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Abstract: We study the strong connectivity of directed graphs belonging to a random model
with three parameters n, d, p. The parameter n defines the number of vertices. Each d-tuple of
vertices is picked independently with probability p and if picked, d � 1 directed edges from the
vertex in the first position in the picked tuple to all others are added to the edge set. For d = 2,
the model thus reduces down to the well-known Erdös–Renyi random directed graphs. The higher
order case d > 2 arises in the spectral analysis of sparse tensors. We first investigate the threshold
phenomenon for the strong connectivity of the directed random graphs from this model. Then, we
conduct a series of experiments aimed at gaining a deeper understanding of these directed random
graphs.
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Connectivité�d’un�modèle�de�graphe�dirigé�aléatoire
Résumé�:�Nous�étudions�la�connectivité�des�graphes�dirigés�appartenant�à�un�modèle�
aléatoire�avec�trois�paramètres�n,�d,�p.�Le�paramètre�n�définit�le�nombre�de�sommets.�
Chaque�chaîne�d�de�sommets,�avec�répétitions,�est�choisiF� indépendamment�avec�une�
probabilité�p�et,�si�elle�est�choisie,�d���1�arêtes�dirigées�du�sommet�en�première�position�
dans�la�chaîne�vers�tous�les�autres�sont�ajoutées�à�l’ensemble�des�arêtes.�Pour�d�=�2,�le�
modèle�se�réduit�donc�aux�graphes�aléatoires�dirigés�bien�connus�d’Erdös–Renyi.�Le�cas�
d’ordre� supérieur�d�>�2� se�présente�dans� l’analyse�des� tenseurs�creux.�Nous�étudions�
d’abord�le�phénomène�de�seuil�pour�la�connectivité�des�graphes�aléatoires�dirigés�de�ce�
modèle.�Ensuite,�nous�menons�une�série�d’expériences�visant�à�mieux�comprendre�ces�
graphes�aléatoires�dirigés.
Mots-clés� :� graphes�aléatoires,�connectivité,�tenseurs�creux
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4 Benoit, Kaya, & Uçar

1 Introduction

One of the fundamental concepts in nonnegative matrix theory is the irreducibility of a matrix [2,
Ch.2]. Once this property is verified for a matrix, one obtains a solid understanding of the
spectral properties of the matrix by the use of the well-known Perron–Frobenius theorem and its
extensions [2]. This analysis underlines many important applications, including PageRank [12].
An n ⇥ n matrix A is called irreducible if its directed graph GA = (V, E), where |V | = n and
for vi, vj 2 V the directed edge vi ! vj 2 E exists if and only if aij 6= 0, is strongly connected.
Recall that a directed graph is strongly connected, if any vertex reaches to all other vertices by
following a set of directed edges.

Extensions of the Perron–Frobenius theorem to tensors have been developed [5, 7, 17][15,
Ch.3] and found various applications [9, 15]. By a tensor, we mean a multi-dimensional array,
sometimes called a hypermatrix [13]. One of the extensions of the Perron–Frobenius theorem
to tensors [5, 17] defines the irreducibility of a tensor T based on the strong connectivity of a
directed graph associated with T . Let us now introduce the directed graph that is used in this
context. Let T be a d-dimensional sparse tensor with n indices in each dimension, so that each
nonzero is of the form T (i1, i2, . . . , id), with i1 2 {1, 2, . . . , n}. The directed graph GT = (V, E)
associated with T has |V | = n vertices, and each nonzero T (i1, i2, . . . , id) adds a total of d � 1
edges vi1 ! vij for j = 2, 3, . . . , d to the directed graph GT . There may be self-loops and parallel
directed edges in GT , which are of no importance in the context of connectivity. A tensor is
called irreducible if and only if GT is strongly connected. Note that when the definitions are
applied to the case d = 2, they coincide with the relevant definitions in the matrix case.

