Multiple policy, half the requests of a client can be served by one server,
and the other half by another server located higher in this path. In this paper,
we study the Multiple policy, because it is the most flexible, hence it will lead
to the most efficient solution in terms of both the number of servers and total
consumed power.

The classical optimization objective in the literature is the number of servers
needed to serve all requests. However, minimizing the total power consumed by
the servers has recently become a very important objective, both for economic
and environmental reasons [15]. To help reduce power dissipation, multi-modal
servers are used: each server has a discrete number of predefined speeds, which
correspond to different voltages that the server can be subjected to. State-of-
the-art processors can only be operated with a restricted number of voltage
levels, hence with a few speeds [12, 10]. The power consumption is the sum
of a static part (the cost for a server to be on and operated) and a dynamic
part. This dynamic part is a strictly convex function of the server speed, so
that the execution of a given amount of work costs more power if a server runs
at a higher speed [10]. More precisely, a server operated at speed s dissipates
s3 watts [5, 4, 17]. Faster speeds allow servers to handle more requests per time
unit, but at the price of a much higher (supra-linear) power consumption.

A major contribution of this paper is to show that minimizing power con-
sumption is an NP-complete problem, even if the servers are already placed
in the network (and without static power). This is to be contrasted with the
polynomial complexity of minimizing the number or servers [2]. Another major
contribution is the design of a set of heuristics to minimize power consumption.
These heuristics work in two steps: (i) server placement and (ii) request assign-
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ment. The placement step relies on an interesting theoretical result: given a
fixed set of servers that should all be used, and assuming continuous speeds,
it is possible to optimally assign the requests to these servers in polynomial
time. We can therefore easily derive a greedy algorithm to place the servers in
the continuous case, because for a given placement, we can directly compute
the corresponding optimal power consumption. Of course, assuming continuous
speeds is not realistic, but it is a handy simplification of the problem: with con-
tinuous speeds, once requests are assigned to servers, each server can operate
just at the right speed, namely the sum of its requests, so that selecting the
server speeds is immediate. With discrete speeds, the problem is more challeng-
ing and may well lead to re-assign the requests, for a given placement of servers.
To see this, we start from the solution with continuous speeds (including the
greedy placement and the optimal request assignment). Let r be the number of
requests processed by a given server N in the solution with continuous speeds.
With discrete speeds, we have to use the smallest speed s that is larger than
r, thereby losing a lot of power if the difference s− r is large. If it is the case,
we can try and re-assign some requests to another server N ′ located upper in
the path from N to the tree root. There would then remain only s′ requests to
be served by N , where s′ is the largest speed that is smaller than r: this saves
power locally by avoiding the large s − r gap, but we have to re-assign r − s′

requests to another server, and this has a cost that should be balanced with
the local gain. Such trade-off decisions are exactly those taken in the request
assignment step of the heuristics.

To the best of our knowledge, this paper is the first to propose heuristics
for power minimization with multiple servers, hence we cannot use any heuris-
tics from the literature as reference. However, we have derived a Mixed Integer
Linear Program (MILP) to compute the optimal solution to the power mini-
mization problem. Using this linear program has (potentially) an exponential
cost, but it enables us to assess the absolute performance of the heuristics, at
least for small-size problems.

The rest of the paper is organized as follows. Section 2 surveys related work.
Section 3 is devoted to a precise statement of the framework. Section 4 assesses
the complexity of the power minimization problem, through an intricate NP-
completeness proof. This section also provides the MILP to compute the optimal
solution. Section 5 introduces several heuristics to solve the problem. The
placement step is an incremental greedy procedure, whose evaluation is based
on the optimal solution for request assignment with fixed servers, when assuming
continuous speeds. Section 6 reports simulation results and comparisons of the
heuristics, together with their absolute performance evaluation: the distance to
the optimal solution is computed through the linear program for instances with
up to 30 servers.

2 Related work

Many papers considering the replica placement problem deal with general graphs,
while we focus in this work on tree networks. In the problem with a general
graph network, it is already difficult to decide which spanning tree to use, in
order to optimize some global objective function. A survey of work targeting
performance issues can be found in [14]. Recently, some work start to tackle
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energy-related problems. For instance, in [18], the authors discuss thermal and
power-aware task scheduling and data placement heuristics, in the context of a
Hadoop system. All problems are NP-hard, and there is no tree structure but
rather a set of racks, and a set of data nodes per rack.

For tree networks, a large effort has been spent to optimize the performance
of replica placements, assuming that the spanning tree was given, or that the
network had a tree structure initially. Most work has focused on the Closest
policy, where a client is requested to be served by the closest server on the path
towards the root of the tree, see for instance [7, 13]. Kalpakis et al. [11] studied
a variant with bi-directional links, and therefore the tree structure may not be
respected anymore, and a client may be served by a node that is not its ancestor
in the tree. While the problem with a tree structure has polynomial complexity,
the bi-directional problem becomes NP-complete.

Following this line of work, we had investigated in our previous work [3]
the complexity of the power-aware replica placement problem with the Closest
policy, and proved that the problem becomes NP-complete when the objective
is to minimize the total power consumption. We considered servers with several
distinct possible speeds, and a server operating at a given speed consumes a
power composed of a static part and a dynamic part proportional to the cube
of the speed. We keep the same model in this paper, because it is a classical
model extensively used when considering dynamic voltage and frequency scaling
(DVFS) technique [5, 4, 17].

The Multiple policy is more flexible than Closest because it loosens place-
ment rules: the requests of a client can be processed by several servers located
anywhere in the path from the client to the root. Similarly to the Closest policy,
the problem of minimizing the cost of the replica placement can be solved in
polynomial time [2]. However, we are not aware on any other work aiming at
optimizing the power consumption on tree networks for this Multiple policy.

3 Framework

This section is devoted to a precise statement of the framework. We start with
a description of the replica placement problem. Then we detail the power con-
sumption model. Finally, we state the objective function, and the corresponding
optimization problems.

