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Abstract

In this paper, we discuss and compare several policies to place replicas in tree net-
works, subject to server capacity and QoS constraints. The client requests are known
beforehand, while the number and location of the servers are to be determined. The
standard approach in the literature is to enforce that all requests of a client be served
by the closest server in the tree. We introduce and study two new policies. In the
first policy, all requests from a given client are still processed by the same server, but
this server can be located anywhere in the path from the client to the root. In the
second policy, the requests of a given client can be processed by multiple servers.
One major contribution of this paper is to assess the impact of these new policies on
the total replication cost. Another important goal is to assess the impact of server
heterogeneity, both from a theoretical and a practical perspective. In this paper,
we establish several new complexity results, and provide several efficient polynomial
heuristics for NP-complete instances of the problem. These heuristics are compared
to an absolute lower bound provided by the formulation of the problem in terms of
the solution of an integer linear program.

Keywords: Replica placement, tree networks, access policy, scheduling, complexity results,
heuristics, heterogeneous clusters.

Résumé

Dans ce rapport nous présentons et comparons plusieurs politiques de placement de
répliques sur des arbres, prenant en compte à la fois des contraintes liées à la capacité
de traitement de chaque serveur et des contraintes de type QoS (qualité de service).
Les requêtes des clients sont connues avant exécution, alors que le nombre et l’em-
placement des répliques (serveurs) sont à déterminer par l’algorithme de placement.
L’approche classique impose que toutes les requêtes d’un client donné soient traitées
par un seul serveur, à savoir le plus proche du client dans l’arbre. Nous introduisons
deux nouvelles politiques de placement. Dans la première, chaque client a toujours un
serveur unique, mais ce dernier peut être situé n’importe où sur le chemin qui mène
du client à la racine dans l’arbre. Avec la deuxième politique, les requêtes d’un même
client peuvent être traitées par plusieurs serveurs sur ce même chemin.
Nous montrons que ces deux nouvelles politiques de placement sont à même de réduire
fortement le coût total de la réplication. Un autre objectif de ce travail est l’analyse
de l’impact de l’hétérogénéité de la plate-forme, à la fois d’un point de vue théorique
et pratique. Sur le plan théorique, nous établissons plusieurs résultats de complexité,
dans les cadres homogène et hétérogène, pour l’approche classique et les nouvelles
politiques. Sur le plan pratique, nous concevons des heuristiques polynomiales pour
les instances combinatoires du problème. Nous comparons les performances de ces
heuristiques en les rapportant à une borne inférieure absolue sur le coût total de la
réplication; cette borne est obtenue par relaxation d’un programme linéaire en nombre
entiers qui caractérise la solution optimale du problème.

Mots-clés: Placement de répliques, réseaux en arbre, ordonnancement, complexité,
heuristiques, grappes de calcul hétérogènes.
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1 Introduction

In this paper, we consider the general problem of replica placement in tree networks. Informally,
there are clients issuing requests to be satisfied by servers. The clients are known (both their
position in the tree and their number of requests), while the number and location of the servers
are to be determined. A client is a leaf node of the tree, and its requests can be served by one
or several internal nodes. Initially, there are no replica; when a node is equipped with a replica,
it can process a number of requests, up to its capacity limit. Nodes equipped with a replica, also
called servers, can only serve clients located in their subtree (so that the root, if equipped with a
replica, can serve any client); this restriction is usually adopted to enforce the hierarchical nature
of the target application platforms, where a node has knowledge only of its parent and children in
the tree.

The rule of the game is to assign replicas to nodes so that some optimization function is
minimized. Typically, this optimization function is the total utilization cost of the servers. If
all the nodes are identical, this reduces to minimizing the number of replicas. If the nodes are
heterogeneous, it is natural to assign a cost proportional to their capacity (so that one replica on a
node capable of handling 200 requests is equivalent to two replicas on nodes of capacity 100 each).

The core of the paper is devoted to the study of the previous optimization problem, called
Replica Placement in the following. Additional constraints are introduced, such as guarantee-
ing some Quality of Service (QoS): the requests must be served in limited time, thereby prohibiting
too remote or hard-to-reach replica locations. Also, the flow of requests through a link in the tree
cannot exceed some bandwidth-related capacity. We focus on optimizing the total utilization cost
(or replica number in the homogeneous case). There is a bunch of possible extensions: dealing with
several object types rather than one, including communication time into the objective function,
taking into account an update cost of the replicas, and so on. For the sake of clarity we devote
a special section (Section 8) to formulate these extensions, and to describe which situations our
results and algorithms can still apply to.

We point out that the distribution tree (clients and nodes) is fixed in our approach. This
key assumption is quite natural for a broad spectrum of applications, such as electronic, ISP, or
VOD service delivery. The root server has the original copy of the database but cannot serve all
clients directly, so a distribution tree is deployed to provide a hierarchical and distributed access
to replicas of the original data. On the contrary, in other, more decentralized, applications (e.g.
allocating Web mirrors in distributed networks), a two-step approach is used: first determine
a “good” distribution tree in an arbitrary interconnection graph, and then determine a “good”
placement of replicas among the tree nodes. Both steps are interdependent, and the problem is
much more complex, due to the combinatorial solution space (the number of candidate distribution
trees may well be exponential).

Many authors deal with the Replica Placement optimization problem, and we survey related
work in Section 9. The objective of this paper is twofold: (i) introducing two new access policies
and comparing them with the standard approach; (ii) assessing the impact of server heterogeneity
on the problem.

In most, if not all, papers from the literature, all requests of a client are served by the closest
replica, i.e. the first replica found in the unique path from the client to the root in the distribution
tree. This Closest policy is simple and natural, but may be unduly restrictive, leading to a waste
of resources. We introduce and study two different approaches: in the first one, we keep the
restriction that all requests from a given client are processed by the same replica, but we allow
client requests to “traverse” servers so as to be processed by other replicas located higher in the
path (closer to the root). We call this approach the Upwards policy. The trade-of to explore is the
following: the Closest policy assigns replicas at proximity of the clients, but may need to allocate
too many of them if some local subtree issues a great number of requests. The Upwards policy
will ensure a better resource usage, load-balancing the process of requests on a larger scale; the
possible drawback is that requests will be served by remote servers, likely to take longer time to
process them. Taking QoS constraints into account would typically be more important for the
Upwards policy.
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In the second approach, we further relax access constraints and grant the possibility for a client
to be assigned several replicas. With this Multiple policy, the processing of a given client’s requests
will be split among several servers located in the tree path from the client to the root. Obviously,
this policy is the most flexible, and likely to achieve the best resource usage. The only drawback
is the (modest) additional complexity induced by the fact that requests must now be tagged with
the replica server ID in addition to the client ID. As already stated, one major objective of this
paper is to compare these three access policies, Closest , Upwards and Multiple.

The second major contribution of the paper is to assess the impact of server heterogeneity,
both from a theoretical and a practical perspective. Recently, several variants of the Replica

Placement optimization problem with the Closest policy have been shown to have polynomial
complexity. In this paper, we establish several new complexity results. Those for the homogeneous
case are surprising: for the simplest instance without QoS nor bandwidth constraints, the Multiple
policy is polynomial (as Closest) while Upwards is NP-hard. The three policies turn out to be NP-
complete for heterogeneous nodes, which provides yet another example of the additional difficulties
induced by resource heterogeneity. On the more practical side, we provide an optimal algorithm
for the Multiple problem with homogeneous nodes, and several heuristics for all three policies in
the heterogeneous case. We compare these heuristics through simulations conducted for problem
instances without QoS nor bandwidth constraints. Another contribution is that we are able to
assess the absolute performance of the heuristics, not just comparing one to the other, owing to a
lower bound provided by a new formulation of the Replica Placement problem in terms of an
integer linear program: the relaxation of this program to the rational numbers provides a lower
bound to the solution cost (which is not always feasible).

The rest of the paper is organized as follows. Section 2 is devoted to a detailed presentation of
the target optimization problems. In Section 3 we introduce the three access policies, and we give
a few motivating examples. Next in Section 4 we proceed to the complexity results for the simplest
version of the Replica Placement problem, both in the homogeneous and heterogeneous cases.
Section 5 deals with the formulation for the Replica Placement problem in terms of an integer
linear program. In Section 6 we introduce several polynomial heuristics to solve the Replica

Placement problem with the different access policies. These heuristics are compared through
simulations, whose results are analyzed in Section 7. Section 8 discusses various extensions to the
Replica Placement problem while Section 9 is devoted to an overview of related work. Finally,
we state some concluding remarks in Section 10.

2 Framework

This section is devoted to a precise statement of the Replica Placement optimization problem.
We start with some definitions and notations. Next we outline the simplest instance of the problem.
Then we describe several types of constraints that can be added to the formulation.

2.1 Definitions and notations

We consider a distribution tree T whose nodes are partitioned into a set of clients C and a set of
nodes N . The set of tree edges is denoted as L. The clients are leaf nodes of the tree, while N is
the set of internal nodes. It would be easy to allow client-server nodes which play both the rule
of a client and of an internal node (possibly a server), by dividing such a node into two distinct
nodes in the tree, connected by an edge with zero communication cost.

A client i ∈ C is making requests to database objects. For the sake of clarity, we restrict the
presentation to a single object type, hence a single database. We deal with several object types in
Section 8.

A node j ∈ N may or may not have been provided with a replica of the database. Nodes
equipped with a replica (i.e. servers) can process requests from clients in their subtree. In other
words, there is a unique path from a client i to the root of the tree, and each node in this path is
eligible to process some or all the requests issued by i when provided with a replica.
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Let r be the root of the tree. If j ∈ N , then children(j) is the set of children of node j. If k 6= r
is any node in the tree (leaf or internal), parent(k) is its parent in the tree. If l : k → k′ = parent(k)
is any link in the tree, then succ(l) is the link k′ → parent(k′) (when it exists). Let Ancestors(k)
denote the set of ancestors of node k, i.e. the nodes in the unique path that leads from k up to
the root r (k excluded). If k′ ∈ Ancestors(k), then path[k → k′] denotes the set of links in the path
from k to k′; also, subtree(k) is the subtree rooted in k, including k.

