
IS
S

N
02

49
-6

39
9

IS
R

N
IN

R
IA

/R
R

--
87

94
--

FR
+E

N
G

RESEARCH
REPORT
N° 8794
October 2015

Project-Team ROMA

Two-level checkpointing
and partial verifications
for linear task graphs
Anne Benoit, Aurélien Cavelan, Yves Robert, and Hongyang Sun

RESEARCH CENTRE
GRENOBLE – RHÔNE-ALPES

Inovallée

655 avenue de l’Europe Montbonnot

38334 Saint Ismier Cedex

Two-level checkpointing and partial
verifications for linear task graphs

Anne Benoit∗†, Aurélien Cavelan∗†, Yves Robert∗†‡, and
Hongyang Sun∗†

Project-Team ROMA

Research Report n° 8794 — October 2015 — 16 pages

Abstract: Fail-stop and silent errors are unavoidable on large-scale platforms. Efficient
resilience techniques must accommodate both error sources. A traditional checkpointing
and rollback recovery approach can be used, with added verifications to detect silent er-
rors. A fail-stop error leads to the loss of the whole memory content, hence the obligation
to checkpoint on a stable storage (e.g., an external disk). On the contrary, it is possible to
use in-memory checkpoints for silent errors, which provide a much smaller checkpoint and
recovery overhead. Furthermore, recent detectors offer partial verification mechanisms,
which are less costly than guaranteed verifications but do not detect all silent errors. In
this paper, we show how to combine all these techniques for HPC applications whose de-
pendence graph is a chain of tasks, and provide a sophisticated dynamic programming
algorithm returning the optimal solution in polynomial time. Simulations demonstrate
that the combined use of multi-level checkpointing and partial verifications further im-
proves performance.

Key-words: resilience, fail-stop errors, silent errors, multi-level checkpoint, verification,
dynamic programming.

∗ École Normale Supérieure de Lyon
† INRIA, France
‡ University of Tennessee Knoxville, USA

Checkpoint à deux niveaux et vérifications partielles pour des
graphes de tâches linéaires

Résumé : Les erreurs fatales et silencieuses ne peuvent plus être ignorées sur des plates-
formes à grande échelle. Des techniques de résilience efficaces doivent accommoder les deux
types d’erreurs. Une approche traditionnelle de checkpoint et points de reprise peut être
utilisée, en rajoutant des vérifications afin de détecter les erreurs silencieuses. Une erreur
fatale entrâıne la perte de tout le contenu mémoire, d’où l’obligation de faire une sauvegarde
sur un support fiable (typiquement un disque). Par contre, il est possible de se satisfaire
de checkpoints en mémoire pour les erreurs silencieuses, ce qui donne des surcoûts bien plus
faibles. De plus, les détecteurs récents offrent des mécanismes de vérification partielle, qui
sont moins coûteux que les vérifications garanties, mais qui ne détectent pas toutes les erreurs
silencieuses. Nous montrons comment combiner toutes ces techniques pour des applications
HPC dont le graphe de dépendances est une châıne de tâches, et nous donnons un algorithme
de programmation dynamique sophistiqué qui renvoie la solution optimale en temps polyno-
mial. Des simulations démontrent que l’utilisation combinée de checkpoint à deux niveaux et
de vérifications partielles améliore la performance.

Mots-clés : résilience, erreurs fatales, erreurs silencieuses, checkpoint multi-niveaux,
vérification, programmation dynamique.

Two-level checkpointing and partial verifications for linear task graphs 3

1 Introduction

Resilience is one of the major challenges for extreme-scale computing. In particular, several
types of errors should be considered. In addition to classical fail-stop errors (such as hardware
failures), silent errors, also known as silent data corruptions, constitute another threat that
cannot be ignored any longer [11, 14, 13, 10]. In order to deal with both types of errors,
a traditional checkpointing and rollback recovery strategy can be used [8], coupled with a
verification mechanism to detect silent errors [9].

Because verification mechanisms may be costly, alternative techniques capable to rapidly
detect silent errors, with the risk of missing some errors, have been recently developed and
studied [2, 7]. We call such verifications partial verifications, while perfect verifications (no
error missed) are guaranteed verifications. Furthermore, rather than checkpointing only on
stable storage, a lightweight mechanism of in-memory checkpoints can be provided: one
keeps a local copy of the data that has not been corrupted when a silent error stroke, and
can therefore be used to recover rapidly. However, such local copies are lost if a fail-stop
error occurs, and hence copies on stable storage (i.e., classical disk checkpoints) must also be
provided.

Combining all these approaches is challenging even for a simplified, yet realistic, appli-
cation framework, consisting for instance of a set of application workflows exchanging data
at the end of their executions. Such a framework can be modeled as a task graph whose
dependences follow a linear chain. This scenario corresponds to an HPC application whose
workflow is partitioned into a succession of (typically large) tightly-coupled computational
kernels, each of them being identified as a task. At the end of each task, we can perform
either a partial or a guaranteed intermediate verification of the task output; or, likely less
frequently, we can perform a guaranteed verification followed by a memory checkpoint (we
do not take the risk of storing a corrupted checkpoint, hence the need for a guaranteed ver-
ification); or again, likely even less frequently, we can perform a guaranteed verification, a
memory checkpoint and a disk checkpoint in a row.

The main contribution of this paper is to provide a sophisticated dynamic programming
algorithm that returns the optimal solution, i.e., the solution that minimizes the expected
execution time. The originality is that we combine both types of verifications and both
types of checkpoints. Furthermore, we present extensive simulations that demonstrate the
usefulness of mixing these techniques, and in particular we demonstrate the gain obtained
thanks to multi-level checkpointing.