3.1 Replica placement

We consider a distribution tree whose nodes are partitioned into a set of clients C,
and a set of N nodes, N . The clients are leaf nodes of the tree, while N is the
set of internal nodes. Each client i ∈ C (leaf of the tree) is sending ri requests
per time unit to a database object. Internal nodes equipped with a replica (also
called servers) can process requests from clients in their subtree. If a server
j ∈ N is operated at speed sj , then it can process up to sj requests per time
unit. Both the ri’s and the sj ’s are assumed to take rational values. Note that
it would be easy to allow client-nodes that play both the rule of a client and of
a node (possibly a server), by dividing such a node into an internal node and a
leaf in the tree.

RR n° 8474
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For each client i ∈ C and each node j ∈ N , ri,j is the number of requests from
client i processed by server j. We must have

∑
j∈N ri,j = ri for all i ∈ C, i.e.,

all requests are processed. Furthermore, a server cannot process more requests
than its assigned speed, i.e., wj =

∑
i∈C ri,j ≤ sj for all j ∈ N , where wj is the

load of server j. The set of replicas is defined as R = {j ∈ N| ∃i ∈ C , ri,j > 0} .

3.2 Power consumption model

We (realistically) consider discrete speeds. Servers may operate only at a set
{s1, . . . , sK} of different (rational) speeds, depending upon the number of re-
quests that they have to process per time unit. We assume that 0 ≤ s1 ≤
· · · ≤ sK , and therefore no server can handle more than sK requests. A server
with a load w will therefore operate at speed sk, where sk−1 < w ≤ sk (letting
s0 = −1 for the limit case). The power consumption of a server j ∈ R operated
at speed s(j) obeys the classical model,

P(j) = Pstatic + s(j)3,

and the total power consumption P(R) of the solution is the sum of the power
consumption of all server nodes:

P(R) =
∑
j∈R
P(j) =

∑
j∈R

(Pstatic + s(j)3) = |R| × Pstatic +
∑
j∈R

s(j)3, (1)

where |R| is the total number of servers in the solution.

3.3 Optimization problems

The main optimization problem is the Discrete problem: given a distribution
tree (with a number of requests per client), decide where to place the servers,
and how to distribute client requests among them (which can also be seen as
assigning the speed of each server), in order to minimize the total power con-
sumption.

We also consider the sub-problem where the servers are already placed in
the tree, Discrete-Placed. The goal is then only to decide how to distribute
requests among servers, hence at which speed to operate each server, in order
to minimize the total power consumption.

4 Complexity results

In this section, we establish the NP-completeness of Discrete and Discrete-
Placed (Section 4.1). Then in Section 4.2, we provide a Mixed Integer Linear
Program (MILP) to solve Discrete.

4.1 NP-completeness

Theorem 1. The Discrete and Discrete-Placed problems are NP-complete,
even with Pstatic = 0.

RR n° 8474
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Proof. Consider the decision problem associated to Discrete: given a tree
network with a set of requests, a set of server speeds, and a bound K on power
consumption, can we find a placement of servers and an assignment of the
requests to these servers so that the bound K on power consumption is met?
The problem is clearly in NP: given the servers and the request assignments,
we can compute the load of each server, select the smallest possible speed and
compute the total power consumption in polynomial time.

To establish the completeness, we use a reduction from 2-Partition [9].
We consider an instance I1 of 2-Partition: given n strictly positive integers
a1, . . . , an, does there exist a subset I of {1, . . . , n} such that

∑
i∈I ai =

∑
i/∈I ai?

Let S = 1
2

∑n
i=1 ai. We further assume, without loss of generality, that S is an

integer, and that ai < S for 1 ≤ i ≤ n.
We build the following instance I2 of the Discrete problem:

• Pstatic = 0

• We first define two constants (see below for an intuitive explanation):

X = 2n
(
7n2S

)4
, (2)

M = 7n2X2. (3)

• There are K = 2n + 1 possible speeds for servers:

for 1 ≤ i ≤ n,

 si = iX

s̃i = iX

(
1 + 1

3
Mai

(iX)3 −
1
9

(
Mai

(iX)3

)2
+ 5

81

(
Mai

(iX)3

)3)
(4)

and sn+1 = (n + 1)X.

• The tree is a fork with n+ 1 internal nodes; node 0 is the root of the tree
and node i is a child of node 0, for 1 ≤ i ≤ n. Each internal node i has a
unique leaf child with ri requests, where r0 = (n+1)X−S and ri = si+ai
for 1 ≤ i ≤ n.

• The bound on power consumption is B = (n+1)3X3+
∑n

i=1

(
(iX)3 + Mai

)
−

MS + 0.5.

Note that for all i, s̃i is a rational number polynomial in the size of the instance.
The size of I2 is polynomial in the size of I1. Let us further define a new set of
speeds:

for 1 ≤ i ≤ n, s′i =
(
(iX)3 + Mai

)1/3
. (5)

The speeds s′i are not part of the instance but they will be used for the proof.
Intuitively, s̃i is a close approximation of s′i for 1 ≤ i ≤ n.

The intuition behind the proof is that there is a server on each node, hence
the proof works for both problems (Discrete and Discrete-Placed). Fur-
thermore, the root node will run at speed sn+1, and it will process exactly
(n + 1)X requests. Therefore, S requests can come from its children. Because
of the speed configurations, server i has exactly two choices, either speed si or
speed s̃i. The constants X and M ensure that no other speed can be used,

RR n° 8474
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because speeds are spaced apart enough. Either server i processes all its re-
quests, and it must run at speed s̃i, or ai requests are forwarded to the root
server and server i can then run at speed si. There can be at most S requests
going up (server capacity limit at the root node), and because of the bound on
the power consumption, there should be at least S requests going up, hence the
2-partition. Indeed, the power saved when moving from speed s′i (and hence

almost s̃i) to speed si is linear in ai: s
′3
i − s3i = Mai.

First we prove some preliminary properties on the s̃i’s to ensure that the
s′i’s are a good approximation and that speeds are spaced apart enough so that
each server is restricted to its set of two speeds.