We introduce more notations to describe our system in the following.

• Clients i ∈ C – Each client i (leaf of the tree) is sending ri requests per time unit. For such
requests, the required QoS (typically, a response time) is denoted qi, and we need to ensure
that this QoS will be satisfied for each client.

• Nodes j ∈ N – Each node j (internal node of the tree) has a processing capacity Wj , which
is the total number of requests that it can process per time-unit when it has a replica. A
cost is also associated to each node, scj , which represents the price to pay to place a replica
at this node. With a single object type it is quite natural to assume that scj is proportional
to Wj : the more powerful a server, the more costly. But with several objects we may use
non-related values of capacity and cost.

• Communication links l ∈ L – The edges of the tree represent the communication links
between nodes (leaf and internal). We assign a communication time comml on link l which
is the time required to send a request through the link. Moreover, BWl is the maximum
number of requests that link l can transmit per time unit.

2.2 Problem instances

For each client i ∈ C, let Servers(i) ⊆ N be the set of servers responsible for processing at least
one of its requests. We do not specify here which access policy is enforced (e.g. one or multiple
servers), we defer this to Section 3. Instead, we let ri,s be the number of requests from client i
processed by server s (of course,

∑

s∈Servers(i) ri,s = ri). In the following, R is the set of replicas:

R = {s ∈ N| ∃i ∈ C , s ∈ Servers(i)} .

2.2.1 Constraints

Three main types of constraints are considered.

Server capacity – The constraint that no server capacity can be exceeded is present in all vari-
ants of the problem:

∀s ∈ R,
∑

i∈C|s∈Servers(i)

ri,s ≤ Ws

QoS – Some problem instances enforce a quality of service: the time to transfer a request from a
client to a replica server is bounded by a quantity qi. This translates into:

∀i ∈ C,∀s ∈ Servers(i),
∑

l∈path[i→s]

comml ≤ qi.

Note that it would be easy to extend the QoS constraint so as to take the computation cost
of a request in addition to its communication cost. This former cost is directly related to
the computational speed of the server and the amount of computation (in flops) required for
each request.

Link capacity – Some problem instances enforce a global constraint on each communication link
l ∈ L:

∑

i∈C,s∈Servers(i)|l∈path[i→s]

ri,s ≤ BWl
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2.2.2 Objective function

The objective function for the Replica Placement problem is defined as:

Min
∑

s∈R

scs

As already pointed out, it is frequently assumed that the cost of a server is proportional to its
capacity, so in some problem instances we let scs = Ws.

2.2.3 Simplified problems

We define a few simplified problem instances in the following:

QoS=distance – We can simplify the expression of the communication time in the QoS con-
straint and only consider the distance (in number of hops) between a client and its server(s).
The QoS constraint is then

∀i ∈ C,∀s ∈ Servers(i), d(i, s) ≤ qi

where the distance d(i, s) = |path[i → s]| is the number of communication links between i
and s.

No QoS – We may further simplify the problem, by completely suppressing the QoS constraints.
In this case, the servers can be anywhere in the tree, their location is indifferent to the client.

No link capacity – We may consider the problem assuming infinite link capacity, i.e. not bound-
ing the total traffic on any link in an admissible solution.

Only server capacities – The problem without QoS and link capacities reduces to finding a
valid solution of minimal cost, where “valid” means that no server capacity is exceeded. We
name Replica Cost this fundamental problem.

Replica counting – We can further simplify the previous Replica Cost problem in the homo-
geneous case: with identical servers, the Replica Cost problem amounts to minimize the
number of replicas needed to solve the problem. In this case, the storage cost scj is set to 1
for each node. We call this problem Replica Counting.

3 Access policies

In this section we review the usual policies enforcing which replica is accessed by a given client.
Consider that each client i is making ri requests per time-unit. There are two scenarios for the
number of servers assigned to each client:

Single server – Each client i is assigned a single server server(i), that is responsible for processing
all its requests.

Multiple servers – A client i may be assigned several servers in a set Servers(i). Each server
s ∈ Servers(i) will handle a fraction ri,s of the requests. Of course

∑

s∈Servers(i) ri,s = ri.

To the best of our knowledge, the single server policy has been enforced in all previous ap-
proaches. One objective of this paper is to assess the impact of this restriction on the performance
of data replication algorithms. The single server policy may prove a useful simplification, but may
come at the price of a non-optimal resource usage.

In the literature, the single server strategy is further constrained to the Closest policy. Here,
the server of client i is constrained to be the first server found on the path that goes from i upwards
to the root of the tree. In particular, consider a client i and its server server(i). Then any other
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client node i′ residing in the subtree rooted in server(i) will be assigned a server in that subtree.
This forbids requests from i′ to “traverse” server(i) and be served higher (closer to the root in the
tree).

We relax this constraint in the Upwards policy which is the general single server policy. Notice
that a solution to Closest always is a solution to Upwards, thus Upwards is always better than
Closest in terms of the objective function. Similarly, the Multiple policy is always better than
Upwards, because it is not constrained by the single server restriction.

The following sections illustrate the three policies. Section 3.1 provides simple examples where
there is a valid solution for a given policy, but none for a more constrained one. Section 3.2 shows
that Upwards can be arbitrarily better than Closest , while Section 3.3 shows that Multiple can
be arbitrarily better than Upwards. We conclude with an example showing that the cost of an
optimal solution of the Replica Counting problem (for any policy) can be arbitrarily higher
than the obvious lower bound

⌈
∑

i∈C ri

W

⌉

,

where W is the server capacity.

3.1 Impact of the access policy on the existence of a solution

We consider here a very simple instance of the Replica Counting problem. In this example
there are two nodes, s1 being the unique child of s2, the tree root (see Figure 1). Each node can
process W = 1 request.

(b)(a) (c)

W = 1

1

s2

s1

1 1

s2

s1

s2

s1

2

Figure 1: Access policies.

• If s1 has one client child making 1 request, the problem has a solution with all three policies,
placing a replica on s1 or on s2 indifferently (Figure 1(a)).

• If s1 has two client children, each making 1 request, the problem has no more solution with
Closest . However, we have a solution with both Upwards and Multiple if we place replicas
on both nodes. Each server will process the request of one of the clients (Figure 1(b)).

• Finally, if s1 has only one client child making 2 requests, only Multiple has a solution since
we need to process one request on s1 and the other on s2, thus requesting multiple servers
(Figure 1(c)).

This example demonstrates the usefulness of the new policies. The Upwards policy allows to
find solutions when the classical Closest policy does not. The same holds true for Multiple versus
Upwards. In the following, we compare the cost of solutions obtained with different strategies.

3.2 Upwards versus Closest

In the following example, we construct an instance of Replica Counting where the cost of
the Upwards policy is arbitrarily lower than the cost of the Closest policy. We consider the tree
network of Figure 2, where there are 2n + 2 internal nodes, each with Wj = W = n, and 2n + 1
clients, each with ri = r = 1.

With the Upwards policy, we place three replicas in s2n, s2n+1 and s2n+2. All requests can be
satisfied with these three replicas.
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s1

1 1

s2n

s2n+2

s2n+1

W = n

1

Figure 2: Upwards versus Closest

When considering the Closest policy, first we need to place a replica in s2n+2 to cover its client.
Then,

• Either we place a replica on s2n+1. In this case, this replica is handling n requests, but there
remain n other requests from the 2n clients in its subtree that cannot be processed by s2n+2.
Thus, we need to add n replicas between s1..s2n.

• Otherwise, n− 1 requests of the 2n clients in the subtree of s2n+1 can be processed by s2n+2

in addition to its own client. We need to add n + 1 extra replicas among s1, s2, . . . , s2n.
In both cases, we are placing n+2 replicas, instead of the 3 replicas needed with the Upwards policy.
This proves that Upwards can be arbitrary better than Closest on some Replica Counting

instances.

3.3 Multiple versus Upwards

In this section we build an instance of the Replica Counting problem where Multiple is twice
better than Upwards. We do not know whether there exist instances of Replica Counting

where the performance ratio of Multiple versus Upwards is higher than 2 (and we conjecture that
this is not the case). However, we also build an instance of the Replica Cost problem (with
heterogeneous nodes) where Multiple is arbitrarily better than Upwards.

We start with the homogeneous case. Consider the instance of Replica Counting represented
in Figure 3, with 3n + 1 nodes of capacity Wj = W = 2n. The root r has n + 1 children, n nodes
labeled s1 to sn and a client with ri = n. Each node sj has two children nodes, labeled vj and wj

for 1 ≤ j ≤ n. Each node vj has a unique child, a client with ri = n requests; each node wj has a
unique child, a client with ri = n + 1 requests.

The Multiple policy assigns n + 1 replicas, one to the root r and one to each node sj . The
replica in sj can process all the 2n + 1 requests in its subtree except one, which is processed by
the root.

For the Upwards policy, we need to assign one replica to r, to cover its client. This replica can
process n other requests, for instance those from the client child of v1. We need to place at least
a replica in s1 or in w1, and 2(n − 1) replicas in vj and wj for 2 ≤ j ≤ n. This leads to a total of
2n replicas, hence a performance factor 2n

n+1 whose limit is to 2 when n tends to infinity.

We now proceed to the heterogeneous case. Consider the instance of Replica Cost rep-
resented in Figure 4, with 3 nodes s1, s2 and s3, and 2 clients. The capacity of s1 and s2 is
W1 = W2 = n while that of s3 is W3 = Kn, where K is arbitrarily large. Recall that in the
Replica Cost problem, we let scj = Wj for each node. Multiple assigns 2 replicas, in s1 and s2,
hence has cost 2n. The Upwards policy assigns a replica to s1 to cover its child, and then cannot
use s2 to process the requests of the child in its subtree. It must place a replica in s3, hence a
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n + 1 n n + 1

s1 s2

W = 2nr

v2v1

n + 1

sn

vn

n

w1 w2 wn

n n

Figure 3: Multiple versus Upwards, homogeneous platforms.

n + 1

s1, W1 = n

s2,W2 = n

s3,W3 = Kn

n − 1

Figure 4: Multiple versus Upwards, heterogeneous platforms.

final cost n + Kn = (K + 1)n arbitrarily higher than Multiple.