In many case, matrices and tensors from a random family are used to evaluate algorithms [3,
4]. One common random matrix model is based on the Erdös–Renyi [8] or Gilbert [10] random
graph model. This random graph model G(n, p) has two parameters n and p. A graph from
this family has n vertices, and includes each possible edge (in other words, all potential pair
of vertices) with probability p. Then, the adjacency matrix of the graph is taken as a pattern
of a random symmetric matrix for evaluating algorithms. The process can also be described in
terms of matrices: each entry in the strictly upper triangular part of an n ⇥ n matrix is set to
one with probability p, and the entries in the lower triangular part are set to be equivalent to
the corresponding symmetric entries. In a similar fashion, random directed graph model

�!
G(n, p)

can be used to create random unsymmetric matrices. In matrix terms, each of the n2 entries of
an n ⇥ n matrix is set to one with probability p. A similar model has been used for creating
random tensors, with an additional parameter d specifying the number of dimensions [6][15, Ch.
4]. In this random tensor model, one builds a d-dimensional, 0-1 tensor T with n indices in each
dimension, where T (i1, i2, . . . , id) = 1 with probability p and zero otherwise.

The Erdös–Renyi graph models G(n, p) and
�!
G(n, p) and hence the resulting matrices are well

understood. In particular, the connectivity of undirected graphs from G(n, p) and the strong
connectivity of the directed graphs from

�!
G(n, p) are well established. Our aim in this paper is to

understand the connectivity of the directed graphs associated with the random tensors created
with parameters n, d, p and see when such directed graphs are strongly connected or when the
random tensors are irreducible. We use D(n, d, p) to refer to this family of directed graphs.
To create a directed graph graph G = (V, E) from D(n, d, p), one builds a d-dimensional, 0-1
tensor T with n indices in each dimension, where T (i1, i2, . . . , id) = 1 with probability p and
zero otherwise. Then, V = {1, 2, . . . , n}, and for each nonzero T (i1, i2, . . . , id) of the tensor T , E
contains the d�1 directed edges from the vertex corresponding to i1 to all vertices corresponding
to i2, . . . , id. Here, we see that there are dependencies between edges in a graph from D(n, d, p).
The existence of a directed edge of the form vi ! vj implies d�2 more directed edges emanating
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Random directed graphs 5

from vi. This dependency distinguishes D(n, d, p) from
�!
G(n, p), and prevents us applying the

results known for
�!
G(n, p) to our case.

Formally, this paper studies the connectivity properties of directed graphs belonging to a
random model with three parameters n 2 Z+, d 2 Z+, and p 2 R in the range [0, 1]. Let
i 2 {1, 2, . . . , n}d, so that i = hi1, i2, . . . , idi is a d-tuple with ij 2 {1, 2, . . . , n} for j = 1, 2, . . . , d.
In a directed graph G = (V, E) belonging to the family D(n, d, p),

• there are n vertices, |V | = n;

• each d-tuple i = hi1, i2, . . . , idi for ij 2 {1, 2, . . . , n} and j = 1, 2, . . . , d is picked indepen-
dently with probability p to generate edges. When a d-tuple i = hi1, i2, . . . , idi is picked,
d � 1 directed edges i1 ! ij for j = 2, 3, . . . , d are added to the edge set E.

The d-tuples are sampled independently, and the edges of G are created afterwards determinis-
tically using the sampled edges. The duplicate edges and self-loops in G are of no importance
for this study and can be discarded.

Our aim is to show a phase transition in the strong connectivity of D(n, d, p) for a given n
and d. That is, we want to specify a threshold p̂ such that for all p � p̂, a directed graph from
the family D(n, d, p) is strongly connected with a high probability; and a directed graph from
the family D(n, d, p0) for p0 ⌧ p̂ is not strongly connected with a high probability.

Claim 1. Let p̂ = logn+c
nd�1 for a real constant c. Then, for all p � p̂, a directed graph from the

family D(n, d, p) is strongly connected with a high probability. In particular,

lim
n!1

Pr(D(n, d, p) is strongly connected) � e�2e�c

.

For the undirected Erdös-Renyi (ER) graph model, the equivalent question is the threshold
for an undirected ER graph model to be connected, which is logn+c

n for a c 2 R. Note that
in this case, there are n log n + cn edges in expectation. The threshold for the directed graph
model D(n, 2, p) is shown by Graham and Pike [11] to be logn+c

n for an arbitrary constant c;
more precisely, Graham and Pike show that

lim
n!1

Pr(D(n, 2, p) is strongly connected) = e�2e�c

.