Lemma 1. The following properties hold true:

1. for 1 ≤ i ≤ n, s′i ≤ s̃i ;

2. for 1 ≤ i ≤ n, si + ai = iX + ai ≤ s̃i ;

3. for 1 ≤ i ≤ n, s̃i ≤ (i + 1)X = si+1 ;

4.
∑n

i=1 s
′3
i ≤

∑n
i=1 s̃

3
i ≤

∑n
i=1 s

′3
i + 0.5 ;

5. for 1 ≤ i ≤ n, s̃i ≤ iX + (Mai)
1/3.

Proof. Consider the following functions on [0, 1]: f1 : x 7→ (1 + x)1/3 and f2 :

x 7→ 1+x/3−x2/9+5x3/81. We have s′i = iXf1

(
Mai

(iX)3

)
and s̃i = iXf2

(
Mai

(iX)3

)
,

and note that Mai

(iX)3 ≤
MS
X3 < 1, because M = 7n2X2 and X > 7n2S.

We prove the five properties:

1. (s̃i − s′i ≥ 0) We can verify, using several differentiations (or a computer
algebra software), that f2(x)− f1(x) > 0 for x ∈ [0, 1].

2. (iX+ai ≤ s̃i) Thanks to Property 1, s̃i > s′i, and showing that s′i ≥ si+ai
gives the result:

s′i ≥ si + ai
⇔ (s3i + Mai)

1/3 ≥ si + ai
⇔ s3i + Mai ≥ s3i + 3s2i ai + 3sia

2
i + a3i

⇔ M ≥ 3(iX)2 + 3iXai + a2i

Because X > ai and n ≥ i ≥ 1, we have M = 7n2X2 ≥ 3(iX)2 + 3iXai +
a2i , hence the result.

3. (s̃i ≤ (i + 1)X) We have already seen that Mai

X3 < 1, and therefore s̃i ≤
iX
(
1 + 1

3i + 5
81i

)
=
(
i + 32

81

)
X ≤ (i + 1)X.

4. (
∑n

i=1 s
′3
i ≤

∑n
i=1 s̃

3
i ≤

∑n
i=1 s

′3
i + 0.5) We can verify, using several differ-

entiations (or a computer algebra software), that ∀x ∈ [0, 1],

f2(x)3 − f1(x)3 ≤ x4.
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Hence, s̃3i − s
′3
i = (iX)3

(
f2

(
Mai

(iX)3

)3
− f1

(
Mai

(iX)3

)3)
≤ (7n2ai)

4

i9X . Hence:

n∑
i=1

s̃3i ≤
n∑

i=1

(
s
′3
i +

(
7n2ai

)4
i9X

)

≤
n∑

i=1

s
′3
i + n

(
7n2ai

)4
X

≤
n∑

i=1

s
′3
i + n

(
7n2S

)4
X

≤
n∑

i=1

s
′3
i + 0.5 because X ≥ 2n

(
7n2S

)4
5. (s̃i ≤ iX + Mai

3 ) We have s̃i − iX − (Mai)
1/3 = Mai

3(iX)2 − (Mai)
1/3 −

iX
9

(
Mai

(iX)3

)2
+ 5iX

81

(
Mai

(iX)3

)3
. Then, first let us show that − iX

9

(
Mai

(iX)3

)2
+

5iX
81

(
Mai

(iX)3

)3
< 0:

iX

9

(
Mai
(iX)3

)2

>
5iX

81

(
Mai
(iX)3

)3

9

5
(iX)

3
> Mai

9

5
>

7n2ai
i3X

This last equation is always true since X > 7n2ai. Then let us show that
Mai

3(iX)2 − (Mai)
1/3 < 0:

(Mai)
1/3 >

Mai
3(iX)2

3i2X2 > (7n2X2ai)
2/3

X1/3 >
72/3n4/3ai

3i2

X >
49n4a3i

27i6

which is true since X = 2n
(
7n2S

)4
.

This concludes the proof of Lemma 1.

With these properties, we are now ready to show the NP-hardness of the
problem. Note that s1 ≤ s̃1 ≤ s2 ≤ s̃2 ≤ · · · ≤ sn ≤ s̃n ≤ sn+1.

Suppose first that instance I1 has a solution I. We assign the servers as
follows: the root node is assigned a server at speed sn+1; for all i ∈ I, we assign
to node i a server at speed si, and for all i /∈ I, we assign to node i a server at
speed s̃i.
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Because s̃i ≥ si + ai (Lemma 1), the server on node i can process all its
requests, for i /∈ I. On the contrary, for i ∈ I, the server can only process si
requests, and therefore ai requests are going up in the tree. Hence, a total of∑

i∈I ai = S requests need to be processed by the root node, in addition to the
(n + 1)X − S requests that arrive directly to this node (and the speed is sn+1

so the root server can process all its requests).
Finally we need to compute the power consumption, that is:

E = (n + 1)3X3 +
∑
i/∈I

s̃3i +
∑
i∈I

s3i

= (n + 1)3X3 +
∑
i/∈I

s̃3i +
∑
i∈I

(s
′3
i −Mai)

≤ (n + 1)3X3 +
∑
i/∈I

s̃3i +
∑
i∈I

s̃3i −M
∑
i∈I

ai

= (n + 1)3X3 +
n∑

i=1

s̃3i −MS

≤ (n + 1)3X3 +

n∑
i=1

s
′3
i + 0.5−MS = B

The power bound is respected, and therefore we have a solution to I2.

Suppose now that I2 has a solution. We define the set I of nodes as follows:

i ∈ I ⇐⇒ there is a server on node i operating at speed s < s̃i

We show that I is a solution to I1. First let us show that for i ∈ I, the
speed of the server on node i is exactly si. We prove this by contradiction: if
this server has a lower speed s, then the number of requests from node i that
goes up to the root node is at least

iX + ai − s ≥ iX + ai − ((i− 1)X + (Mai−1)1/3)
≥ X + ai − (Mai−1)1/3,

because s ≤ s̃i−1, and s̃i−1 ≤ (i − 1)X + (Mai−1)1/3 (Lemma 1). This would
lead to execute at the root more requests than the maximum (n + 1)X. Indeed,

(n + 1)X − S + X + ai − (Mai−1)1/3 > (n + 1)X

⇔ X > (Mai−1)1/3 + S − ai

⇔ X > (ai−17n2X2)1/3 + S − ai

We know that S < X2/3, and that X1/3 > (1+(7n2)1/3) (we use ai < S), hence
the contradiction. Therefore we conclude that for all i ∈ I, the server on node i
works at speed si.