3.4 Lower bound for the Replica Counting problem

Obviously, the cost of an optimal solution of the Replica Counting problem (for any policy)

cannot be lower than the obvious lower bound
⌈P

i∈C
ri

W

⌉

, where W is the server capacity. Indeed,

this corresponds to a solution where the total request load is shared as evenly as possible among
the replicas.

The following instance of Replica Counting shows that the optimal cost can be arbitrarily
higher than this lower bound. Consider Figure 5, with n + 1 nodes of capacity Wj = W , The root
r has n + 1 children, n nodes labeled s1 to sn, and a client with ri = W . Each node sj has a
unique child, a client with ri = W/n (assume without loss of generality that W is divisible by n).

The lower bound is
⌈P

i∈C
ri

W

⌉

= 2W
W = 2. However, each of the three policies Closest , Upwards

and Multiple will assign a replica to the root to cover its client, and will then need n extra replicas,
one per client of sj , 1 ≤ j ≤ n. The total cost is thus n + 1 replicas, arbitrarily higher than the
lower bound.

All the examples in Sections 3.1 to 3.4 give an insight of the combinatorial nature of the
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s1

W/n W/n

r

sn

W

Figure 5: The lower bound cannot be approximated for Replica Counting.

Replica Placement optimization problem, even in its simplest variants Replica Cost and
Replica Counting. The following section corroborates this insight: most problems are shown
NP-hard, even though some variants have polynomial complexity.

4 Complexity results

One major goal of this paper is to assess the impact of the access policy on the problem with
homogeneous vs heterogeneous servers. We restrict to the simplest problem, namely the Replica

Cost problem introduced in Section 2.2.3. We consider a tree T = C ∪ N , no QoS constraint,
and infinite link capacities. Each client i ∈ C has ri requests; each node j ∈ N has processing
capacity Wj and storage cost scj = Wj . This simple problem comes in two flavors, either with
homogeneous nodes (Wj = W for all j ∈ N ), or with heterogeneous nodes (servers with different
capacities/costs).

In the single server version of the problem, we need to find a server server(i) for each client
i ∈ C. Let Servers be the set of servers chosen among the nodes in N . The only constraint is that
server capacities cannot be exceeded: this translates into

∑

i∈C,server(i)=j

ri ≤ Wj for all j ∈ Servers.

The objective is to find a valid solution of minimal storage cost
∑

j∈Servers Wj . Note that with
homogeneous nodes, the problem reduces to find the minimum number of servers, i.e. to the
Replica Counting problem. As outlined in Section 3, there are two variants of the single server
version of the problem, namely the Closest and the Upwards strategies.

In the Multiple policy with multiple servers per client, let Servers be the set of servers chosen
among the nodes in N ; for any client i ∈ C and any node j ∈ N , let ri,j be the number of requests
from i that are processed by j (ri,j = 0 if j /∈ Servers). We need to ensure that

∑

j∈N

ri,j = ri for all i ∈ C.

The capacity constraint now writes

∑

i∈C

ri,j ≤ Wj for all j ∈ Servers,

while the objective function is the same as for the single server version.
The decision problems associated with the previous optimization problems are easy to formu-

late: given a bound on the number of servers (homogeneous version) or on the total storage cost
(heterogeneous version), is there a valid solution that meets the bound?

Table 1 captures the complexity results. These complexity results are all new, except for
the Closest/Homogeneous combination. The NP-completeness of the Upwards/Homogeneous case
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Homogeneous Heterogeneous
Closest polynomial [2, 9] NP-complete
Upwards NP-complete NP-complete
Multiple polynomial NP-complete

Table 1: Complexity results for the different instances of the Replica Cost problem.

comes as a surprise, since all previously known instances were shown to be polynomial, using
dynamic programming algorithms. In particular, the Closest/Homogeneous variant remains poly-
nomial when adding communication costs [2] or QoS constraints [9]. Previous NP-completeness
results involved general graphs rather than trees, and the combinatorial nature of the problem
came from the difficulty to extract a good replica tree out of an arbitrary communication graph.
Here the tree is fixed, but the problem remains combinatorial due to resource heterogeneity.

4.1 With homogeneous nodes and the Multiple strategy

Theorem 1. The instance of the Replica Counting problem with the Multiple strategy can be
solved in polynomial time.

Proof. We outline below an optimal algorithm to solve the problem. The proof of optimality is
quite technical, so the reader may want to skip it at first reading.

4.1.1 Algorithm for multiple servers

We propose a greedy algorithm to solve the Replica Counting problem. Let W be the total
number of requests that a server can handle.

This algorithm works in three passes: first we select the nodes which will have a replica handling
exactly W requests. Then a second pass allows us to select some extra servers which are fulfilling
the remaining requests. Finally, we need to decide for each server how many requests of each client
it is processing.

We assume that each node i knows its parent parent(i) and its children children(i) in the tree.
We introduce a new variable which is the flow coming up in the tree (requests which are not
already fulfilled by a server). It is denoted by flowi for the flow between i and parent(i). Initially,
∀i ∈ C flowi = ri and ∀i ∈ N flowi = −1. Moreover, the set of replicas is empty in the beginning:
repl = ∅.

Pass 1– We greedily select in this step some nodes which will process W requests and which
are as close to the leaves as possible. We place a replica on such nodes (see Algorithm 1).
Procedure pass1 is called with r (root of the tree) as a parameter, and it goes down the tree
recursively in order to compute the flows. When a flow exceeds W, we place a replica since
the corresponding server will be fully used, and we remove the processed requests from the
flow going upwards.

At the end, if flowr = 0 or (flowr ≤ W and r /∈ repl), we have an optimal solution since
all replicas which have been placed are fully used and all requests are satisfied by adding a
replica in r if flowr 6= 0. In this case we skip pass 2 and go directly to pass 3.

Otherwise, we need some extra replicas since some requests are not satisfied yet, and the
root cannot satisfy all the remaining requests. To place these extra replicas, we go through
pass 2.

Pass 2– In this pass, we need to select the nodes where to add replicas. To do so, while there are
too many requests going up to the root, we select the node which can process the highest
number of requests, and we place a replica there. The number of requests that a node
j ∈ N can eventually process is the minimum of the flows between j and the root r, denoted
uflowj (for useful flow). Indeed, some requests may have no server yet, but they might be
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procedure pass1 (node s ∈ N )
begin

flows = 0;
for i ∈ children(s) do

if flowi == −1 then pass1(i); // Recursive call.
flows = flows + flowi;

end
if flows ≥ W then flows = flows − W; repl = {s} ∪ repl;

end
Algorithm 1: Procedure pass1

processed by a server on the path between j and r, where a replica has been placed in pass 1.
Algorithm 2 details this pass.

If we exit this pass with finish = −1, this means that we have tried to place replicas on
all nodes, but this solution is not feasible since there are still some requests which are not
processed going up to the root. In this case, the original problem instance had no solution.

However, if we succeed to place replicas such that flowr = 0, we have a set of replicas which
succeed to process all requests. We then go through pass 3 to assign requests to servers, i.e.
to compute how many requests of each client should be processed by each server.

while flowr 6= 0 do
freenode = N \ repl;
if freenode == ∅ then finish = −1; exit the loop;
// At each step, assign 1 replica and re-compute flows.
child = children(r);uflowr = flowr;
while child! = ∅ do

remove j from child;
uflowj = min(flowj , uflowparent(j));
child = child ∪ children(j);

end
// The useful flows have been computed, select the max.
maxuflow=0;
for j ∈ freenode do

if uflowj > maxuflow then maxuflow = uflowj ; maxnode = j;
end
if maxuflow 6= 0 then

repl = repl ∪ {maxnode};
// Update the flows upwards.
for j ∈ Ancestors(maxnode) ∪ {maxnode} do flowj = flowj − maxuflow;

end
else finish = −1; exit the loop;

end
Algorithm 2: Pass 2

Pass 3– This pass is in fact straightforward, starting from the leaves and distributing the requests
to the servers from the bottom until the top of the tree. We decide for instance to affect
requests from clients starting to the left. Procedure pass3 is called with r (root of the tree)
as a parameter, and it goes down the tree recursively (c.f. Algorithm 3). For i ∈ C, r′i
is the number of requests of i not yet affected to a server (initially r′i = ri). ws,i is the
number of requests of client i affected to server s ∈ N , and ws ≤ W is the total number of
requests affected to s. C(s) is the set of clients in subtree(s) which still have some requests
not affected. Initially, C(i) = {i} for i ∈ C, and C(s) = ∅ otherwise.
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Note that a server which was computing W requests in pass 1 may end up computing fewer
requests if one of its descendants in the tree has earned a replica in pass 2. But this does
not affect the optimality of the result, since we keep the same number of replicas.

procedure pass3 (node s ∈ N )
begin

ws = 0;
for i ∈ children(s) do

if C(i) = ∅ then pass3(i); // Recursive call.
C(s) = C(s) ∪ C(i);

end
if s ∈ repl then

for i ∈ C(s) do
if r′(i) ≤ W − ws then C(s) = C(s) \ {i}; ws,i = r′i; ws = ws + r′i; r′i = 0;

end
if C(s) 6= ∅ then Let i ∈ C(s); x = W − ws; r′i = r′i − x; ws,i = x; ws = W;

end
end

Algorithm 3: Procedure pass3

The proof in Section 4.1.3 shows the equivalence between the solution built by this algorithm
and any optimal solution, thus proving the optimality of the algorithm. The following example
illustrates the step by step execution of the algorithm.

4.1.2 Example

Figure 6(a) provides an example of network on which we are placing replicas with the Multiple
strategy. The network is thus homogeneous and we fix W = 10.

Pass 1 of the algorithm is quite straightforward to unroll, and Figure 6(b) indicates the flow
on each link and the saturated replicas are the black nodes.