To the best of our knowledge, the interplay of verification mechanisms with two types
of checkpoints, in-memory and disk-based, has never been investigated for task graphs. Our
previous work [5] considers linear chains with a single checkpoint type and guaranteed veri-
fications (for the record, the pioneering paper [12] for linear chains only dealt with a single
checkpoint type and no verification). The closest work to this paper is our recent work [6]
for divisible applications, where we address the same combined framework (with two error
sources, two checkpoint types and two verification types); however, in [6], we target long-
lasting executions that are partitioned into periodic patterns that repeat over time, and we
compute the best pattern up to first-order approximations. Here we do not have the flexi-
bility of divisible applications, since we insert resilience mechanisms only at the end of the
execution of a task. We may well have a limited number of tasks, which prevents the use
of any periodic strategy. Instead, we use a completely different approach and design (quite
involved) dynamic programming algorithms that provide the optimal solution for any linear

RR n° 8794

Two-level checkpointing and partial verifications for linear task graphs 4

task graph. We detail the model in Section 2, before giving the dynamic programming al-
gorithm in Section 3 and providing simulation results in Section 4. Finally, we conclude in
Section 5.

2 Model

We consider a chain of tasks T1, T2, . . . , Tn, where each task Ti has a weight wi corresponding
to the computational load. For notational convenience, we also define Wi,j =

∑j
k=i+1wk to

be the time to execute tasks Ti+1 to Tj for any i ≤ j. Furthermore, we assume that hardware
faults (fail-stop errors) and silent data corruptions (silent errors) coexist, as motivated in
Section 1. Since these two types of errors are caused by different sources, we assume that
they are independent and that both occurrences follow a Poisson process with arrival rates λf
and λs, respectively. The probability of having at least a fail-stop error during the execution
of tasks Ti+1 to Tj is given by pfi,j = 1 − e−λfWi,j and that of having at least a silent error

during the same execution is psi,j = 1− e−λsWi,j .
To deal with both fail-stop and silent errors, resilience is provided through the use of a

two-level checkpointing scheme coupled with an error detection (or verification) mechanism.
When a fail-stop error strikes, the computation is interrupted immediately due to a hardware
fault, so all the memory content is destroyed: we then recover from the last disk checkpoint
or start again at the beginning of the application. On the contrary, when a silent error is
detected, either by a partial verification or by a guaranteed one, we roll back to the nearest
memory checkpoint, and recover from the memory copy there, which is much cheaper than
recovering from the last disk checkpoint.

We enforce that a memory checkpoint is always taken immediately before each disk check-
point. This can be done with little overhead and it has been enforced in some practical
multi-level checkpointing systems [4]. Also, a guaranteed verification is always taken imme-
diately before each memory checkpoint, so that all checkpoints are valid (both memory and
disk checkpoints), and hence only one memory checkpoint and one disk checkpoint need to be
maintained at any time during the execution of the application. Furthermore, we assume that
errors only strike the computations, while verifications, memory copies, and I/O transfers are
protected from failures.

Let CD denote the cost of disk checkpointing, CM the cost of memory checkpointing,
RD the cost of disk recovery, and RM the cost of memory recovery. Recall that when a disk
recovery is done, we also need to restore the memory state. For simplicity, we assume that the
cost RM is included in the cost RD. Also, let V ∗ denote the cost of guaranteed verification and
V the cost of a partial verification. The partial verification is also characterized by its recall,
which is denoted by r and represents the proportion of detected errors over all silent errors
that have occurred during the execution. For notational convenience, we define g = 1−r to be
the proportion of undetected errors. Note that the guaranteed verification can be considered
as one with recall r∗ = 1. Since a partial verification usually incurs a much smaller cost yet
has a reasonable recall [2, 7], it is highly attractive for detecting silent errors, and we make
use of them between guaranteed verifications.

Finally, the objective is to decide where to place disk checkpoints, memory checkpoints,
guaranteed verifications and partial verifications, in order to minimize the expected execution
time of the application.

RR n° 8794

Two-level checkpointing and partial verifications for linear task graphs 5

3 Dynamic programming

The goal is to find which task to verify, which task to checkpoint, and also which type of
verification or checkpoint to perform, in order to minimize the expected execution time of
the task chain. To solve this problem, we have derived a sophisticated multi-level dynamic
programming algorithm. Recall that we assume that a memory checkpoint always comes with
a guaranteed verification to ensure that the results are correct, and that a disk checkpoint
always comes with a memory checkpoint, as motivated in Section 2. For convenience, we add
a virtual task T0, which is checkpointed on disk (and hence on memory), and whose recovery
cost is zero. This accounts for the fact that it is always possible to restart the application
from scratch at no extra cost. We first describe in Section 3.1 the general scheme when adding
only guaranteed verifications, memory checkpoints and disk checkpoints. We then show how
to extend this dynamic programming algorithm to partial verifications in Section 3.2.

3.1 Without partial verifications

Figure 1 illustrates the idea of the general algorithm without using partial verifications. The
algorithm contains three dynamic programming levels, which are responsible for placing disk
checkpoints, memory checkpoints, and guaranteed verifications, respectively, and an addi-
tional step to compute the expected execution time between any two verifications. The
following describes each step of the algorithm in detail.

Placing disk checkpoints. The first level focuses on placing disk checkpoints. Let the
function Edisk(d2) denote the expected time needed to successfully execute all the tasks from
T1 to Td2 , where task Td2 is verified and checkpointed on both disk and memory. In this func-
tion, we try all possible locations for the last checkpoint before Td2 . For each possible location
d1, we call the function recursively on d1 (to place disk checkpoints before Td1), and we add
the expected time needed to execute the tasks from Td1+1 to Td2 . This is done through the
Emem(d1, d2) function, which also decides where to place memory checkpoints, and accounts
for the cost of memory checkpoints. The cost of the disk checkpoint CD is finally added after
Td2 . Note that a location d1 = 0 means that no further disk checkpoints are added. In this
case, we simply let Edisk(0) = 0, which initializes the dynamic program. We can express
Edisk(d2) as follows:

Edisk(d2) = min
0≤d1<d2

{Edisk(d1) + Emem(d1, d2) + CD}.