Then for all i /∈ I, there is a server on node i (otherwise the root node could
not process the iX + ai upcoming requests with the largest speed (n + 1)X),
and its speed is at least s̃i by definition of I. We have seen that s̃i ≥ iX + ai,
so every request can be processed directly on node i.

Consequently, the power consumption is at least E ≥ (n+1)3X3+
∑

i/∈I s̃
3
i +∑

i∈I s
3
i ≥ (n + 1)3X3 +

∑n
i=1 s

′
i − M

∑
i∈I ai Then we have, M

∑
i∈I ai ≥

RR n° 8474
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MS − 0.5 because E ≤ B (we have a solution of the problem). Because M
and S are integers, it implies that

∑
i∈I ai ≥ S. Because of the constraint on

the maximum speed at the root node, the quantity of requests coming from
other nodes and processed at the root cannot be greater than S, and we have∑

i∈I ai ≤ S. Indeed, for all i ∈ I, no more than iX requests can be executed
on node i, and therefore there are at least ai requests from node i executed at
the root.

Finally, we conclude that
∑

i∈I ai = S, and therefore that I1 has a solution.
This concludes the proof for Discrete. The same instance can be used to
prove the NP-completeness of Discrete-Placed (which belongs to NP since
Discrete does), because each internal node is equipped with a server in the
solution.

4.2 Mixed integer linear program

Theorem 2. The following MILP characterizes the Discrete problem, where
the unknown variables are the xj,k’s (Boolean variables) and the yi,j’s (rational
variables), for j ∈ N , 1 ≤ k ≤ K and i ∈ C:

Minimize
∑

j∈N
∑

1≤k≤K xj,k(Pstatic + s3k) subject to

(i)
∑

j∈N yi,j = ri, i ∈ C
(ii)

∑
1≤k≤K xj,k ≤ 1, j ∈ N

(iii)
∑

i∈C yi,j ≤
∑

1≤k≤K xj,ksk, j ∈ N

(6)

Proof. The constants are the ri’s for i ∈ C, and the sk’s for 1 ≤ k ≤ K, and we
consider the following variables:

• xj,k is a boolean variable equal to 1 if j is a server operated at speed sk,
for j ∈ N and 1 ≤ k ≤ K; xj,k = 0 otherwise.

• yi,j is a rational variable equal to ri,j , the number of requests of client i ∈ C
processed by server j ∈ N ; if j is not an ancestor of i in the tree, we directly
set yi,j = 0.

Then the constraints are:
• For all i ∈ C, all requests of client i must be processed: ∀i ∈ C,

∑
j∈N yi,j =

ri;
• Each server is assigned at most one speed: ∀j ∈ N ,

∑
1≤k≤K xj,k ≤ 1; note

that a node j is equipped with a server if and only if
∑

1≤k≤K xj,k = 1;
• The processing capacity of any server cannot be exceeded: ∀j ∈ N ,

∑
i∈C yi,j ≤∑

1≤k≤K xj,ksk.

Finally, we minimize the total power consumption. Overall, there are |C|+2|N |
constraints and |N | · (|K|+ |C|) variables in this MILP.
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5 Heuristics

In this section, we propose some polynomial-time heuristics for the Discrete
problem. We start by outlining the general principles that have guided their
design before exposing the details for each heuristic.

5.1 General principles

As already mentioned in Section 1, the heuristics work in two steps: (i) server
placement and (ii) request assignment. The placement step of the heuristics
relies on the following result, whose proof can be found in Appendix A:

Proposition 1. Given a fixed set of servers deployed on a tree of size s =
|C|+ |N | and assuming continuous speeds, the optimal assignment Alg-Cont-
Placed of requests to servers that uses all these servers and minimizes power
consumption can be determined in time O(s2).

The placement step works incrementally: to compute a solution with k
servers, the heuristic starts from a solution with k−1 servers, and then greedily
tests the addition of one additional server. It uses Proposition 1 to compute
the optimal assignment of requests with this additional server, computes the
corresponding power, and returns the best solution over all possible choices for
the additional server.

The placement step assumes continuous speeds, hence the loads assigned by
Alg-Cont-Placed to each server do not take the set of actual speeds into
account. The second step of the heuristics consists in determining a discrete
speed for each server, which usually leads to re-assigning some requests, as
explained in Section 1. While the first step of the heuristics is common to
all heuristics, we outline below three different methods to perform this request
assignment step.

5.2 List of heuristics

We provide here three different heuristics to determine the actual speed of each
server. In the first heuristic, Greedy, we assign the smallest speed equal to
or greater than the load given by Alg-Cont-Placed to each server. While

simple, Greedy provides a
(

1 + maxi(si+1−si)
smin

)3
-approximation for the problem

with the placement given by Alg-Cont-Placed, where smin is the smallest
speed available. Finally, we point out that if there is no speed greater than the
value determined by Alg-Cont-Placed for some server, then there does not
exist a solution for this (given) placement (see Appendix B for further details).

The next two heuristics, Speed and Excess, improve the Greedy heuristic
by trying to modify the load of each server, via request re-assignment. The goal
is to decrease the speed of some servers. More precisely, in the procedure, which
is called Equilibrate and detailed in Algorithm 1, if a server is not loaded up
to its full capacity (meaning its load is equal to its capacity), then the heuristics
take some load out of its children until this server reaches its capacity (see the
loop line 15). The capacity of a server is defined as the maximum between
its actual speed and the maximum speed of its children (see line 12), hence
transferring even more load to this server if one of its children has a higher
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Algorithm 1: Procedure Equilibrate

1 procedure Equilibrate(T )
2 begin
3 Apply the Greedy heuristic on T ;
4 return sub-Equilibrate (T, root)

5

6

7 procedure sub-Equilibrate(T , N) /* here N is a node of T */
8 begin
9 Let L the list of children of N sorted as favored by the heuristic;

10 Let (iN , wN ) be the indices of the speed and load of N ;
11 Let iN ′ be the index of the maximum speed of the children of N ;
12 if siN′ > siN then
13 iN ← iN ′ ;

14 remaining← siN − wN ;
15 while remaining 6= 0 do
16 Let N ′ be the first element of L;
17 Let (iN ′ , wN ′) be the indices of the speed and load of N ′;

18 temp← min
(
remaining, wN ′ − siN′

)
;

19 wN ′ ← wN ′ − temp;
20 remaining← remaining− temp;
21 wN ← wN + temp;
22 Update the index of the speed of N ′;
23 Update the order of L to account for the new load and speed of

N ′;

24 for N ′ ∈ children of N do
25 T ← sub-Equilibrate (T,N ′);

26 return T

speed (and thus we should be able to reduce the speed of at least one child).
This may happen if we have decreased the speed of the current node in a previous
step of the algorithm, but not the speed of its children.