As seen here, the threshold values for undirected ER graphs to be connected or directed ER
graphs to be strongly connected are equivalent. The claimed results are equivalent to these
results in that there are n log n + cn d-tuples to be considered for adding edges, and the limiting
values for the directed graphs to be strongly connected are lower bounded by the same function.

2 Analysis
Let N = {1, 2, . . . , n}. For a D(n, d, p) not to be strongly connected, there should be a set of
vertices S ⇢ N from which no edge is directed to N \ S. We will bound the probability of this
happening. A sample 3D tensor is shown in Figure 1 to aid discussion. In terms of tensors, there
should be a subset of indices S in the first dimension such that all entries of the tensor with
coordinates hi, i2, . . . , idi for i 2 S, ij 2 N \ S and j = 2, . . . , d should be zero. In the figure,
on the dimension I, there should be only zeros in the places shown with 0; that is T (s, j, k) = 0
for s 2 S and j, k 2 N \ S. The probability that this is happening for the example in Figure 1
is (1 � p)|S|n2�|S|3 . In order to compute this probability, we count the number of tensor entries
of the form T (s, j, k) for s 2 S and j, k 2 N \ S, and multiply the probabilities of each such
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Figure 1: A sample 3D tensor T whose directed graph is not strongly connected.

entry to be zero. The number of entries in places shown with zero is obtained by subtracting the
number of entries in the gray subtensor, which is |S|3, from the total number of entries of the
form T (s, j, k) for s 2 S and j, k 2 N , which is |S|n2. In general, the probability that a given
set S of vertices in D(n, d, p) does not have edges outside of S can be computed as

(1 � p)|S|nd�1�|S|d . (1)

In order for D(n, d, p) not to be strongly connected, there must be at least one subset S of t
vertices for t = 1, . . . , n � 1, which yields the form shown in Figure 1. The number of t-element
subsets of N is

�n
t

�
. By the union bound and (1), the probability that at least one of these events

happens, in which case D(n, d, p) is not strongly connected, is no larger than

n�1X

t=1

✓
n

t

◆
(1 � p)tn

d�1�td .

Therefore,

Pr(D(n, d, p) is strongly connected) � 1 �
n�1X

t=1

✓
n

t

◆
(1 � p)tn

d�1�td . (2)

Assuming that we did not lose too much in applying the union bound, the bound in (2) will
be tight. We thus want to show that the right hand side of (2) is bounded from below by e�2e�c

to finalize the claimed result. We offer experimental results in the next section to demonstrate
evidence that

lim
n!1

Pr(D(n, d, p) is strongly connected) � e�2e�c

.

holds for large c.
While one can develop a formula for the probability of an edge to be present in D(n, d, p),

there are dependencies among these events, as the presence of a directed edge i ! j implies the
presence of d � 2 additional directed edges emanating from i. Therefore, a proper calculation of
the probability that D(n, d, p) is strongly connected cannot assume the independence of edges in
the directed graph G; though the d-tuples are picked independently.

Inria
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3 Experiments
We have implemented algorithms to create sparse tensors by first computing an expected number
of nonzeros, z = p⇥nd, and then creating that many nonzeros using the standard rand() function
from the standard C library. Assuming a fully random number generator, this procedure creates
a sparse random tensor with z nonzeros among all

�nd

z

�
such tensors, with uniform probability.

A Matlab implementation of a similar random sparse tensor generator is available elsewhere
(sptenrand.m from Tensor Toolbox [1]). In the language of the standard random graph models,
this model is called binomial model, while the original one is called uniform graph model. The
equivalence between the binomial and uniform graph and directed graph models in terms of
thresholds are described by Łuczak [14] and Graham and Pike [11]. While we did not try to
establish the equivalence between the binomial and uniform models analytically, we provide
some experiments to argue thatthis being the case. Once the directed graph models are created,
we check them for being strongly connected using Tarjan’s algorithm [16]. Our codes are available
at https://gitlab.inria.fr/bora-ucar/ndp-graph-model.

While the claimed results are asymptotic, we are interested in practical settings. We present
experiments with n 2 {100, 1000}, with �2  c  4, and with d = 2, 4, 8, 16. For each given
triplet of the form (n, d, c), we create 100000 random directed graphs from the D(n, d, p) family,
where p = logn+c

nd�1 . Counting the number of strongly connected graphs and dividing that number
by 100000 gives the empirical probability. We then compare the empirical probabilities with the
claimed bound e�2e�c

. For a small value of n = 50, we also explicitly compute the right hand
side of Equation (2) and plot its value against the empirical probability and the claimed lower
bound for a small range.