The total expected time needed to execute all the tasks T1 to Tn is given by Edisk(n).

Placing memory checkpoints. The second level aims at placing additional memory
checkpoints between two disk checkpoints. The function is first called from the first level be-
tween two disk checkpoints, each of which also comes with a memory checkpoint. We define

Edisk(d2)

Emem(d1,m2)

Everif (d1,m1, v2)

E(d1,m1, v1, v2)

d0 d1 d2m1 m2v1 v2

Figure 1: Without partial verifications.

RR n° 8794

Two-level checkpointing and partial verifications for linear task graphs 6

Emem(d1,m2) as the expected time needed for successfully executing all the tasks from Td1+1

to Tm2 , where there is a disk checkpoint at the end of task Td1 , a memory checkpoint at the
end of task Tm2 , and no other disk checkpoints. Note that there might be a disk checkpoint
after Tm2 , for instance when we first call this function, but we do not account for the cost
of this disk checkpoint in Emem, only for the cost of the memory checkpoint (the cost of the
disk checkpoint is already accounted for in Edisk). As before, we try all possible locations
for the last memory checkpoint between tasks Td1 and Tm2 . For each possible location m1,
we call the function recursively on tasks Td1 to Tm1 , and then call the function for the next
level, Everif (d1,m1,m2), which computes the expected time needed to execute the tasks from
Tm1+1 to Tm2 (and decides where to place verifications). Finally, we add the cost of the
memory checkpoint CM following Tm2 . We can express Emem(d1,m2) as follows:

Emem(d1,m2) =

min
d1≤m1<m2

{Emem(d1,m1) + Everif (d1,m1,m2) + CM}.

If m1 = d1, there is no extra memory checkpoint between d1 and m2, and therefore we
initialize the dynamic program with Emem(d1, d1) = 0.

Placing additional verifications. The third level looks for where to insert additional ver-
ifications between two tasks with memory checkpoints. The function is first called from the
second level between two memory checkpoints, each of which also comes with a verification.
Therefore, we define Everif (d1,m1, v2) as the expected time needed for successfully executing
all the tasks from Tm1+1 to Tv2 , knowing that the last memory checkpoint is after Tm1 , the
last disk checkpoint is after Td1 , and there are no checkpoints between Tm1+1 and Tv2 . Note
that Everif (d1,m1, v2) accounts only for the time required to execute and verify these tasks.
As before, we try all possible locations for the last verification between Tm1 and Tv2 , and for
each possible location v1, we call the function recursively on tasks Tm1 to Tv1 . Furthermore,
we add the expected time needed to successfully execute the tasks Tv1+1 to Tv2 , denoted by
E(d1,m1, v1, v2), knowing the position of the last disk checkpoint d1 and the position of the
last memory checkpoint m1. We express Everif (d1,m1, v2) as follows:

Everif (d1,m1, v2) =

min
m1≤v1<v2

{Everif (d1,m1, v1) + E(d1,m1, v1, v2)}. (1)

Again, the case v1 = m1 means that no further verifications are added, so we initialize the
dynamic program with Everif (d1,m1,m1) = 0. The verification cost at the end of Tv2 is
accounted for in the function E(d1,m1, v1, v2).

Computing the expected execution time between two verifications. Finally, to
compute the expected time needed for successfully executing several tasks between two veri-
fications, we need the position of the last disk checkpoint d1, the position of the last memory
checkpoint m1, and the positions of the two verifications v1 and v2. On the one hand, if a
fail-stop error occurs with probability pfv1,v2 , then the execution stops and we must recover
from the last disk checkpoint. In this case, we lose T lost

v1,v2 time, pay the cost of recovery RD
(set to 0 if d1 = 0), and re-execute the tasks starting from Td1 . The re-execution is done in
three steps. First, we call Emem(d1,m1) to compute the expected time needed to re-execute
the tasks from the last disk checkpoint after Td1 to the last memory checkpoint after Tm1 .
Then, we call the function Everif (d1,m1, v1) to account for the time needed to re-execute the

RR n° 8794

Two-level checkpointing and partial verifications for linear task graphs 7

tasks between the last memory checkpoint after Tm1 to the next verification after Tv1 . Finally,
we re-execute tasks Tv1+1 to Tv2 with E(d1,m1, v1, v2).

On the other hand, with probability 1− pfv1,v2 , there is no fail-stop error. In this case, we
pay Wv1,v2 by executing all the tasks from Tv1+1 to the next verification after Tv2 . Then we
add the cost of the guaranteed verification V ∗. After the verification, there is a probability
psv1,v2 of detecting a silent error. If a silent error is detected, we can recover from the last
memory checkpoint with a cost RM (set to 0 if m1 = 0), and only re-execute the tasks
from there by calling the function Everif (d1,m1, v1) followed by E(d1,m1, v1, v2), as before.
Therefore:

E(d1,m1, v1, v2) =

pfv1,v2
(
T lost
v1,v2 +RD + Emem(d1,m1)

+ Everif (d1,m1, v1) + E(d1,m1, v1, v2)
)

+
(

1− pfv1,v2
)(

Wv1,v2 + V ∗ + psv1,v2
(
RM

+ Everif (d1,m1, v1) + E(d1,m1, v1, v2)
))
. (2)

In order to compute the expected execution time, we need to compute T lost
v1,v2 , which is the

expected time loss due to a fail-stop error occurring during the execution of tasks Tv1+1 to
Tv2 . We derive:

T lost
v1,v2 =

∫ ∞
0

xP(X = x|X < Wv1,v2)dx

=
1

P(X < Wv1,v2)

∫ Wv1,v2

0
xP(X = x)dx ,

where P(X = x) denotes the probability that a fail-stop error strikes at time x. By definition,
we have P(X = x) = λfe

−λfx and P(X < Wv1,v2) = 1− e−λfWv1,v2 . Integrating by parts, we
get

T lost
v1,v2 =

1

λf
− Wv1,v2

eλfWv1,v2 − 1
. (3)

Now, substituting T lost
v1,v2 into Equation (2) and simplifying, we obtain:

E(d1,m1, v1, v2) = eλsWv1,v2

(
eλfWv1,v2 − 1

λf
+ V ∗

)
+ eλsWv1,v2

(
eλfWv1,v2 − 1

)
(RD + Emem(d1,m1))

+
(
e(λs+λf)Wv1,v2 − 1

)
Everif (d1,m1, v1)

+
(
eλsWv1,v2 − 1

)
RM .