The main difference between the two heuristics Speed and Excess lies in
the selection of the children whose load is taken out:

• In the Speed heuristic, we favor the children whose servers have the largest
speeds. To break ties if two children of a given server have the same speed,
we favor the one with the smallest load. The idea is that the gain in power
will be more important if we can decrease the execution speed of a server
with a large speed (favor large speeds); and if there is a tie, there is more
chance to decrease the speed of a server if its load is small.

• On the contrary, in the Excess heuristic, we favor children with small
excess. The excess of a server is defined as the difference between its
load and the largest speed below it. The idea is that we will be able to
decrease the speed of more servers if we favor small excess. Finally, when
two children have the same excess, we favor the one with the largest load.
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Recall that K is the number of speeds and s = |C| + |N |. The complexity
of the Greedy heuristic is O(s2), the most costly part being the call to Alg-
Cont-Placed. For the Equilibrate procedure, and hence for the Speed
and Excess heuristics, the complexity becomes O(Ks2 log s). First, it takes
s log s operations to sort the children of each of the s nodes in a pre-treatment
phase. Then, the procedure sub-Equilibrate is called s times, and it has a
cost O(Ks log s): in the worst case, we visit each child, for each possible speed,
to fill the parent at full capacity, and we have to include the cost of updating
the list of sorted children, that can be done in O(log s).

6 Simulations

In this section, we report extensive simulations to assess the performance of the
heuristics presented in Section 5. All the source code, together with scripts to
obtain additional results, are publicly available [1]. The heuristics have been
coded using the programming language OCaml, while the MILP computing
the optimal solution is generated using the C language and solved using IBM
Cplex [8].

In order to evaluate the heuristics, we have generated more than 100 random
trees for each simulation. To simplify the generation, each internal node in the
tree has a unique client leaf, which is assigned a random rational number of
requests between 0 and 100. For processor speeds, unless stated otherwise,
we use five speeds spaced as those of the Intel Xscale, following [6, 16]: we
suppose that the largest speed can process 150 requests, and the ratio of the
different speeds to the largest speed is then: (0.15, 0.4, 0.6, 0.8, 1). In [6, 16], the
static power is equal to the power consumed in the lowest speed, which here
corresponds to (0.15 ∗ 150)3 ≈ 11, 000.

We have conducted four different sets of simulations to assess the impact of
the number of nodes, of static power, of the number of available speeds and of
the total load of requests.

Impact of the number of nodes. In the first set of simulations, we study
the impact of the number of nodes on power consumption: in Figure 1, we
plot the ratio of the power returned by the heuristics over the power of the
optimal solution, with a static power of 1,000, 5,000, 10,000, 20,000 and 100,000
respectively. Note that Figure 1f is different from the others and provides results
at larger scale: there we plot the ratio of the power returned by Speed and
Excess over the power consumption of Greedy, with a static power of 50,000,
but for a larger number of nodes (up to 200 nodes). While one could expect that
the performance of the heuristics would decrease for larger trees, it seems that
Speed and Excess reach a tangent after ≈ 15 nodes, and that on average the
maximum waste is between 20 and 25%. Furthermore, when the static power
is higher (100,000), this maximum waste is even below 20%. This observed
tangent is very likely correlated to the set of speeds and to the static power. This
tangent makes sense in practice if we assume that the first step (the placement
step) of the heuristics is not too far from the optimal solution because the
Greedy heuristic is an approximation algorithm. Speed and Excess are just
improvements of the Greedy heuristic. It would be interesting to see how much
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Figure 1 – Study of the impact of the number of nodes, for random requests
between 0 and 100, average on 100 tests.

they improve the approximation factor, though probably complicated. Note
that in Figure 1f, we see that Speed and Excess are still constantly better
than Greedy even with a larger number of nodes, with a power consumption
of around 80% of the power consumption for Greedy.

Impact of the static power. In the second set of simulations, we have
studied the impact of the static power on total power consumption. In Figure 2,
we plot the ratio of the power returned by the heuristics over the power of the
optimal solution, with a static power varying between 0 and 200,000 for trees of
20 nodes. Note that the higher the static power, the better the results. Indeed,
at some point, what matters most is the number of servers placed, and not the
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Figure 2 – Study of the impact of the static power, for trees of 20 nodes, for
random requests between 0 and 100, average on 100 tests.

allocation of requests, hence Greedy gets closer to the optimal solution as well.

Impact of the number of speeds. In this third set of simulations, we have
studied the impact of the number of speeds on power consumption. For this
set of simulations, we do not use Intel speeds anymore, but instead speeds that
are equally distributed between 0 and 150. In Figure 3, we plot the ratio of
the power returned by the heuristics over the power of the optimal solution,
with a static power of 50,000, for trees of 20 nodes, with the number of speeds
varying from one (150) and ten (15, 30, 45, 60, 75, 90, 105, 120, 135, 150).
When there is only one speed, obviously the results are as good as they can be
and only depend on the allocation heuristic. Then starting from three speeds,
we observe that the more speeds, the better the results. This was expected
since the more speeds we have, the closer we can get to the optimal solution
computed by Alg-Cont-Placed, and the better the results. The fact that
the results are better with two speeds than three can be explained by the fact
that with only two speeds, it is still easier to find the optimal speed (hence a
lower ratio than with three speeds), but a mistake is very expensive, hence a
result that is not as good as with four speeds. A final remark: when speeds are
equally distributed, the (proven) approximation ratio of the Greedy heuristic
is 8. However in Figure 3 we see that the ratio never goes above 1.8.