3.1 Investigating the threshold
We investigate the empirical probability of D(n, d, p) to be strongly connected with different
parameter settings. This will experimentally verify the claimed bound and help us understand
the D(n, d, p) model.

Figure 2 plots the empirical probability of D(n, d, p) being strongly connected for n 2
{100, 1000}, d = 4, and c in the closed range [�2, 4], defining the probability p. This figure
also plots the curve of the lower bound e�2e�c

. As seen in this figure, the empirical probabili-
ties for n = 100 and n = 1000 are identical, and they are both larger than the bound e�2e�c

,
converging to it as c increases. The empirical probability at c = 4 is 0.98, for both n = 100 and
n = 1000; the lower bound is 0.96. This figure thus suggests that the strong connectivty does
not change with n, and the lower bound is tight for large values of c. In this figure, we also
observe that for c  �1.0 and c � 3, the empirical values agree with the lower bound. These
observations also hold for a smaller value of n = 50, with c = [�2, 3].

Figure 3 plots the empirical probability of D(n, d, p) being strongly connected for n = 100,
d 2 {2, 4, 8, 16}, and c in the closed range [�2, 4], defining the probability p. This figure also
plots the curve of the lower bound e�2e�c

. As seen in this figure, the plot for d = 2 follows
closely the curve e�2e�c

. The others as a group are nearly identical among themselves and are
always above that of d = 2, converging to the claimed lower bound e�2e�c

for c = 4. This figure
suggests that the case d > 2 is different from the case d = 2 for moderate values c of interest such
as c = [1, 3], but the cases are similar for values of c outside of this range. These observations
also hold for a smaller value of n = 50, with c = [�2, 3].

We compare the right hand side of Equation (2), 1 �
Pn�1

t=1

�n
t

�
(1 � p)tn

d�1�td , with the
empirical probability in order to see whether the application of the union bound had introduced
large factors. If that is the case, the right hand side of Equation (2) will not likely be as useful
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Figure 2: Empirical probability of D(n, d, p) being strongly connected in the y-axis for n =
{100, 1000}, d = 4, and c = [�2, 4] in the x-axis. The values of c define the probability p of a
nonzero to be chosen as logn+c

nd�1 . The curve e�2e�c

is also plotted.

-2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Figure 3: Empirical probability of D(n, d, p) being strongly connected in the y-axis for n = 100,
d 2 {2, 4, 8, 16}, and c = [�2, 4] in the x-axis. The values of c define the probability p of a
nonzero to be chosen as logn+c

nd�1 . The curve e�2e�c

is also plotted.

Inria



Random directed graphs 9

1.0 1.5 2.0 2.5 3.0
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Figure 4: Empirical probability of D(n, d, p) being strongly connected in the y-axis for n = 50,
d = 4, and c = [1, 3] in the x-axis. The values of c define the probability p of a nonzero to be
chosen as logn+c

nd�1 . The curve e�2e�c

and the right hand side of Equation (2) resulting from the
union bound are also plotted.

d4/d2 d8/d4 d16/d8
geomean 2.8183 2.0680 1.7177
slope -0.0021 -0.0014 -0.0011

Table 1: The number of nonzeros at different c = [�2, 4] with increments of 0.04 for d = 2, 4, 8, 16
and n = 100 are empirically observed (100000 instances at each value of c), and that of d = 2k
is divided to d = k for k = 2, 4, 8. The geometric mean of those values are presented, and also
the slope of the best fitting line.

lower bound as the claimed e�2e�c

. Figure 4 compares these three quantities for n = 50, d = 4
and c = [1, 3]. In this figure, the formula resulting from the use of the union bound looks close
enough to the empirical probability, especially for values of c � 1.5. In the shown range of c, that
bound always dominates the claimed lower bound and hence the right hand side of Equation (2)
is comparable to the claimed lower bound.