Complexity. The complexity is dominated by the computation of the table Everif (d1,m1, v2),
which contains O(n3) entries, and each entry depends on at most n other entries that are
already computed. All tables are computed in a bottom-up fashion, from the left to the right
of the intervals. Hence, the overall complexity of the algorithm is O(n4).

RR n° 8794

Two-level checkpointing and partial verifications for linear task graphs 8

3.2 With partial verifications

It may be beneficial to further add partial verifications between two guaranteed verifications.
The intuitive idea would be to add yet another level to the dynamic programming algorithm,

and to replace E(d1,m1, v1, v2) in Equation (1) by a call to a function E
(intuitive)
partial (d1,m1, v1, p2, v2),

with p2 = v2, which would compute the expected time needed to execute all the tasks from
Tv1+1 to Tp2 and add further partial verifications (computed from the left to the right).

However, while the dynamic programming approach was rather intuitive without partial
verifications, the problem becomes much harder with partial verifications. The main reason
is that when computing an interval between two partial verifications, there is a probability g
that the error remains undetected after the partial verification. When this happens, we need
to account for the time lost executing the following tasks until the error is detected (eventually
by the guaranteed verification) or until the execution is interrupted by a fail-stop error. This
is only possible if we know the optimal positions of the partial verifications after the interval
up to the next guaranteed verification. This requires the dynamic programming algorithm to
first compute the values at the right of the current interval, hence progressing the opposite way
as what was done so far. Therefore, the function becomes Epartial(d1,m1, v1, p1, v2) (expected
time needed to execute all the tasks from Tp1+1 to Tv2), and it tries all positions p2 for the
next partial verification. But then, it also requires to remove some terms that account for
re-executed work from the intervals on the left of the current interval (because we do not have
this information yet), and to re-inject them later in the computation. Altogether we have
quite a complicated algorithm!

Edisk(d2)

Emem(d1,m2)

Everif (d1,m1, v2)

Epartial(d1,m1, v1, p1, v2)

E−(d1,m1, v1, p1, p2, v2)Eleft(v1, p1) Eright(d1,m1, v1, p2, v2)

d0 d1 d2m1 m2v1 v2p1 p2

Figure 2: With partial verifications.

Expected lost time in case of silent error. First, we compute Eright(d1,m1, v1, p1, v2),
the expected time lost executing the tasks Tp1+1 to Tv2 , assuming that there was a silent error
in this interval. This computation uses p2, the optimal position of the verification immediately
following p1, which is computed with the dynamic programming. Indeed, Tp2 may detect the
error or not. If the error is detected by Tp2 , we loose the work Wp1,p2 + V + RM , while we
use Eright(d1,m1, v1, p2, v2) if the error remains undetected. Also, we consider fail-stop errors
only between Tp1+1 and Tp2 , because fail-stop errors between Tp2+1 and Tv2 will be accounted
for in Eright(d1,m1, v1, p2, v2). Note that even if we know that there is a silent error in the
interval, we may need to recover from a fail-stop error if it strikes before the silent error is

RR n° 8794

Two-level checkpointing and partial verifications for linear task graphs 9

detected. Altogether:

Eright(d1,m1, v1, p1, v2) =

pfp1,p2

(
T lost
p1,p2 +RD + Emem(d1,m1)

)
+ (1− pfp1,p2)(Wp1,p2 + V + (1− g)RM

+ gEright(d1,m1, v1, p2, v2)),

and hence:

Eright(d1,m1, v1, p1, v2) =

(1− e−λfWp1,p2)
(1

λf
− Wp1,p2

eλfWp1,p2 − 1

+RD + Emem(d1,m1)
)

+ e−λfWp1,p2 (Wp1,p2 + V + (1− g)RM

+ gEright(d1,m1, v1, p2, v2)).

The initialization is Eright(d1,m1, v1, v2, v2) = RM . Indeed, in this case, there is no task
to execute, and if there was a silent error, it is therefore immediately detected by v2 (a
guaranteed verification), and we just pay RM . Knowing p2, we are therefore able to compute
all values of Eright. We will see later how we use this knowledge in Eright. Note that the time
to re-execute the tasks after a recovery is omitted here, since it will be accounted for when
computing E(d1,m1, v1, p1, p2, v2), the expected time needed to successfully execute all the
tasks between two partial verifications (from Tp1+1 to Tp2).

Expected time to compute tasks Tp1+1 to Tp2. Figure 2 shows all the tasks involved
in the computation of an interval consisting of several tasks between two partial verifications
at p1 and p2. Let E(d1,m1, v1, p1, p2, v2) denote the expected time needed to successfully
execute all the tasks from Tp1+1 to Tp2 , knowing that the last disk checkpoint is after Td1 ,
the last memory checkpoint is after Tm1 , the last guaranteed verification is after Tv1 , and the
next guaranteed verification is after Tv2 .