During pass 2, we select the nodes of maximum useful flow. Figure 6(c) represents these useful
flows; we see that node n4 is the one with the maximum useful flow (7), so we assign it a replica
and update the useful flows. All the useful flows are then reduced down to 1 since there is only 1
request going through the root n1. The first node of maximum useful flow 1 to be selected is n2,
which is set to be a replica of pass 2. The flow at the root is then 0 and it is the end of pass 2.

Finally, pass 3 affects the servers to the clients and decides which requests are served by which
replica (Figure 6(d)). For instance, the client with 12 requests shares its requests between n10 (10
requests) and n2 (2 requests). Requests are affected from the bottom of the tree up to the top.
Note that the root n1, even though it was a saturated replica of pass 1, has only 5 requests to
proceed in the end.

4.1.3 Proof of optimality

Let Ropt be an optimal solution to an instance of the problem. The core of the proof consists in
transforming this solution into an equivalent canonical optimal solution Rcan. We will then show
that our algorithm is building this canonical solution, and thus it is producing an optimal solution.

Each server s ∈ Ropt is serving ws,i requests of client i ∈ subtree(s) ∩ C, and

ws =
∑

i∈subtree(s)∩C

ws,i ≤ W.

For each i ∈ C, ws,i = 0 if s ∈ N is not a replica, and,
∑

s∈Ancests(i) ws,i = ri.
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Figure 6: Algorithm for the Replica Counting problem with the Multiple strategy.

We define the flow of node k, flowk, by the number of requests going through this node up to
its parents. Thus, for i ∈ C, flowi = ri, while for a node s ∈ N ,

flows =
∑

i∈children(s)

flowi − ws.

The total flow going through the tree, tflow, is defined in a similar way, except that we do not
remove from the flow the requests processed by a replica, i.e. tflows =

∑

i∈children(s) tflowi. We
thus have

tflows =
∑

i∈subtree(s)∩C

ri.

These variables are completely defined by the network and the optimal solution Ropt.
A first lemma shows that it is possible to change request assignments while keeping an optimal

solution. The flows need to be recomputed after any such modification.

Lemma 1. Let s ∈ N ∩ Ropt be a server such that ws < W.
• If tflows ≥ W, we can change the request assignment between replicas of the optimal solution,

in such a way that ws = W.
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• Otherwise, we can change the request assignment so that ws = tflows.

Proof. First we point out that the clients in subtree(s) can all be served by s, and since Ropt is
a solution, these requests are served by a replica somewhere in the tree. We do not modify the
optimality of the solution by changing the ws,i, it just affects the flows of the solution. Thus, for
a given client i ∈ subtree(s)∩ C, if there is a replica s′ 6= s on the path between i and the root, we
can change the assignment of the requests of client i. Let x = max(ws′,i,W−ws). Then we move
x requests, i.e. ws′,i = ws′,i − x and ws,i = ws,i + x. From the definition of tflows, we obtain the
result, if we move all possible requests to s until there are no more requests in the subtree or until
s is processing W requests.

We now introduce a new definition, completely independent from the optimal solution but
related to the tree network. The canonical flow is obtained by distinguishing nodes which receive
a flow greater than W from the other nodes. We compute the canonical flow cflow of the tree,
independently of the replica placement, and define a subset of nodes which are saturated, SN . We
also compute the number of saturated nodes in subtree(k), denoted nsnk, for any node k ∈ C ∪N
of the tree.

For i ∈ C, cflowi = ri and nsni = 0, and we then compute recursively the canonical flows for
nodes s ∈ N . Let fs =

∑

i∈children(s) cflowi and xs =
∑

i∈children(s) nsni. If fs ≥ W then s ∈ SN ,
cflows = fs − W and nsns = xs + 1. Otherwise, s is not saturated, cflows = fs and nsns = xs.

We can deduce from these definitions the following results:

Proposition 1. A non saturated node always has a canonical flow being less than W:
∀s ∈ N \ SN cflows < W

Lemma 2. For all nodes s ∈ C ∪ N , cflows = tflows − nsns × W.

Corollary 1. For all nodes s ∈ C ∪ N , tflows ≥ nsns × W.

Proof. Proposition 1 is trivial due to the definition of the canonical flow.
Lemma 2 can be proved recursively on the tree.
• This property is true for the clients: for i ∈ C, nsni = 0 and tflowi = cflowi = ri.
• Let s ∈ N , and let us assume that the proposition is true for all children of s. Then,

∀j ∈ children(s) cflowj = tflowj − nsnj × W.

– If s /∈ SN , nsns =
∑

j∈children(s) nsnj and

cflows =
∑

j∈children(s)

cflowj =
∑

j∈children(s)

(tflowj − nsnj × W) = tflows − nsns × W

– If s ∈ SN , nsns =
(

∑

j∈children(s) nsnj

)

+ 1 and

cflows =
∑

j∈children(s)

cflowj − W =
∑

j∈children(s)

(tflowj − nsnj × W) − W

= tflows − (nsns − 1) × W − W = tflows − nsns × W

which proves the result. Corollary 1 is trivially deduced from Lemma 2 since cflow is a positive
function.

We also show that it is always possible to move a replica into a free server which is one of its
ancestors in the tree, while keeping an optimal solution:

Proposition 2. Let Ropt be an optimal solution, and let s ∈ Ropt. If ∃s′ ∈ Ancestors(s) \ Ropt

then R′
opt = {s′} ∪ Ropt \ {s} is also an optimal solution.
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Proof. s′ can handle all requests which were processed by s since s ∈ subtree(s′). We just need to
redefine ws′,i = ws,i for all i ∈ C and then ws,i = 0.

We are now ready to transform Ropt into a new optimal solution, Rsat, by redistributing the
requests among the replicas and moving some replicas, in order to place a replica at each saturated
node, and affecting W requests to this replica. This transformation is done starting at the leaves
of the tree, and considering all nodes of SN . Nothing needs to be done for the leaves (the clients)
since they are not in SN .

Let us consider s ∈ SN , and assume that the optimal solution has already been modified to
place a replica, and assign it W requests, on all nodes in subSN = SN ∩ subtree(s) \ {s}.

We need to differentiate two cases:
1. If s ∈ Ropt, we do not need to move any replica. However, if ws 6= W, we change the

assignment of some requests while keeping the same replicas in order to obtain a workload
of W on server s. We do not remove requests from the saturated servers of subSN which
have already been filled. Corollary 1 ensures that tflows ≥ nsns × W, and (nsns − 1) × W

requests should not move since they are affected to the nsns − 1 servers of subSN . There
are thus still more than W requests of clients of subtree(s) which can possibly be moved on
s using Lemma 1.

2. If s /∈ Ropt, we need to move a replica of Ropt and place it in s without changing the
optimality of the solution. We differentiate two subcases.
(a) If ∃s1 ∈ subtree(s) ∩ Ropt \ SN , then the replica placed on s1 can be moved in s by

applying Proposition 2. Then, if ws 6= W, we apply case 1 above to saturate the server.
(b) Otherwise, all the replicas placed in subtree(s) are also in SN , and the flow consumed

by the already modified optimal algorithm is exactly (nsns − 1) × W. It is easy to see
that the flow (of the optimal solution) at s is exactly equal to the total flow minus the
consumed flow. Therefore, flows = tflows − (nsns − 1)×W, and with the application
of Corollary 1, flows ≥ W.
The idea now consists in affecting the requests of this flow to node s by removing work
from the replicas upwards to the root, and rearrange the remaining requests to remove
one replica. The flow flows is going upwards to be processed by some of the nrs replicas
in Ancestors(s) ∩ Ropt, denoted s1, ..., snrs

, s1 being the closest node from s. We can
remove W of these requests from the flow and affect them to a new replica placed in
s. Let wsk,s =

∑

j∈subtree(s)∩C wsk,j . We have
∑

k=1..nrs
wsk,s = flows. We move these

requests from sk to s, starting with k = 1. Thus, after the modification, ws1,s = 0. It
is however possible that ws1

6= 0 since s1 may process requests which are not coming
from subtree(s). In this case, we are sure that we have removed enough requests from
sk, k = 2..nrs which can instead process requests still in charge of s1. We can then
remove the replica initially placed in s1.
This way, we have not changed the assignment on replicas in subSN , but we have placed
a replica in s which is processing W requests. Since we have at the same time removed
the first replica on the path from s to the root (s1), we have not changed the number
of replicas and the solution is still optimal.

Once we have applied this procedure up to the root, we have an optimal solution Rsat in which
all nodes of SN have been placed a replica and are processing W requests. We will not change the
assignment of these replicas anymore in the following. Free nodes in the new solution are called
F-nodes, while replicas which are not in SN are called PS-nodes, for partially saturated.

In a next step, we further modify the Rsat optimal solution in order to obtain what we call
the canonical solution Rcan. To do so, we change the request assignment of the PS-nodes: we
“saturate” some of them as much as we can and we integrate them into the subset of nodes SN ,
redefining the cflow accordingly. At the end of the process, SN = Rcan.

The cflow is still the flow which has not been processed by a saturated node in the subtree,
and thus we can express it in a more general way:

cflows = tflows −
∑

s′∈SN∩subtree(s)

ws′
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Note that this is totally equivalent to the previous definition while we have not modified SN .

We also introduce a new flow definition, the non-saturated flow of s, nsflows, which counts the
requests going through node s and not served by a saturated server anywhere in the tree. Thus,

nsflows = cflows −
∑

i∈children(s)∩C

∑

s′∈Ancestors(s)∩SN

ws′,i.

This flow represents the requests that can potentially be served by s while keeping all nodes of SN
saturated.

Lemma 3. In a saturated optimal solution, there cannot exist a PS-node in the subtree of another
PS-node.

Proof. The non-saturated flow is nsflows ≤ cflows since we further remove from the canonical
flow some requests which are affected upwards in the tree to some saturated servers.

Let s ∈ Rsat \ SN be a PS-node. Its canonical flow is cflows < W . It can potentially process
all the requests of the subtree which are not affected to a saturated server upwards or downwards
in the tree, thus nsflows requests. Since nsflows ≤ cflows < W , we can change the request
assignment to assign all these nsflows requests to s, removing eventually some work from other
non-saturated replicas upwards or downwards which were processing these requests. Thus, the
replica on node s is processing all the requests of subtree(s) which are not processed by saturated
nodes.