Impact of the total load of the tree. Finally, in the last set of simulations,
we have studied the impact of the total load of the tree on the power consump-
tion. In Figure 4, we plot the ratio of the power returned by the heuristics over
the power of the optimal solution, for trees of 20 nodes, and for a static power of
1,000, 5,000, 10,000, 20,000 and 100,000 respectively. Overall, the total number
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Figure 3 – Study of the impact of the number of speeds, for trees of 20 nodes,
static power of 50,000, for random requests between 0 and 100, average on 100
tests.

of requests does not impact the performance of the heuristics: the average ratio
stays constant with the total load of the tree, for all values of static power.

Summary of simulation results. To conclude on the different studies, the
first observation is somewhat expected: there is a huge gap between the Greedy
heuristic, and the Speed and Excess heuristics: there is a degradation w.r.t.
the optimal of 50 to 70% when using the Greedy heuristic with 10 to 30
nodes, while it is only approximately 20% (or less with larger static power)
when using the Speed or Excess heuristic. The difference between the Speed
and Excess heuristics is negligible, although it should be noted that on average,
the Speed heuristic performs slightly (≈ 1%) better than the Excess heuristic.
Furthermore, it seems that what matters most for the competitiveness of the
heuristics is the set of speeds and the static power Pstatic. In particular, the
number of speeds is very important: the closer the speeds are to each other,
the better the results. Above a certain number of nodes (≈ 15), the ratio of
the results of the heuristics over the optimal solution seems to reach a threshold
(independently of the load and the static power), but the value of this threshold
depends on the set of speeds and on the static power. Higher static power lowers
the value of the threshold: at some point, what matters most is the number of
servers, even if they are all at maximum speed. Similarly, the smaller the gap
between two consecutive speeds, then the closer we can get to the optimal
solution computed by Alg-Cont-Placed, and the better the results.
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Figure 4 – Study of the impact of the total load, for trees of 20 nodes, for
random requests between 0 and 100, average on 100 tests.

7 Conclusion

In this paper, we have revisited the well-known replica problem in tree networks
under power constraints, in the most flexible scenario where requests of a client
can be split between multiple servers. While the problem of minimizing the
number of servers has polynomial complexity, we have proved that the problem
of minimizing the power consumption is NP-complete, even if the servers are
already placed in the tree. We assume that the server speeds can be modified
using dynamic voltage and frequency scaling, depending upon the number of
requests to be processed, and that a set of discrete speeds is available. Therefore,
the core of the difficulty lies in assigning requests to servers in order to optimize
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the speeds given to each server. Building upon the optimal solution with already
placed servers and continuous speeds, we have designed efficient polynomial-time
heuristics to solve the general optimization problem (deciding where to place
servers and how to assign requests).

In order to assess the performance of the heuristics, we have also provided a
mixed integer linear program (MILP) that returns the optimal solution of the
problem for small instances (up to 30 nodes in the tree). The heuristics are
always quite close to the optimal solution, and the sophisticated versions that
readjust the request assignment to better fit server speeds prove to be valuable
improvements of the basic greedy solution.

For future work, it would be very interesting to prove a competitive ratio
for the heuristics that we have designed. However, this is quite a challenging
work for arbitrary trees, and one may try to design approximation algorithms
only for special tree structures, e.g. binary trees.
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A Proof of Proposition 1

First let us define formally the problem with continuous speeds and already
placed servers that we are solving in Proposition 1:

Definition 1 (Continuous-Placed). Given a distribution tree (with a num-
ber of requests per client), with servers turned on and already placed on the
tree, decide how to distribute client requests among them (which can also be
seen as assigning the speed, equal to the number of requests, of each server), in
order to minimize the total power consumption.

Note that in the following, because placed servers are all assumed turned
on, we do not need to account for Pstatic.

Definition 2. Let T be a distribution tree. Let N and N ′ be two nodes of T :

• N ′ is a server-child of N if there is a path from N ′ to N (i.e., N is an
ancestor of N ′ in the tree), and there is a server on N ′. Furthermore, we
call it a direct server-child if it is a server-child and there are no other
servers on the path from N ′ to N . Symmetrically, N is a server-parent
of N ′.

• Given a solution where N ′ is a child of N , and such that there is a server
on N ′ that computes r′ requests, and a server on N that computes r
requests, then a transfer of t ∈ [0, r′] requests from N ′ to N is a solution
where N ′ computes r′ − t requests and N computes r + t requests.

Given a solution to Continuous-Placed we consider the two following
hypothesis:

Hypothesis 1. The number of requests processed by a server is never smaller
than the number of requests processed by each of its server-children.

Hypothesis 2. If a server does not process all requests that are available in its
subtree (i.e., some of these requests are processed higher in the tree), then the
number of requests that it processes is equal to the number of requests processed
by its direct server-parent.

Lemma 2. There exists an optimal solution to Continuous-Placed that sat-
isfies hypothesis 1.

Proof. Consider an optimal solution to Continuous-Placed that does not
satisfy hypothesis 1. Then there exists a server N1 processing w1 requests, while
one of its server-children N2 is processing w2 > w1 requests. By transferring
w2 − w1 requests from N2 to N1 (which is possible because N1 is a parent of
N2), we can construct a solution such that N1 executes w2 requests and N2

executes w1 requests. This solution has the same power consumption as the
previous one.

Similarly we can do this in the new solution, on all nodes that violate hy-
pothesis 1, until the solution does not violate anymore hypothesis 1.

Lemma 3. If a solution to Continuous-Placed is optimal, then it satisfies
hypothesis 2.
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Proof. Let us consider a solution that does not satisfy hypothesis 2. Then there
exists a server N2 processing w2 requests, and its direct parent-server N1 is
processing w1 6= w2 requests. Moreover, N2 leaves l requests to be processed
higher in the tree (either by N1 or by an ancestor of N1).