On the one hand, if a fail-stop error occurs with probability pfp1,p2 , then the task stops
and we must recover from the last disk checkpoint. We lose T lost

p1,p2 time, we pay the cost for
the disk recovery RD, and we need to re-execute the tasks starting from Td1 . This is done in
three steps: first we call Emem(d1,m1) to compute the expected time needed to re-execute the
tasks from the last disk checkpoint after Td1 to the last memory checkpoint after Tm1 . Then
we call the function Everif (d1,m1, v1) to account for the time needed to re-execute the tasks
between the last memory checkpoint after Tm1 to the next guaranteed verification after Tv1 ,
and finally we are left with the remaining tasks between Tv1+1 and Tp1 . Let Eleft(v1, p1)
denote the expected time needed to re-execute all the tasks from Tv1+1 to Tp1 . Finally, we
can re-execute tasks Tv1+1 to Tv2 by calling E(d1,m1, v1, p1, p2, v2).

On the other hand, there is a probability (1 − pfp1,p2) of having no fail-stop errors. In
that case, we execute all the tasks from Tp1+1 to the next verification after Tp2 and we pay
Wp1,p2 . Then we add the cost for the verification V . After the partial verification, there is a
probability ps of having a silent error. In this case, we pay a recovery from the last memory

RR n° 8794

Two-level checkpointing and partial verifications for linear task graphs 10

checkpoint (RM) and re-executed the tasks from there: we call Everif (d1,m1, v1), followed
by Eleft(v1, p1) and E(d1,m1, v1, p1, p2, v2). Furthermore, if the error was not detected (with
probability g), we use Eright(d1,m1, v1, p2, v2) to compute the expected time lost executing
the tasks following Tp2 , knowing that there is an undetected silent error (as explained earlier).
Therefore:

E(d1,m1, v1, p1, p2, v2) =

pfp1,p2
(
T lost
p1,p2 +RD + Emem(d1,m1)

+ Everif (d1,m1, v1) + Eleft(v1, p1)

+ E(d1,m1, v1, p1, p2, v2)
)

+ (1− pfp1,p2)
(
Wp1,p2 + V + ps

(
Everif (d1,m1, v1) + Eleft(v1, p1)

+ E(d1,m1, v1, p1, p2, v2) + (1− g)RM

+ gEright(d1,m1, v1, p2, v2)
))
. (4)

Substituting T lost
p1,p2 into Equation (4) and simplifying, we obtain:

E(d1,m1, v1, p1, p2, v2) = eλsWp1,p2

(
eλfWp1,p2 − 1

λf
+ V

)
+ eλsWp1,p2

(
eλfWp1,p2 − 1

)
(RD + Emem(d1,m1))

+
(
e(λs+λf)Wp1,p2 − 1

) (
Everif (d1,m1, v1) + Eleft(v1, p1)

)
+
(
eλsWp1,p2 − 1

) (
(1− g)RM + gEright(d1,m1, v1, p2, v2)

)
.

Finally, because we do not know at this point how to compute Eleft(v1, p1), we remove
the term (

e(λs+λf)Wp1,p2 − 1
)
Eleft(v1, p1)

from E(d1,m1, v1, p1, p2, v2). This corresponds to the amount of time needed to re-execute
all the tasks from Tv1+1 to Tp1 when there is an error between Tp1+1 and Tp2 . This time will
be added back when computing Epartial, as explained below. Therefore, we introduce the
modified expression of E, denoted E−, as follows:

E−(d1,m1, v1, p1, p2, v2) = eλsWp1,p2

(
eλfWp1,p2 − 1

λf
+ V

)
+ eλsWp1,p2

(
eλfWp1,p2 − 1

)
(RD + Emem(d1,m1))

+
(
e(λs+λf)Wp1,p2 − 1

) (
Everif (d1,m1, v1)

)
+
(
eλsWp1,p2 − 1

) (
(1− g)RM + gEright(d1,m1, v1, p2, v2)

)
.

Computing Epartial(d1,m1, v1, p1, v2), the expected time needed to execute all the
tasks from Tp1+1 to Tv2 (and placing extra partial verifications). Finally, we need

RR n° 8794

Two-level checkpointing and partial verifications for linear task graphs 11

to compute Epartial and to decide when to use additional partial verifications on tasks that
are not yet verified. The function is first called from the third level between two guaranteed
verifications, and p1 is originally set to v1. Therefore, Epartial(d1,m1, v1, p1, v2) denotes the
expected time needed to execute all the tasks from Tp1+1 to Tv2 , where Tp1 is followed by a
partial verification (with the exception of the first call) and Tv2 is followed by a guaranteed ver-
ification, knowing the position of the last disk checkpoint d1, the last memory checkpoint m1

and the last guaranteed verification v1.
Contrarily to the expressions derived in Section 3.1, note that partial verifications are

placed from the left to the right. We use the expression of E−, trying all possible positions p2
for the partial verification following p1, and we account for the fact that tasks between Tp1+1

and Tp2 may be re-executed several times (because we removed Eleft from E−). In fact, for any
number of partial verifications between p2 and v2, we can show that E−(d1,m1, v1, p1, p2, v2)
is re-executed e(λs+λf)Wp2,v2 times, and hence we obtain:

Epartial(d1,m1, v1, p1, v2) =

min
p1<p2≤v2

{
E−(d1,m1, v1, p1, p2, v2)× e(λs+λf)Wp2,v2

+ Epartial(d1,m1, v1, p2, v2)
}
.

The initialization case is for p2 = v2. Then, there is no re-execution of the interval
induced by errors to the right of p2 (within an Eleft), and therefore we compute only once
E−(d1,m1, v1, p1, v2, v2). Furthermore, the interval is ended by a guaranteed verification, and
therefore we add the corresponding verification cost:

Epartial(d1,m1, v1, v2, v2) =

E−(d1,m1, v1, p1, v2, v2) + e(λs+λf)Wp1,v2 (V ∗ − V)

Because partial verifications are placed from the left to the right, when implementing the
algorithm, we first compute all values of Epartial on the right of the interval, which are needed
to progress towards the left. This is why we always have the values of the next p2 when
computing Eright, which correspond to the minimum value selected by Epartial. However, it
was not possible to derive the values of the re-execution for the left part of the interval, hence
the trick to compute the number of times each interval is re-executed, due to a failure on the
right (the Eleft that is removed from the initial expression of E).