If there was a non saturated replica in subtree(s), it could thus be removed since all the requests
are processed by s. This means that a solution with a PS-node in the subtree of another PS-node
is not optimal, thus proving the lemma.

At this point, we can move the PS-nodes as high as possible in Rsat. Let s be a PS-node. If
there is a free node s′ in Ancestors(s) then we can move the replica from s to s′ using Proposition 2.
Lemma 3 ensures that there are no other PS-nodes in subtree(s′).

All further modifications will only alter nodes which have no PS-nodes in their ancestors. We
define N ′ = {s|Ancestors(s) \ SN = ∅}.

Let s ∈ N ′. nsflows = cflows −
∑

i∈children(s)∩C

∑

s′∈Ancestors(s) ws′,i since all ancestors of s are
in SN . Thus,

nsflows =
∑

s′∈subtree(s)\SN

ws′ .

By definition, ∀s ∈ N nsflows ≤ cflows. Moreover, if s /∈ SN , then nsflows = ws since
subtree(s) \ SN is reduced to s (no other PS-node under the PS-node s, from Lemma 3).

We introduce a new flow definition, the useful flow, which intuitively represents the number of
requests that can possibly be processed on s without removing requests from a saturated server.

uflows = min
s′∈Ancestors(s)∪{s}

{cflows′}

Lemma 4. Let s ∈ N ′. Then nsflows ≤ uflows.

Proof. Let s′ ∈ Ancestors(s). Since s ∈ N ′, s′ ∈ SN .

cflows′ ≥ nsflows′ =
∑

s′′∈subtree(s′)\SN

ws′′

But since s ∈ subtree(s′), subtree(s) \ SN ⊆ subtree(s′) \ SN , hence nsflows ≤ nsflows′ . Note
that nsflow is a non decreasing function (when going up the tree).

Thus, ∀s′ ∈ Ancestors(s) ∪ {s}, nsflows ≤ cflows′ , and by definition of the useful flow,
nsflows ≤ uflows.
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Now we start the modification of the optimal solution in order to obtain the canonical solution.
At each step, we select a node s ∈ N \ SN maximizing the useful flow. If there are several nodes
of identical uflow, we select the first one in a depth-first traversal of the tree. We will prove
that we can affect uflows requests to this node without unsaturating any server of SN. s is then
considered as a saturated node, we recompute the canonical flows (and thus the useful flows) and
reiterate the process until cflowr = 0, which means that all the requests have been affected to
saturated servers.

Let us explain how to reassign the requests in order to saturate s with uflows requests. The
idea is to remove some requests from Ancestors(s) in order to saturate s, and then to saturate the
ancestors of s again, by affecting them some requests coming from other non saturated servers.

First, we note that uflows ≤ cflowr = nsflowr. Thus,

uflows ≤
∑

s′∈N\SN

ws′ = ws +
∑

s′∈PS

ws′

where PS is the set of non saturated nodes without s. Let x = uflows −ws. If x = 0, s is already
saturated. Otherwise, we need to reassign x requests to s. From the previous equation, we can see
that

∑

s′∈PS ws′ ≥ uflows − ws = x. There are thus enough requests handled by non saturated
nodes which can be passed to s.

The number of requests of subtree(s) ∩ C handled by Ancestors(s) is
∑

s′∈Ancestors(s)

∑

i∈subtree(s)∩C

ws′,i = cflows − nsflows

by definition of the flow. Or cflows −nsflows ≥ uflows −ws = x so there are at least x requests
that s can take from its ancestors.

Let a1 = parent(s), ..., ak = r be the ancestors of s. xj =
∑

i∈subtree(s)∩C waj ,i is the amount of

requests that s can take from aj . We choose arbitrary where to take the requests if
∑

j xj > x,
and do not modify the assignment of the other requests. We thus assume in the following that
∑

j xj = x. Since these xj requests are coming from a client in subtree(s), we can assign them
to s, and there are now only W − xj requests handled by aj , which means that aj is temporarily
unsaturated. However, we have given x extra requests to s, hence s is processing ws +x = uflows

requests.
We finally need to reassign requests to aj , j = 1..k in order to saturate these nodes again,

taking requests out of nodes in PS (non saturated nodes other than s). This is done iteratively
starting with j = 1 and going up to the root ak. At each step j, we assume that aj′ , j′ < j have
already been saturated again and we should not move requests away from them. However, we can
still eventually take requests away from aj′′ , j′′ > j.

In order to saturate aj , we need to take:
• either requests from subtree(aj)∩C which are currently handled by aj′′ , j′′ > j, but without

moving requests which are already affected to s (i.e.
∑

j′′>j xj′′);
• or requests from non saturated servers in subtree(aj), except requests from s and requests

already given to s that should not be moved any more (i.e.
∑

j′<j xj′).
The number of requests that we can potentially affect to aj is therefore:

X =
∑

s′∈subtree(aj)\SN\{s}

ws′ +
∑

i∈subtree(aj)∩C

∑

s′∈Ancestors(aj)

ws′,i −
∑

j′<j

xj′ −
∑

j′′>j

xj′′

Let us show that X ≥ xj . Then we can use these requests to saturate aj again.

cflowaj
= nsflowaj

+
∑

i∈subtree(aj)∩C

∑

s′∈Ancestors(aj)

ws′,i = ws+X+
∑

j′<j

xj′+
∑

j′′>j

xj′′ = X+ws+x−xj

But cflowaj
≥ uflows and uflows − ws = x so

X = cflowaj
− ws − x + xj ≥ uflows − ws − x + xj = xj
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Figure 7: The platform used in the reduction for Theorem 2.

It is thus possible to saturate s and then keep its ancestors saturated. At this point, s becomes
a node of SN and we can recompute the canonical and non saturated flows. We have removed
uflows requests which were processed by non saturated servers, so the cflow and nsflow of all
ancestors of s, including s, should be decreased by uflows.

In particular, at the root, cflowr = cflowr − uflows, which proves that the contribution of s
on cflowr is uflows.

In the last step of the proof, we show that the number of replicas in the modified canonical
solution at the end of the iteration Rcan = SN has exactly the same number of replicas than Rsat.
In the saturated solution, each PS-node s is processing nsflows requests, while in the canonical
solution, it is uflows. However, at every step when adding a saturated node s, we have uflows

greater than any of the nsflows. It is thus easy to see that the number of nodes in the canonical
solution is less or equal to the number of nodes in the saturated solution. Since the saturated
solution is optimal, |Rcan| = |Rsat|, which completes the proof.

Our algorithm builds Rcan in polynomial time, which assesses the complexity of the problem.

4.2 With homogeneous nodes and the Upwards strategy

Theorem 2. The instance of the Replica Counting problem with the Upwards strategy is NP-
complete in the strong sense.

Proof. The problem clearly belongs to the class NP: given a solution, it is easy to verify in poly-
nomial time that all requests are served and that no server capacity is exceeded. To establish the
completeness in the strong sense, we use a reduction from 3-PARTITION [3]. We consider an in-
stance I1 of 3-PARTITION: given 3m positive integers a1, a2, . . . , a3m such that B/4 < ai < B/2

for 1 ≤ i ≤ 3m, and
∑3m

i=1 ai = mB, can we partition these integers into m triples, each of sum
B? We build the following instance I2 of Replica Counting (see Figure 7):

• 3m clients ci with ri = ai for 1 ≤ i ≤ 3m.

• m internal nodes nj with Wj = scj = B for 1 ≤ j ≤ m.
- The children of n1 are all the 3m clients ci, and its parent is n2.
- For 2 ≤ j ≤ m, the only child of nj is nj−1. For 1 ≤ j ≤ m − 1, the parent of nj is nj+1

(hence nm is the root).

Finally, we ask whether there exists a solution with total storage cost mB, i.e. with a replica
located at each internal node. Clearly, the size of I2 is polynomial (and even linear) in the size of
I1.
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Figure 8: The platform used in the reduction for Theorem 3.

We now show that instance I1 has a solution if and only if instance I2 does. Suppose first that
I1 has a solution. Let (ak1

, ak2
, ak3

) be the k-triplet in I1. We assign the three clients ck1
, ck2

and ck3
to server nk. Because ak1

+ ak2
+ ak3

= B, no server capacity is exceeded. Because the m
triples partition the ai, all requests are satisfied. We do have a solution to I2.

Suppose now that I2 has a solution. Let Ik be the set of clients served by node nk if there
is a replica located at nk: then

∑

i∈Ik
ai ≤ B. The total number of requests to be satisfied is

∑3m
i=1 ai = mB, and there are at most m replicas of capacity B. Hence no set Ik can be empty,

and
∑

i∈Ik
ai ≤ B for 1 ≤ k ≤ m. Because B/4 < ai < B/2, each Ik must be a triple. This leads

to the desired solution of I1.

4.3 With heterogeneous nodes

Theorem 3. All three instances of the Replica Cost problem with heterogeneous nodes are
NP-complete.

Proof. Obviously, the NP-completeness of the Upwards strategy is a consequence of Theorem 2.
For the other two strategies, the problem clearly belongs to the class NP: given a solution, it
is easy to verify in polynomial time that all requests are served and that no server capacity is
exceeded. To establish the completeness, we use a reduction from 2-PARTITION [3]. We consider
an instance I1 of 2-PARTITION: given m positive integers a1, a2, . . . , am, does there exist a subset
I ⊂ {1, . . . ,m} such that

∑

i∈I ai =
∑

i/∈I ai. Let S =
∑m

i=1 ai. We build the following instance
I2 of Replica Cost (see Figure 8):

• m + 1 clients ci with ri = ai for 1 ≤ i ≤ m and rm+1 = 1.

• m + 1 internal nodes:
- m nodes nj , 1 ≤ j ≤ m, with Wj = scj = aj .
- A root node r with Wr = scr = S/2 + 1. - The only child of nj is cj . The parent of nj is
r. The parent of cn+1 is r.

Finally, we ask whether there exists a solution with total storage cost S +1. Clearly, the size of I2

is polynomial (and even linear) in the size of I1. We now show that instance I1 has a solution if
and only if instance I2 does. The same reduction works for both strategies, Closest and Multiple.