With a given pair of n and c and the claimed threshold probability, the expected number of
nonzeros in the underlying d-dimensional tensor is always the same, which is n log n + cn and
independent from d. Due to d � 1 edges being added for each selected nonzero, we expect the
total number of edges in D(n, d, p) to increase by the increasing d, for a given pair of n, c. This is
shown in Figure 5 for n = 100. The curves flatten, and the difference between them reduces. We
now substantiate this. For each different value of c that we used, we divide the average empirical
number of nonzeros with d = 2k to d = k, for k = 2, 4, and 8 to obtain the ratio of the number
of edges. We then fit a line to those ratios, one for each k. Table 1 shows the geometric mean
of those ratios and the slopes of each best fitting line to confirm the flattening of the curves and
the difference between them.

3.2 Binomial vs uniform models
We present some results to compare binomial and uniform models. Strictly adhering to the
uniform model requires investigating all nd tuples for being a nonzero of the underlying tensor.

RR n° 9540
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Figure 5: The number of edges in D(n, d, p) in the y-axis for n = 100, d 2 {2, 4, 8, 16}, and
c = [�2, 4] in the x-axis. The values of c define the probability p of a nonzero to be chosen as
logn+c
nd�1 .

As this will be very large unless n and d are small, we conduct only a limited set of experiments.
We take n = 50, d 2 {3, 4}, c = [0, 3] and 10000 random different instances for the experiments.
Figure 6 plots the empirical probability of D(n, d, p) being strongly connected with binomial and
uniform models. This figure also plots the empirical probability for n = 100 and d 2 {3, 4} with
the binomial model (which corresponds to a sub-range of the plots in Figures 2 and Figure 3).
This figures suggests that the binomial model results in the same directed graphs as the uniform
model.

4 Conclusion
We investigated the strong connectivity of a family of random directed graph models having three
parameters D(n, d, p). These parameters are used to define a d-dimensional random tensor with
n indices in each dimension. Each entry of the tensor is nonzero with probability p. Once the
nonzeros are sampled, the associated directed graph is built on n vertices, with a tensor nonzero
at position hi1, i2, . . . , idi defining d � 1 edges from, i1 to i2, i3, . . . , id. We wanted to see when
one can confidently say that a sampled graph from the family D(n, d, p) is strongly connected.
We observed that for d > 2 and p = logn+c

nd�1 , there is a threshold around c = �1; after c > �1,
the probability of having strongly connected directed graphs increases significantly. This is in
accordance with the existing results on the Erdös–Renyi direct graph models. While we did not
observe any difference for the cases d = 4, 8, 16, there is a noticeable difference between these as
a group and d = 2.

One interesting observation for algorithm practitioners is that z = n log n + cn nonzeros are
enough to obtain strongly connected directed graphs and investigate the connectivity properties,
no matter how high dimensional the underlying tensors are. The binomial model allows gen-
erating zd coordinates to have those graphs without exponentially more work or exponentially
smaller numbers (as probabilities). The binomial model thus allows creating d-dimensional ten-
sors in time linearly proportional to d to define the graphs, not exponentially as in nd. This can
be useful in evaluating practical algorithms on high dimensional sparse tensors.

Note that, on one hand, a closed formula for the lower bound in Equation (2) would be
useful. Indeed, the experiments indicate that the cases d > 2 and d = 2 are different, and the
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Figure 6: Comparing the empirical probability of a D(n, d, p) being strongly connected for dif-
ferent n and d with binomial and uniform models, in the range of c = [0, 3] in the x-axis. The
curve e�2e�c

is also plotted in this range.

threshold for the d > 2 case is smaller (see Figure 3). On the other hand, the gap diminishes
with increasing values of c, for example when c � 3. It is thus worthwhile to seek for a tighter
lower bound for small c, e.g., for c = [1, 3]. This is also interesting from a practical perspective
as c = 1 adds n more nonzeros in expectation, with an average of 1 per fixed index in one of the
dimensions. On another note, the experiments suggest that the binomial and uniform models
are equivalent (see Figure 6). A formal argument for this is welcome.

RR n° 9540



RESEARCH CENTRE
GRENOBLE – RHÔNE-ALPES

Inovallée
655 avenue de l’Europe Montbonnot
38334 Saint Ismier Cedex

Publisher
Inria
Domaine de Voluceau - Rocquencourt
BP 105 - 78153 Le Chesnay Cedex
inria.fr

ISSN 0249-6399