Accounting for re-executions on the left. Finally, let us show that for any number
of partial verifications between p2 and v2, the function E−(d1,m1, v1, p1, p2, v2) re-executes
an amount e(λs+λf)Wp2,v2 of work. If there are no partial verifications after p2, then it is
executed once when progressing within the computation, and we also need to account for
the e(λs+λf)Wp2,v2 − 1 re-executed work due to the Eleft term that was suppressed from
E−(d1,m1, v1, p2, v2, v2).

With one intermediate partial verification p3 between p2 and v2, the same reasoning shows
that there is an amount of e(λs+λf)Wp2,p3 re-executed work coming from the initial execution
and the Eleft term suppressed from E−(d1,m1, v1, p2, p3, v2). Furthermore, there is an amount
of (e(λs+λf)Wp3,v2−1) re-executed work coming from the Eleft term of E−(d1,m1, v1, p3, v2, v2).
In turn, this re-executed work incurs e(λs+λf)Wp2,p3 re-executed work (initial execution and re-
executions due to the Eleft term coming from E−(d1,m1, v1, p2, p3, v2)). Overall, the number

RR n° 8794

Two-level checkpointing and partial verifications for linear task graphs 12

of re-executed work is finally

e(λs+λf)Wp2,p3 +
(
e(λs+λf)Wp2,p3

)(
e(λs+λf)Wp3,v2 − 1

)
,

and therefore there is a total amount of e(λs+λf)Wp2,v2 re-executed work. It is easy to extend
this reasoning to any number of intervals by induction, assuming that it is true for i interme-
diate partial verifications pvi, . . . , pv1, and adding a partial verification pvi+1 between p2 and
pvi. The same reasoning holds.

Complexity. Clearly, the complexity is now dominated by the computation of the table
Epartial(d1,m1, v1, p1, v2), which contains O(n5) entries, and each entry depends on at most
n other entries that are already computed. Hence, the overall complexity of the algorithm
is O(n6).

4 Performance evaluation

In this section, we conduct a set of simulations to assess the relative efficiency of our ap-
proach under realistic scenarios. We instantiate the model with actual parameters from the
literature and we compare the performance of three algorithms: (i) a single level algorithm
ADV ∗ with only disk checkpoints (and additional guaranteed verifications), (ii) a two-level
algorithm combining memory and disk checkpoints ADMV ∗ (as in Section 3.1), and (iii) the
complete algorithm using additional partial verifications ADMV (as in Section 3.2). The
optimal positions of verifications and disk checkpoints can be easily derived for ADV ∗ , us-
ing a simplification of the proposed dynamic programming algorithm in Section 3.1 with no
additional memory checkpoints.

Simulation setup. We make several assumptions on the input parameters. First, we
assume that the recovery cost is equivalent to the corresponding checkpointing cost, i.e., RD =
CD and RM = CM . This is reasonable because writing a checkpoint and reading one typically
takes the same amount of time. Then, we assume that a guaranteed verification must check
all the data in memory, making its cost in the same order as that of a memory checkpoint, i.e.,
V ∗ = CM . Furthermore, we assume partial verifications similar to those proposed in [7, 2, 3],
with very low cost while offering good recalls. In the following, we set V = V ∗

100 and r = 0.8.
Also, the total work is fixed to 25000 seconds and it is distributed uniformly between up to 50
tasks. All these choices are somewhat arbitrary and can easily be modified in the evaluations;
we believe they represent reasonable values for current and next-generation HPC applications.
The code is publicly available at http://graal.ens-lyon.fr/~yrobert/chain2levels.zip
for the interested readers to experiment with their parameters.

Platform settings. Table 1 presents the four platforms used in the simulations and
their main parameters. These platforms have been used to evaluate the Scalable Check-
point/Restart (SCR) library by Moody et al. [10], who provide accurate measurements for
λf , λs, CD and CM using real applications. Note that the Hera platform has the worst error
rates, with a platform MTBF of 12.2 days for fail-stop errors and 3.4 days for silent errors. In
comparison, and despite its higher number of nodes, the Coastal platform features a platform
MTBF of 28.8 days for fail-stop errors and 5.8 days for silent errors. In addition, the last
platform uses SSD technology for memory checkpointing, which provides more data space, at
the cost of higher checkpointing costs.

RR n° 8794

Two-level checkpointing and partial verifications for linear task graphs 13

platform #nodes λf λs CD CM
Hera 256 9.46e-7 3.38e-6 300s 15.4s
Atlas 512 5.19e-7 7.78e-6 439s 9.1s

Coastal 1024 4.02e-7 2.01e-6 1051s 4.5s
Coastal SSD 1024 4.02e-7 2.01e-6 2500s 180.0s

Table 1: Platform parameters.