Suppose first that I1 has a solution. We assign a replica to each node ni, i ∈ I, and one in the
root r. Client ci is served by ni if i ∈ I, and by the root r otherwise, i.e. if i /∈ I or if i = m + 1.
The total storage cost is

∑

j∈I Wj + Wr = S + 1. Because Wr = S/2 + 1 =
∑

i/∈I ri + rn+1, the
capacity of the root is not exceeded. Note that the server allocation is compatible both with the
Closest and Multiple policies. In both cases, we have a solution to I2.
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Suppose now that I2 has a solution. Necessarily, there is a replica located in the root, otherwise
client cn+1 would not be served. Let I be the index set of nodes nj , 1 ≤ j ≤ n, which have been
allocated a replica in the solution of I2. For j /∈ I, there is no replica in node nj , hence all
requests of client cj are processed by the root, whose storage capacity is S/2 + 1. We derive that
∑

j /∈I rj ≤ S/2. Because the total storage capacity is S + 1, the total storage capacity of nodes in
I is S/2. The proof is slightly different for the two server strategies:

• For the Closest strategy, all requests from a client cj ∈ I are served by nj , hence
∑

j∈I rj ≤
S/2. Since

∑

j∈I rj +
∑

j /∈I rj = S, we derive
∑

j∈I rj =
∑

j /∈I rj = S/2, hence a solution to
I2.

• For the Multiple strategy, consider a server j ∈ I. Let r′j be the number of requests from
client cj served by nj , and r′′j be the number of requests from cj served by the root r (of
course rj = r′j + r′′j ). All requests from a client cj , j /∈ I, are served by the root. Let
A =

∑

j∈I r′j , B =
∑

j∈I r′′j and C =
∑

j /∈I rj . The total storage cost is A + B + S/2 + 1,
hence A + B ≤ S/2. We have seen that C ≤ S/2. But A + B + C = S, hence B = 0, and
A = C = S/2, hence a solution to I2.

5 Linear programming formulation

In this section, we express the Replica Placement optimization problem in terms of an integer
linear program. We deal with the most general instance of the problem on a heterogeneous tree,
including QoS constraints, and bounds on resource usage (both server and link capacities). We
derive a formulation for each of the three server access policies, namely Closest , Upwards and
Multiple. This is an important extension to a previous formulation due to [8].

While there is no efficient algorithm to solve integer linear programs (unless P=NP), this
formulation is extremely useful as it leads to an absolute lower bound: we solve the integer linear
program over the rationals, using standard software packages [1, 4]. Of course the rational solution
will not be feasible, as it assigns fractions of replicas to server nodes, but it will provide a lower
bound on the storage cost of any solution. This bound will be very helpful to assess the performance
of the polynomial heuristics that are introduced in Section 6.

5.1 Single server

We start with single server strategies, namely the Upwards and Closest access policies. We need
to define a few variables:

Server assignment

• xj is a boolean variable equal to 1 if j is a server (for one or several clients)

• yi,j is a boolean variable equal to 1 if j = server(i)

• If j /∈ Ancests(i), we directly set yi,j = 0.

Link assignment

• zi,l is a boolean variable equal to 1 if link l ∈ path[i → r] is used when client i accesses
its server server(i)

• If l /∈ path[i → r] we directly set zi,l = 0.

The objective function is the total storage cost, namely
∑

j∈N scjxj . We list below the con-
straints common to the Closest and Upwards policies: First there are constraints for server and
link usage:

• Every client is assigned a server: ∀i ∈ C,
∑

j∈Ancestors(i) yi,j = 1.
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• All requests from i ∈ C use the link to its parent: zi,i→parent(i) = 1

• Let i ∈ C, and consider any link l : j → j ′ = parent(j) ∈ path[i → r]. If j ′ = server(i) then
link succ(l) is not used by i (if it exists). Otherwise zi,succ(l) = zi,l. Thus:

∀i ∈ C,∀l : j → j′ = parent(j) ∈ path[i → r], zi,succ(l) = zi,l − yi,j′

Next there are constraints expressing that server capacities and link bandwidths cannot be
exceeded:

• The processing capacity of any server cannot be exceeded: ∀j ∈ N ,
∑

i∈C riyi,j ≤ Wjxj .
Note that this ensures that if j is the server of i, there is indeed a replica located in node j.

• The bandwidth of any link cannot be exceeded: ∀l ∈ L,
∑

i∈C rizi,l ≤ BWl.

Finally there remains to express the QoS constraints:

∀i ∈ C,∀j ∈ Ancestors(i), dist(i, j)yi,j ≤ qi,

where dist(i, j) =
∑

l∈path[i→j] comml. As stated previously, we could take the computational time

of a request into account by writing (dist(i, j) + compj)yi,j ≤ qi, where compj would be the time
to process a request on server j.

Altogether, we have fully characterized the linear program for the Upwards policy. We need
additional constraints for the Closest policy, which is a particular case of the Upwards policy
(hence all constraints and equations remain valid).

We need to express that if node j is the server of client i, then no ancestor of j can be the
server of a client in the subtree rooted at j. Indeed, a client in this subtree would need to be
served by j and not by one of its ancestors, according to the Closest policy. A direct way to write
this constraint is

∀i ∈ C,∀j ∈ Ancestors(i),∀i′ ∈ C ∩ subtree(j),∀j′ ∈ Ancestors(j), yi,j ≤ 1 − yi′,j′ .

Indeed, if yi,j = 1, meaning that j = server(i), then any client i′ in the subtree rooted in j must
have its server in that subtree, not closer to the root than j. Hence yi′,j′ = 0 for any ancestor j′

of j.
There are O(s4) such constraints to write, where s = |C| + |N | is the problem size. We can

reduce this number down to O(s3) by writing

∀i ∈ C,∀j ∈ Ancestors(i) \ {r},∀i′ ∈ C ∩ subtree(j), yi,j ≤ 1 − zi′,j→parent(j).

5.2 Multiple servers

We now proceed to the Multiple policy. We define the following variables:

Server assignment

• xj is a boolean variable equal to 1 if j is a server (for one or several clients)

• yi,j is an integer variable equal to the number of requests from client i processed by
node j

• If j /∈ Ancests(i), we directly set yi,j = 0.

Link assignment

• zi,l is an integer variable equal to the number of requests flowing through link l ∈
path[i → r] when client i accesses any of its servers in Servers(i)

• If l /∈ path[i → r] we directly set zi,l = 0.
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The objective function is unchanged, as the total storage cost still writes
∑

j∈N scjxj . But the
constraints must be modified. First those for server and link usage:

• Every request is assigned a server: ∀i ∈ C,
∑

j∈Ancestors(i) yi,j = ri.

• All requests from i ∈ C use the link to its parent: zi,i→parent(i) = ri

• Let i ∈ C, and consider any link l : j → j ′ = parent(j) ∈ path[i → r]. Some of the requests
from i which flow through l will be processed by node j ′, and the remaining ones will flow
upwards through link succ(l):

∀i ∈ C,∀l : j → j′ = parent(j) ∈ path[i → r], zi,succ(l) = zi,l − yi,j′

The other constraints on server capacities, link bandwidths and QoS are slightly modified:

• Servers: ∀j ∈ N ,
∑

i∈C yi,j ≤ Wjxj . Note that this ensure that if j is the server for one or
more requests from i, there is indeed a replica located in node j.

• Bandwidths: ∀l ∈ L,
∑

i∈C zi,l ≤ BWl

• QoS: ∀i ∈ C,∀j ∈ Ancestors(i), dist(i, j)yi,j ≤ qiyi,j

Altogether, we have fully characterized the linear program for the Multiple policy.

5.3 An ILP-based lower bound

The previous linear programs contain boolean or integer variables, because it does not make sense
to assign half a request or to place one third of a replica on a node. However, we can still relax
the constraints and solve the linear program assuming that all variables take rational values. The
optimal solution of the relaxed program can be obtained in polynomial time (in theory using the
ellipsoid method [11], in practice using standard software packages [1, 4]), and the value of its
objective function provides an absolute lower bound on the cost of any valid (integer) solution.
Of course the relaxation makes the most sense for the Multiple policy, because several fractions of
servers are assigned by the rational program. While not likely to be achievable, this lower bound
will provide an absolute reference for the performance of the polynomial heuristics described in
Section 6.

6 Heuristics for the Replica Cost problem

In this section several heuristics for the Closest , Upwards and Multiple policies are presented.
As previously stated, our main objective is to provide an experimental assessment of the relative
performance of the three access policies. Our first attempt targets heterogenous trees without
QoS nor bandwidth constraints, thus considering the Replica Cost problem, but further work
will be devoted to analyzing the impact of the additional constraints (and in particular of the QoS
constraints) on the replica costs achieved by each policy.

All the eight heuristics described below have polynomial, and even worst case quadratic com-
plexity O(s2), where s = |C|+ |N | is the problem size. Indeed, all heuristics proceed by traversing
the tree, and the number of traversals is bounded by the number of internal nodes (and is much
lower in practice).

We assume that each node k ∈ N ∪ C \ {root} knows its parent(k). Additionally, an internal
node j ∈ N knows its children(j), and the set clients(j) of the clients in its subtree subtree(j). At
any step of the heuristics, we denote by inreqj the number of requests in subtree(j) reaching j with
the current replicas already placed (initially, with no replica, inreqj =

∑

i∈clients(j) ri). We use a
boolean variable treatedj to mark if a node j has been treated during a tree traversal. The set of
replicas is initialized by replica = ∅.
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6.1 Closest

The first two heuristics enforce the Closest policy through a top-down approach, whereas the third
heuristic uses a bottom-up approach.