1. if w1 < w2, then transferring w2−w1

2 additional requests from N2 to N1 is
still a valid solution since N1 is a parent of N2, and the power consumption

of this solution is better (2
(
w1+w2

2

)3
< w3

1 + w3
2).

2. if w2 < w1, then it would be better to process l′ = min
(
l, w1−w2

2

)
more

requests at node N2. This is possible because these requests are processed
higher in the tree and we can always exchange them with some requests
of N1 if N1 is not processing them. In the new solution, N2 processes
w2 + l′ requests, while N1 processes w1 − l′ requests. Because l′ > 0, and
by convexity, this new solution has a better power consumption.

Hence the solution is not optimal, and all optimal solutions satisfy hypothesis 2.

Theorem 3. If a solution to Continuous-Placed satisfies hypothesis 1 and 2,
then it is optimal.

To prove this theorem, let us show that

1. there is a unique solution that satisfies both hypotheses;

2. this solution is optimal.

Proposition 2. Given two optimal solutions to Continuous-Placed that
satisfy hypothesis 1 and 2, consider a server N that computes w1 (resp. w2)
requests in the first (resp. second) solution, and that leaves t1 (resp. t2) requests
to be processed higher in the tree.

• If w1 > w2 and t1 ≥ t2, then there exists a direct server-child N ′ of N that
computes w′1 (resp. w′2) requests in the first (resp. second) solution, and
that transfers t′1 (resp. t′2) requests to N , such that w′1 > w′2 and t′1 > t′2.

• If w1 ≥ w2 and t1 > t2, then there exists a direct server-child N ′ of N that
computes w′1 (resp. w′2) requests in the first (resp. second) solution, and
that transfers t′1 (resp. t′2) requests to N , such that w′1 ≥ w′2 and t′1 > t′2.

Proof. In order to prove this proposition, note that we know that wi + ti is
equal to the sum of the requests coming directly into N , and of all requests
transferred from N ’s server-children. Then, because w1 + t1 > w2 + t2 in both
cases, there exists a direct server-child of N such that t′1 > t′2. Then necessarily
t′1 > 0, and with hypothesis 2, w′1 = w1. Finally, with hypothesis 1, w′2 ≤ w2,
hence the results: if w2 < w1, then w′2 ≤ w2 < w1 = w′1, and if w2 ≤ w1, then
w′2 ≤ w2 ≤ w1 = w′1.

Proof of Theorem 3. Uniqueness of the optimal solution: To show that
there is a unique optimal solution, we proceed by induction. If there is a unique
server, then there is a unique solution where this server processes all requests.

Let us now consider a tree with n servers. Let us consider two optimal
solutions that satisfy hypothesis 1 and 2. Finally, let us consider w1 (resp. w2)
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the number of requests computed by the server at the root of the tree in the
first (resp. second) solution. The transfer at the root of the tree is necessary
null, i.e., t1 = t2 = 0 at the root. Note that if there is no server at the root of
the tree, then we can divide the tree into subtrees with a server at their roots,
and by induction the two solutions are identical. If there is only one subtree
with a server at its root, then we conduct the same reasoning on this subtree,
and the transfer is necessary null because there are no servers upper in the tree.
N denotes the server at the root of the tree.

Then, there are five different possibilities:

• If w1 > w2, with Proposition 2, we can construct an infinite sequence of

servers s starting from N such that w
(s)
1 > w

(s)
2 and t

(s)
1 ≥ t

(s)
2 , because

initially t1 = t2 (no transfer from the root node). Hence, we have a
contradiction since there are only n servers.

• The case with w2 > w1 is symmetrical.

• If w1 = w2, and if there exists a direct server-child s of N such that

t
(s)
1 > t

(s)
2 , then with hypothesis 2, w

(s)
1 = w1, and with hypothesis 1,

w
(s)
2 ≤ w2. Finally, with Proposition 2, we can construct an infinite

sequence of servers s̃ starting from s such that w
(s̃)
1 ≥ w

(s̃)
2 and t

(s̃)
1 > t

(s̃)
2 .

Hence we have a contradiction since there are only n servers.

• The case with w1 = w2, and there exists a direct server-child s of N such

that t
(s)
1 < t

(s)
2 , is symmetrical.

• Finally, if w1 = w2, and for all direct server-child s of N , t
(s)
1 = t

(s)
2 ,

then we look at the sub-problem for all sub-trees of N , and by induction
hypothesis, the two solutions are equal.

Finally, we have shown that two solutions to Continuous-Placed that satisfy
both hypothesis are identical.

Existence of a solution: With Lemma 2, we know that there exists an
optimal solution to Continuous-Placed that satisfies hypothesis 1. With
Lemma 3, we know that this solution satisfies hypothesis 2. Therefore, it is
exactly the solution that satisfies both hypothesis.

Finally, we have shown that if a solution satisfies both hypothesis, it is
optimal.

We now introduce the algorithm Alg-Cont-Placed that computes a dis-
tribution of the requests over a set of placed servers. First, note that if there are
requests coming in a node such that there are no servers placed on that node or
on any of the ancestors of that node, then there is no solution to the problem
Continuous-Placed: these requests cannot be satisfied.

Definition 3 (server-subtrees). For a given node N of a tree T , a server-subtree
of N is a subtree of T below N such that

1. there is a server at the root N ′ of the subtree;

2. there are no servers on any nodes of the path of T from N to N ′.
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Hence we can consider trees such that there is a server on the root node
(otherwise, either there is no solution to Continuous-Placed, or we can divide
a tree into the disjoint server-subtrees of the root of the original tree).