Number of tasks
0 10 20 30 40 50

N
or

m
al

iz
ed

 M
ak

es
pa

n

1.02

1.04

1.06

1.08

1.1

1.12
Platform Hera

ADV*
ADMV*
ADMV

Number of tasks
10 20 30 40 50#

C
he

ck
po

in
ts

 /
V

er
ifi

ca
tio

ns

0

10

20

30

40

Algorithm A
DV* on Hera

#Disk Checkpoints
#Memory Checkpoints
#Verifications

Number of tasks
10 20 30 40 50#

C
he

ck
po

in
ts

 /
V

er
ifi

ca
tio

ns

0

10

20

30

40

Algorithm A
DMV* on Hera

#Disk Checkpoints
#Memory Checkpoints
#Verifications

Number of tasks
10 20 30 40 50#

C
he

ck
po

in
ts

 /
V

er
ifi

ca
tio

ns

0

10

20

30

40

Algorithm A
DMV

 on Hera

#Disk Checkpoints
#Memory Checkpoints
#Verifications
#Partial Verifications

Number of tasks
0 10 20 30 40 50

N
or

m
al

iz
ed

 M
ak

es
pa

n

1

1.1

1.2

Platform Atlas

ADV*
ADMV*
ADMV

Number of tasks
10 20 30 40 50#

C
he

ck
po

in
ts

 /
V

er
ifi

ca
tio

ns

0

10

20

30

40

Algorithm A
DV* on Atlas

#Disk Checkpoints
#Memory Checkpoints
#Verifications

Number of tasks
10 20 30 40 50#
C

he
ck

po
in

ts
 /

V
er

ifi
ca

tio
ns

0

10

20

30

40

Algorithm A
DMV* on Atlas

#Disk Checkpoints
#Memory Checkpoints
#Verifications

Number of tasks
10 20 30 40 50#

C
he

ck
po

in
ts

 /
V

er
ifi

ca
tio

ns

0

10

20

30

40

Algorithm A
DMV

 on Atlas

#Disk Checkpoints
#Memory Checkpoints
#Verifications
#Partial Verifications

Number of tasks
0 10 20 30 40 50

N
or

m
al

iz
ed

 M
ak

es
pa

n

1.06

1.08

1.1
Platform Coastal

ADV*
ADMV*
ADMV

Number of tasks
10 20 30 40 50#

C
he

ck
po

in
ts

 /
V

er
ifi

ca
tio

ns

0

10

20

30

40

Algorithm A
DV* on Coastal

#Disk Checkpoints
#Memory Checkpoints
#Verifications

Number of tasks
10 20 30 40 50#

C
he

ck
po

in
ts

 /
V

er
ifi

ca
tio

ns

0

10

20

30

40

Algorithm A
DMV* on Coastal

#Disk Checkpoints
#Memory Checkpoints
#Verifications

Number of tasks
10 20 30 40 50#

C
he

ck
po

in
ts

 /
V

er
ifi

ca
tio

ns

0

10

20

30

40

Algorithm A
DMV

 on Coastal

#Disk Checkpoints
#Memory Checkpoints
#Verifications
#Partial Verifications

Number of tasks
0 10 20 30 40 50

N
or

m
al

iz
ed

 M
ak

es
pa

n

1.13

1.14

1.15

1.16

1.17
Platform Coastal SSD

ADV*
ADMV*
ADMV

Number of tasks
10 20 30 40 50#

C
he

ck
po

in
ts

 /
V

er
ifi

ca
tio

ns

0

10

20

30

40

Algorithm A
DV* on Coastal SSD

#Disk Checkpoints
#Memory Checkpoints
#Verifications

Number of tasks
10 20 30 40 50#

C
he

ck
po

in
ts

 /
V

er
ifi

ca
tio

ns

0

10

20

30

40

Algorithm A
DMV* on Coastal SSD

#Disk Checkpoints
#Memory Checkpoints
#Verifications

Number of tasks
10 20 30 40 50#

C
he

ck
po

in
ts

 /
V

er
ifi

ca
tio

ns

0

10

20

30

40

Algorithm A
DMV

 on Coastal SSD

#Disk Checkpoints
#Memory Checkpoints
#Verifications
#Partial Verifications

Figure 3: Performance of the three algorithms on the four platforms. Each line represents a
platform.

RR n° 8794

Two-level checkpointing and partial verifications for linear task graphs 14

Algorithm performance. The first column of Figure 3 presents, for each platform, the
normalized makespan with respect to the execution time without error for different numbers
of tasks. First, note that varying the number of tasks has an impact on both the size of
the tasks and the maximum number of checkpoints and verifications that the algorithms can
choose from. On the one hand, when the number of tasks is small (i.e., less than 5), the
probability of having an error during the execution (either a fail-stop or a silent) increases
quickly and reaches more than 10% on Hera for a single task. As a consequence, the appli-
cation experiences more recoveries and re-executions (with significantly larger tasks), which
increases the final overhead. However, when the number of tasks is large enough (i.e., more
than 5), then tasks become small and the probability of having an error during the execution
drops below 1% for one task, reducing recovery and re-execution costs at the same time.

Single level algorithm. The second column of Figure 3 shows the numbers of disk check-
points (with associated memory checkpoints) and guaranteed verifications used by the ADV ∗

algorithm on the four platforms and for different numbers of tasks. We observe that the num-
ber of guaranteed verifications is often set to the maximum (i.e., the number of tasks) while
the number of checkpoints remains relatively small (i.e., less than 10 for all the platforms).
This is because checkpoints are costly, and verifications help reducing the amount of time
lost due to silent errors. Because they are cheap, the algorithm tends to place as many as
possible. The algorithm limits their number only when the number of tasks is large enough
(i.e., 50 on Hera) or the cost of the verification is too high, as it is on Coastal SSD.

Two-level algorithm. The third column of Figure 3 presents the numbers of disk check-
points, memory checkpoints and guaranteed verifications used by the ADMV ∗ algorithm on
the four platforms and for different number of tasks. When using additional memory check-
points, we observe that the number of guaranteed verifications remains similar to that of
the number shown in the previous column concerning the ADV ∗ algorithm. However, the
algorithm now uses additional memory checkpoints, which drastically reduces the amount
of time lost in re-execution when a silent error is detected. In particular, we observe that
the two-level checkpointing algorithm ADMV ∗ always lead to a better makespan compared to
the single level algorithm ADV ∗ , with 2% on Hera or 2.5% on Coastal, as shown in the first
column, thus demonstrating the usefulness of our approach.