Closest Top Down All (CTDA) – The basic idea is to perform a breadth-first traversal of the
tree. Every time a node is able to process the requests of all the clients in its subtree, the node is
chosen as a server, and we do not explore further that subtree. The procedure ClosestTopDownAll
(CTDA) is presented in Algorithm 4. It is called until no more servers are added in a tree traversal.

procedure CTDA (root, replica)
Fifo fifo;
fifo.push(root);
while fifo 6= ∅ do

s = fifo.pop();
if s /∈ replica then

if Ws ≥ inreqs & inreqs > 0 then
replica = replica ∪ {s};
foreach a ∈ Ancestors(s) do inreqa = inreqa − inreqs;

else
foreach i ∈ children(s) do

if i ∈ N then fifo.push(i);
end

end
end

end
Algorithm 4: Procedure CTDA

Closest Top Down Largest First (CTDLF) – The tree is traversed in breadth-first manner
as in CTDA. However, we treat the subtree which contains the most requests first when considering
the children of the tree (we sort the children by increasing number of requests inreq to perform
the “fifo.push(i)”). Also, instead of adding all possible servers in a single step, the tree traversal
is stopped as soon as a server that can process all the requests in its subtree has been found.
This is done by adding an instruction return each time a server has been found in the procedure
CTDA (Algorithm 4), just after the update of the inreq values of the server’s ancestors. As for
the previous heuristic, the procedure is called until no more server is chosen. In fact CTDLF is
called exactly |R| times, where R is the final set of replica.

Closest Bottom Up (CBU) – The last heuristic for the Closest policy performs a bottom-up
traversal of the tree. A node is chosen as a server if it can process all the requests of the clients
in its subtree. Algorithm 5 describes a recursive implementation of ClosestBottomUp (CBU). The
procedure is initially called with the root of the tree; while we do not reach the bottom of the tree,
we go down. Once arrived at the bottom, i.e. when the current node s has only clients as children
(test atBottom(s)) or when all its children have already been treated (test allChildrenTreated(s)),
the node is marked as treated and added to the set replica if Ws ≥ inreqs. Then we go up in the
tree until all nodes are treated, performing recursive calls.

Each of these three heuristics is placing a number of replicas, but none is ensuring whether a
valid solution has been found or not. We need to check the final value of inreqroot. If there still
are some pending requests at the root, there is no valid solution. However, if inreqroot = 0, the
heuristic has found a solution.
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procedure CBU (s ∈ N , replica)
if atBottom(s) || allChildrenTreated(s) then

treateds = true;
if Ws ≥ inreqs & inreqs > 0 then

/* node can treat all children’s requests */
replica = replica ∪ {s};
foreach a ∈ Ancestors(s) do inreqa = inreqa − inreqs;

else
/* node cannot treat all children’s requests, go up in the tree */
if Ancestors(s) 6= ∅ then call CBU (parent(s), replica);

end
else

foreach i ∈ children(s) do
/* not yet at the bottom of the tree, go down */
if i ∈ N & ¬treatedi then call CBU (i, replica);

end
end

Algorithm 5: Procedure CBU

6.2 Upwards

We propose two heuristics for the Upwards policy, the first one using a top-down approach, the
other considering the clients one by one, by non-increasing order of their number of requests.

Upwards Top Down (UTD) – The top down approach works in two passes. In the first pass
(see Algorithm 7), each node s ∈ N whose capacity is exhausted by the number of requests in its
subtree (Ws ≤ inreqs) is chosen by traversing the tree in depth-first manner. When a server is
chosen, we delete as much clients as possible in non-increasing order of their number of requests ri,
until the server capacity is reached or no other client can be deleted. This delete procedure is
described in Algorithm 6. If not all requests can be treated by the chosen servers, a second pass
is started. In this UTDSecondPass-procedure (see Algorithm 8) servers with remaining requests
are added. Note that all these servers are non-exhausted by the remaining requests (inreqs < Ws).
These two procedures are each called only once, with s = root as a parameter.

Similarly to the Closest heuristics, we need to check that inreqroot = 0 at the end of UTD to
find out whether a valid solution has been found.

procedure deleteRequests (s ∈ N , numToDelete)
clientList = sortDecreasing(clients(s));
foreach i ∈ clientList do

if ri ≤ numToDelete then
numToDelete = numToDelete - ri;
foreach a ∈ Ancestors(i) do inreqa = inreqa − ri;
children(parent(i)) = children(parent(i)) \ {i};
if numToDelete == 0 then return;

end
end

Algorithm 6: Procedure deleteRequests

Upwards Big Client First (UBCF) – The second heuristic for the Upwards policy works in
a completely different way than all the other heuristics. The basic idea here is to treat all clients in
non-increasing order of their ri values. For each client we identify the server with minimal current
capacity (in the path from the client to the root) that can treat all its requests. The capacity of a
server is decreased each time it is assigned some requests to process. If there is no valid server to
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procedure UTDFirstPass (s ∈ N , replica)
if inreqs ≥ Ws & inreqs > 0 then

replica = replica ∪ {s};
treateds = true;
deleteRequests(s, Ws);

end
foreach i ∈ children(s) do

if i ∈ N then UTDFirstPass (i, replica);
end

Algorithm 7: Procedure UTDFirstPass

procedure UTDSecondPass (s ∈ N , replica)
if s /∈ replica& inreqs > 0 then

replica = replica ∪ {s};
deleteRequests(s, inreqs);

else
foreach i ∈ children(s) do

if i ∈ N & inreqi > 0 then UTDSecondPass (i, replica);
end

end
Algorithm 8: Procedure UTDSecondPass

assign to a given client, the heuristic has failed to find a valid solution. Please refer to Algorithm 9
for details.

procedure UBCF (s ∈ N , replica)
clientList = sortDecreasing(clients(s);
foreach i ∈ clientList do

V alidAncests = {a ∈ Ancestors(i)|Wa ≥ ri};
if V alidAncests 6= ∅ then

a = MinWj
{j ∈ V alidAncests};

if a /∈ replica then replica = replica ∪ {a};
Wa = Wa − ri;

end
else return no solution;

end
Algorithm 9: Procedure UBCF

6.3 Multiple

We propose three heuristics for the Multiple policy. The first one uses a top-down approach, the
second one a bottom-up approach. The last one performs a greedy bottom-up traversal of the
tree.

Multiple Top Down (MTD) – The top-down approach for the Multiple policy is similar to
the top-down approach for Upwards, with one significant difference: the delete procedure. For
Upwards, requests of a client have to be treated by a single server, and it may occur that after
the delete procedure a server still has some capacity left to treat more requests, but all remaining
clients have a higher amount of requests than this leftover capacity. For Multiple, requests of a
client can be treated by multiple servers. So if at the end of the delete procedure the server still
has some capacity, we delete this amount of requests from the client with the largest ri. This
modified delete procedure is described in Algorithm 10.
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procedure deleteRequestsInMTD (s ∈ N , numToDelete)
clientList = sortDecreasing(clients(s));
foreach i ∈ clientList do

if ri ≤ numToDelete then
numToDelete = numToDelete - ri;
foreach a ∈ Ancestors(i) do inreqa = inreqa − ri;
children(parent(i)) = children(parent(i)) \ {i};

else
ri = ri - numToDelete;
foreach a ∈ Ancestors(i) do inreqa = inreqa − ri;
return;

end
end

Algorithm 10: Procedure deleteRequestsInMTD

Multiple Bottom Up (MBU) – The first pass of this heuristic performs a bottom-up traversal
of the tree, as in CBU. During this traversal, nodes s ∈ N are added to the set replica if their
capacity is exhausted (Ws ≤ inreqs), similarly to the first pass of the MTD procedure. The delete
procedure is identical to the MTD delete procedure (Algorithm 10), except that clients are deleted
in non-decreasing order of their ri values (instead of the non-increasing order). Intuitively, we aim
at deleting many small clients rather than fewer demanding ones. The MBUFirstPass is described
in Algorithm 11, and the MBUSecondPass, which adds extra servers if required (similarly to the
second pass of MTD), is described in Algorithm 12.

procedure MBUFirstPass (s ∈ N , replica)
if atBottom(s) || allChildrenTreated(s) then

treateds = true;
if Ws ≤ inreqs & inreqs > 0 then

/* node is exhausted by the requests of its clients */
replica = replica ∪ {s};
deleteRequestsInMBU(s, Ws);

else
/* node is not exhausted, go up the tree */
if Ancestors(s) 6= ∅ then call MBU (parent(s), replica);

end
else

/* not yet at the bottom of the tree, go down */
foreach i ∈ children(s) do

if i ∈ N & ¬treatedi then call MBU (i, replica);
end

end
Algorithm 11: Procedure MBUFirstPass

Multiple Greedy (MG) – The last heuristic performs a greedy bottom-up assignment of
requests, similarly to Pass 3 of the optimal algorithm for the homogeneous case (see Algorithm 3
in Section 4.1). We add a replica whenever there are some requests affected to a server. For
heterogeneous platforms, we may often return a cost far from the optimal, but we ensure that we
always find a solution to the problem if there exists one.

It might be particularly interesting to use MG only for problem instances for which MBU or
MTD fail to find a solution.
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procedure MBUSecondPass (s ∈ N , replica)
if s /∈ replica & inreqs > 0 then

replica = replica ∪ {s};
deleteRequestsInMBU(s, inreqs);

else
foreach i ∈ children(s) do

if i ∈ N & inreqi > 0 then UTDSecondPass (i, replica);
end

end
Algorithm 12: Procedure MBUSecondPass

7 Experiments: comparisons of different access policies

We have done some experiments to assess the impact of the different access policies, and the
performance of the polynomial heuristics described in Section 6. We obtain an absolute lower
bound of the solution for each tree platform with a linear program similar to those of Section 5,
but modified so as to solve larger problems. Section 7.1 details how we compute this lower bound.
We outline the experimental plan in Section 7.2. Results are given and commented in Section 7.3.
In the following, we denote by s the problem size: s = |C| + |N |.

7.1 Obtaining a lower bound

The linear programs exposed in Section 5 must be solved in integer values if we wish to obtain an
exact solution to an instance of the problem. This can be done for each access policy, but due to
the large number of variables, the problem cannot be solved for platforms of size s > 50. Thus we
cannot use this approach for large-scale problems.

For all practical values of the problem size, the rational linear program returns a solution in
a few minutes. We tested up to several thousands of nodes and clients, and we always found a
solution within ten seconds.