Algorithm 2: Procedure Alg-Cont-Placed

1 procedure Alg-Cont-Placed(T )
2 begin
3 return sub-Alg-Cont-Placed (T, root)

4

5 procedure sub-Alg-Cont-Placed(T , N) /* here N is a node of T */
6 begin
7 for s ∈ Child(N) do
8 Ts = sub-Alg-Cont-Placed (T, s);

9 Let R be the number of requests that are sent by clients on internal
nodes that are not in server-subtrees of N ;

10 Let SN = R be the speed of the server on node N ;
11 while there exists a server-child of N with a speed greater than SN do
12 Let Smax be the maximum speed of a server-child of N ;
13 Let S2 be the second maximum speed of a server-child of N

(S2 6= Smax), S2 = 0 if there is no second maximum speed;
14 Let N1, . . . , Nk be the k server-children of N that work at

speed Smax;

15 Let S′ = kSmax+R
k+1 ;

16 if S′ > S2 then
17 N1, . . . , Nk now work at speed S′, and transfer Smax − S′

additional requests to N ;
18 R← S′ /* We will exit the while loop at the next

step */

19 else
20 N1, . . . , Nk now work at speed S2, and transfer Smax − S2

additional requests to N ;
21 R← R + k(Smax − S2) /* Note that R < S2 */

22 return T

Theorem 4. The solution returned by Algorithm 2 satisfies hypothesis 1 and 2,
therefore it is optimal.

Proof. It is easy to verify that both hypothesis are verified by the result of the
algorithm. Given a node N ,

• They are verified at the beginning of the execution of the algorithm for
all server subtrees of N .

• At all time during the execution of the “while” loop, they are verified for
all the servers below N .

• The “while” loop ensures that both hypothesis are verified for N at the
end of the execution.
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Note that the proofs also work if the only set of speeds allowed is [smin, smax].
We detail in Algorithm 3 what Alg-Cont-Placed would become.

Algorithm 3: Procedure Alg-Cont-Placed where allowed speeds range
from smin to smax.

1 procedure Alg-Cont-Placed-Bounded(T )
2 begin
3 Let T =sub-Alg-Cont-Placed-Bounded (T, root);
4 Let S be the speed of the root of T ;
5 if S > smax then
6 return There are no solutions
7 else
8 return T

9

10 procedure sub-Alg-Cont-Placed-Bounded(T , N) /* here N is a node
of T */

11 begin
12 for s ∈ Child(N) do
13 Ts = sub-Alg-Cont-Placed-Bounded (T, s);

14 Let R be the number of requests that are sent by clients on internal
nodes that are not in server-subtrees of N ;

15 Let SN = R be the speed of the server on node N ;
16 while there exists a server-child of N with a speed greater than SN do
17 Let Smax be the maximum speed of a server-child of N ;
18 Let S2 be the second maximum speed of a server-child of N

(S2 6= Smax), S2 = smin if there is no second maximum speed;
19 Let N1, . . . , Nk be the k server-children of N that work at

speed Smax;

20 Let S′ = kSmax+R
k+1 ;

21 if S′ > S2 then
22 N1, . . . , Nk now work at speed S′, and transfer Smax − S′

additional requests to N ;
23 R← S′ /* We will exit the while loop at the next

step */

24 else
25 N1, . . . , Nk now work at speed S2, and transfer Smax − S2

additional requests to N ;
26 R← R + k(Smax − S2) /* Note that R < S2 */

27 return T
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B Theoretical results on heuristics

In this section, we detail some theoretical results, on which the heuristics are
based. Recall that the set of discrete speeds is {s1, . . . , sK}.

Theorem 5. Given a distribution tree (with a number of requests per client),
with servers turned on and already placed on the tree, if the maximum speed given
by the solution of Alg-Cont-Placed is greater than the maximum discrete
speed, then there is no solution.

Proof. Assume a distribution tree with servers turned on and already placed on
the tree. Let us call S the solution given by Alg-Cont-Placed, such that one
server works at a speed s greater than the maximum discrete speed (sK). Since
the result given by Alg-Cont-Placed follows hypothesis 1 (Theorem 4), then
in particular the server placed at the root of the tree works at speed s.

Let us assume that there exists a solution S ′ to Discrete-Placed. Then
the root of the tree is processed at a speed lower than or equal to sK . Let us
consider the s − sK requests that are processed on the root in S, but are not
processed on the root in S ′. Then, in S ′ they are processed on a server below
the root:

• Either this server works at speed s in S, but then we can consider the
subtree rooted in this server and reach a contradiction;

• Either this server works at a speed lower than s in S, and because S
follows hypothesis 2 (Theorem 4), it does not transfer any requests higher
the tree. Hence necessarily, it cannot process some of the s− sK requests
that are not processed on the root in S ′.

Finally, necessarily, the s − sK requests that are not processed on the root
are processed on a node that works at speed s > sK in S, and we have a
contradiction.

In conclusion, if the maximum speed given by the solution of Alg-Cont-
Placed is greater than the maximum discrete speed, there is no solution to
Discrete-Placed.

Theorem 6. Given a distribution tree (with a number of requests per client),
with servers turned on and already placed on the tree, Greedy is a

(1 + max1<i<K(si+1−si)
s1

)3-approximation to the Discrete-Placed problem.

Proof. First, note that the optimal solution to Continuous-Placed, where the
set of speeds is bounded in the interval [s1, sK ], is a lower-bound on the optimal
solution to Discrete-Placed. Indeed, any solution to Discrete-Placed is
a solution to Continuous-Placed.

Then, for each server N , let us call s
{c}
N the speed given by the Alg-Cont-

Placed-Bounded with bounded speeds (Algorithm 3), and s
{g}
N the speed

given by the Greedy algorithm. There exists i such that s
{g}
N = si+1 (with

0 ≤ i < K and s0 = 0), and by definition of s
{g}
N ,

s
{g}
N ≥ s

{c}
N > si = s

{g}
N − (si+1 − si) .
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Furthermore, if s
{g}
N = s1, then s

{c}
N = s

{g}
N . Therefore, if i > 1, then

s
{g}
N < s

{c}
N

(
1 + si+1−si

s
{c}
N

)
, and in all cases,

s
{g}
N < s

{c}
N

(
1 +

max1<i<K (si+1 − si)

s1

)
.

Finally, we can bound the total energy consumption E{g} of the Greedy
solution:

E{g} =
∑
N

s
{g}3
N ≤

∑
N

s
{c}3
N

(
1 +

max1<i<K (si+1 − si)

s1

)3

≤ E{opt}
(

1 +
max1<i<K (si+1 − si)

s1

)3

,

where E{opt} is the optimal energy consumption. Indeed,
∑

N s
{c}3
N corresponds

to the lower bound of the optimal energy consumption in the continuous case.
This concludes the proof.
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