With partial verifications. The last column of Figure 3 presents the numbers of disk
checkpoints, memory checkpoints, guaranteed verifications and additional partial verifications
used by the ADMV algorithm on the four platforms and for different numbers of tasks. With
our settings, partial verifications are always more cost-effective than guaranteed verifications.
But due to the smaller recall, they are only worth it if one can use a lot of them, which
is only possible when the number of tasks is large enough. Therefore, the algorithm only
starts to use partial verifications when the number of tasks is greater than 30 on Hera, 40 on
Coastal and 50 on Atlas, where the silent error rate is the highest among the four platforms.
Overall, adding partial verifications has a limited impact on the final makespan, with the
exception of the Coastal SSD platform, where the cost of checkpoints and verifications are
much higher than on the other platforms. Partial verifications, being 100 times cheaper than
guaranteed verifications, remain the only affordable resilience tool on this platform. In this
case, we observe an improved makespan (a little bit less than 1% with 50 tasks) compared to
the ADMV ∗ algorithm, as shown in the first column of Figure 3.

RR n° 8794

Two-level checkpointing and partial verifications for linear task graphs 15

5 Conclusion

In this paper, we proposed a two-level checkpointing scheme to cope with both fail-stop errors
and silent data corruptions on large-scale platforms. While numerous studies have dealt
with either error source, few have dealt with both, while it is mandatory to address both
sources simultaneously at scale. By combining standard disk checkpointing technique with
in-memory checkpoints and verification mechanisms (partial or guaranteed), we have designed
a multi-level dynamic programming algorithm that computes the optimal solution for a linear
application workflow in polynomial time. Simulations based on realistic parameters on several
platforms show consistent results, and confirm the benefit of the combined approach. While
the most general algorithm has a high complexity in O(n6), where n is the number of tasks,
it executes within a few seconds for n = 50, and therefore can be readily used for real-life
linear workflows whose size rarely exceed ten or twenty tasks.

One interesting future direction is to assess the usefulness of this approach on general ap-
plication workflows. The problem gets much more challenging, even in the simplified scenario
where each task requires the entire platform to execute. In fact, in this simplified scenario, it
is already NP-hard to decide which task to checkpoint in a simple join graph (n − 1 source
tasks and a common sink task), with only fail-stop errors striking (hence a single level of
checkpoint and no verification at all) [1]. Still, heuristics are urgently needed to address
the same problem as in this paper, with two error sources, two checkpoint types and two
verification types, if we are to deploy HPC workflows efficiently at scale.

RR n° 8794

Two-level checkpointing and partial verifications for linear task graphs 16

References

[1] G. Aupy, A. Benoit, H. Casanova, and Y. Robert. Scheduling computational workflows
on failure-prone platforms. In 17th Workshop on Advances in Parallel and Distributed
Computational Models APDCM 2015. IEEE Computer Society Press, 2015.

[2] L. Bautista Gomez and F. Cappello. Detecting silent data corruption through data
dynamic monitoring for scientific applications. SIGPLAN Notices, 49(8):381–382, 2014.

[3] L. Bautista Gomez and F. Cappello. Detecting and correcting data corruption in stencil
applications through multivariate interpolation. In Proc.1st Int. Workshop on Fault
Tolerant Systems (FTS), 2015.

[4] L. Bautista-Gomez, S. Tsuboi, D. Komatitsch, F. Cappello, N. Maruyama, and S. Mat-
suoka. FTI: High performance fault tolerance interface for hybrid systems. In Proc.
SC’11, 2011.

[5] A. Benoit, A. Cavelan, Y. Robert, and H. Sun. Assessing general-purpose algorithms to
cope with fail-stop and silent errors. In Proc. 5th Int. Workshop on Performance Mod-
eling, Benchmarking and Simulation of High Performance Computer Systems (PMBS),
2014.

[6] A. Benoit, A. Cavelan, Y. Robert, and H. Sun. Optimal resilience patterns to cope
with fail-stop and silent errors. Research report RR-8786, INRIA, 2015. Available at
graal.ens-lyon.fr/~yrobert/rr8786.pdf.

[7] E. Berrocal, L. Bautista-Gomez, S. Di, Z. Lan, and F. Cappello. Lightweight silent data
corruption detection based on runtime data analysis for HPC applications. In Proc.
HPDC, 2015.

[8] K. M. Chandy and L. Lamport. Distributed snapshots: Determining global states of
distributed systems. ACM Transactions on Computer Systems, 3(1):63–75, 1985.

[9] Z. Chen. Online-ABFT: An online algorithm based fault tolerance scheme for soft error
detection in iterative methods. In Proc. PPoPP, pages 167–176, 2013.

[10] A. Moody, G. Bronevetsky, K. Mohror, and B. R. d. Supinski. Design, Modeling, and
Evaluation of a Scalable Multi-level Checkpointing System. In Proc. SC’10. ACM/IEEE,
2010.

[11] T. O’Gorman. The effect of cosmic rays on the soft error rate of a DRAM at ground
level. IEEE Trans. Electron Devices, 41(4):553–557, 1994.

[12] S. Toueg and O. Babaoğlu. On the optimum checkpoint selection problem. SIAM J.
Comput., 13(3), 1984.

[13] J. Ziegler, M. Nelson, J. Shell, R. Peterson, C. Gelderloos, H. Muhlfeld, and C. Montrose.
Cosmic ray soft error rates of 16-Mb DRAM memory chips. IEEE Journal of Solid-State
Circuits, 33(2):246–252, 1998.

[14] J. F. Ziegler, H. W. Curtis, H. P. Muhlfeld, C. J. Montrose, and B. Chin. IBM experi-
ments in soft fails in computer electronics. IBM J. Res. Dev., 40(1):3–18, 1996.

RR n° 8794

RESEARCH CENTRE
GRENOBLE – RHÔNE-ALPES

Inovallée

655 avenue de l’Europe Montbonnot

38334 Saint Ismier Cedex

Publisher
Inria
Domaine de Voluceau - Rocquencourt
BP 105 - 78153 Le Chesnay Cedex
inria.fr

ISSN 0249-6399