However, we can obtain a more precise lower bound for trees with up to s = 400 nodes and
clients by using a rational solution of the Multiple instance of the linear program with fewer integer
variables. We treat the yi,j and zi,l as rational variables, and only require the xj to be integer
variables. These variables are set to 1 if and only if there is a replica on the corresponding node.
Thus, forbidding to set 0 < xj < 1 allows us to get a realistic value of the cost of a solution of the
problem. For instance, a server might be used only at 50% of its capacity, thus setting x = 0.5
would be enough to ensure that all requests are processed; but in this case, the cost of placing
the replica at this node is halved, which is incorrect: while we can place a replica or not but it is
impossible to place half of a replica.

In practice, this lower bound provides a drastic improvement over the unreachable lower bound
provided by the fully rational linear program. The good news is that we can compute the refined
lower bound for problem sizes up to s = 400, using GLPK [4]. We used the refined bound for all
our experiments.

7.2 Experimental plan

The important parameter in our tree networks is the load, i.e. the total number of requests
compared to the total processing power:

λ =

∑

i∈C ri
∑

j∈N Wi

We have performed experiments on 30 trees for each of the nine values of λ selected (λ =
0.1, 0.2, ..., 0.9). The trees have been randomly generated, with a problem size 15 ≤ s ≤ 400.
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When λ is small, the tree has a light request load, while large values of λ implies a heavy load on
the servers. We then expect the problem to have a solution less frequently.

We have computed the number of solutions for each lambda and each heuristic. The number
of solutions obtained by the linear program indicates which problems are solvable. Of course we
cannot expect a result with our heuristics for those intractable problems.

To assess the relative cost of each heuristic, we have studied the distance of the result (in terms
of replica cost) of the heuristic to the lower bound. This allows to compare the cost of the different
heuristics, and thus to compare the different access policies. For each λ, the cost is computed on
the trees for which the linear program has a solution. Let Tλ be the subset of trees with a solution.
Then, the relative cost for the heuristic h is obtained by:

rcost =
1

|Tλ|

∑

t∈Tλ

costLP (t)

costh(t)

where costLP (t) is the lower bound cost returned by the linear program on tree t, and costh(t) is
the cost involved by the solution proposed by heuristic h. In order to be fair versus heuristics who
have a higher success rate, we set costh(t) = +∞ if the heuristic did not find any solution.

Experiments have been conducted both on homogeneous networks (Replica Counting prob-
lem) and on heterogeneous ones (Replica Cost problem).

7.3 Results

A solution computed by a Closest or Upwards heuristic always is a solution for the Multiple
policy, since the latter is less constrained. Therefore, we can mix results into a new heuristic for
the Multiple policy, called MixedBest (MB), which selects for each tree the best cost returned by
the previous eight heuristics for this particular problem instance. Since MG never fails to find a
solution if there is one, MB will neither fail either.

Figure 9 shows the percentage of success of each heuristic for homogeneous platforms. The
upper curve corresponds to the result of the linear program, and to the cost of the MG and
MB heuristics, which confirms that they always find a solution when there is one. The UBCF
heuristic seems very efficient, since it finds a solution more often than MTD and MBU, the other
two Multiple policies. On the contrary, UTD, which works in a similar way to MTD and MBU,
finds less solutions than these two heuristics, since it is further constrained by the Upwards policy.
As expected, all the Closest heuristics find fewer solutions as soon as λ reaches higher values:
the bottom curve of the plot corresponds to CTDA, CTDLF and CBU, which all find the same
solutions. This is inherent to the limitation of the Closest policy: when the number of requests
is high compared to the total processing power in the tree, there is little chance that a server can
process all the requests coming from its subtree, and requests cannot traverse this server to be
served higher in the tree. These results confirm that the new policies have a striking impact on
the existence of a solution to the Replica Counting problem.

Figure 10 represents the relative cost of the heuristics compared to the LP-based lower bound.
As expected, the hierarchy between the policies is respected, i.e. Multiple is better than Upwards
which in turn is better than Closest . For small values of λ, it happens that some Closest heuristics
give a better solution than those for Upwards or Multiple, due to the fact that the latter heuristics
are not well optimized for small values of λ. Also, UBCF is better than all the Multiple heuristics
for λ = 0.6. Altogether, the use of the MixedBest heuristic MB allows to always pick up the best
result, thereby resulting in a very satisfying relative cost for the Multiple instance of the problem.
The greedy MG should not be used for small values of λ, but proves to be very efficient for large
values, since it is the only heuristic to find a solution for such instances. To conclude, we point out
that MB always achieves a relative cost of at least 85%, thus returning a replica cost within 17% of
that of the LP-based lower bound. This is a very satisfactory result for the absolute performance
of our heuristics.

The heterogeneous results (see Figure 11 and Figure 12) are very similar to the homogeneous
ones, which clearly shows that our heuristics are not much sensitive to the heterogeneity of the
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platform. Therefore, we have an efficient way to find in polynomial time a good solution to all the
NP-hard problems stated in Section 4.
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Figure 9: Homogeneous case - Percentage of success.

8 Extensions

In this paper we have considered a simplified instance of the replica problem. In this section,
we outline two important generalizations, namely dealing with several objects, and changing the
objective function.

8.1 With several objects

In this paper, we have restricted the study of the problem to a single object, which means that
all replicas are identical (of the same type). We can envision a system in which different types
of objects need to be accessed. The clients are then having requests of different types, which can

be served only by an appropriate replica. Thus, for an object of type k, client i ∈ C issues r
(k)
i

requests for this object. To serve a request of type k, a node must be provided with a replica
of that type. Nodes can be provided with several replica types. A given client is likely to have

different servers for different objects. The QoS may also be object-dependent (q
(k)
i ).

To refine further, new parameters can be introduce such as the size of object k and the compu-
tation time involved for this object. Nodes parameters become object-dependent too, in particular
the storage cost and the time required to answer a request.

The server capacity constraint must then be a sum on all the object types, while the QoS must
be satisfied for each object type. The link capacity also is a sum on the different object types,
taking into account the size of each object.

There remains to modify the objective function: we simply aim at minimizing the cost of all
replicas of different types that have been assigned to the nodes in the solution to get the extended
replica cost for several objects.

Because the constraints add up linearly for different objects, it is not difficult to extend the
linear programming formulation of Section 5 to deal with several objects. Also, the three access
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policies Closest , Upwards and Multiple could naturally be extended to handle several objects.
However, designing efficient heuristics for various object types, especially with different com-
munication to computation ratios and different QoS constraints for each type, is a challenging
algorithmic problem.

8.2 More complex objective functions

Several important extensions of the problem consist in having a more complex objective function.
In fact, either with on or with several objects, we have restricted so far to minimizing the cost of
the replicas (and even their number in the homogeneous case). However, several other factors can
be introduced in the objective function:

Communication cost – This cost is the read cost, i.e. the communication cost required to ac-
cess the replicas to answer requests. It is thus a sum on all objects and all clients of the
communication time required to access the replica. If we take this criteria into account in
the objective function, we may prefer a solution in which replicas are close to the clients.

Update cost – The write cost is the extra cost due to an update of the replicas. An update must
be performed when one of the clients is modifying (writing) some of the data. In this case,
to ensure the consistency of the data, we need to propagate the modification to all other
replicas of the modified object. Usually, this cost is directly related to the communication
costs on the minimum spanning tree of the replica, since the replica which has been modified
sends the information to all the other replicas.

Linear combination – A quite general objective function can be obtained by a linear combina-
tion of the three different costs, namely replica cost, read cost and write cost. Informally,
such an objective function would write

α
∑

servers, objects

replica cost + β
∑

requests

read cost + γ
∑

updates

write cost
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where the application-dependent parameters α, β and γ would be used to give priorities to
the different costs.

Again, designing efficient heuristics for such general objective functions, especially in the con-
text of heterogeneous resources, is a challenging algorithmic problem.

9 Related work

Early work on replica placement by Wolfson and Milo [13] has shown the impact of the write cost
and motivated the use of a minimum spanning tree to perform updates between the replicas. In
this work, they prove that the replica placement problem in a general graph is NP-complete, even
without taking into account storage costs. Thus they address the case of special topologies, and
in particular tree networks. They give a polynomial solution in a fully homogeneous case and a
simple model with no QoS and no server capacity. Their work uses the closest server access policy
(single server) to access the data.

Using this Closest policy, Cidon et al [2] studied an instance of the problem with multiple
objects. In this work, the objective function has no update cost, but integrates a communication
cost. Communication cost in the objective function can be seen as a substitute for QoS. Thus,
they minimize the average communication cost for all the clients rather than ensuring a given
QoS for each client. They target fully homogeneous platforms since there are no server capacity
constraints in their approach. A similar instance of the problem has been studied by Liu et al [9],
adding a QoS in terms of a range limit (QoS=distance), and the objective being the Replica

Counting problem. In this latter approach, the servers are homogeneous, and their capacity is
bounded.

Cidon et al [2] and Liu et al [9] both use the Closest access policy. In each case, the optimization
problems are shown to have polynomial complexity. However, the variant with bidirectional links
is shown NP-complete by Kalpakis et al [5]. Indeed in [5], requests can be served by any node
in the tree, not just the nodes located in the path from the client to the root. The simple
problem of minimizing the number of replicas with identical servers of fixed capacity, without any
communication cost nor QoS contraints, directly reduces to the clasical bin packing problem.

Kalpakis et al [5] show that a special instance of the problem is polynomial, when considering
no server capacities, but with a general objective function taking into account read, write and
storage costs. In their work, a minimum spanning tree is used to propagate the writes, as was
done in [13]. Different methods can however be used, such as a minimum cost Steiner tree, in
order to further optimize the write strategy [6].

All papers listed above consider the Closest access policy. As already stated, most problems
are NP-complete, except for some very simplified instances. Karlsson et al [8, 7] compare different
objective functions and several heuristics to solve these complex problems. They do not take QoS
constraints into account, but instead integrate a communication cost in the objective function as
was done in [2]. Integrating the communication cost into the objective function can be viewed as
a Lagrangian relaxation of QoS constraints.

Tang and Xu [12] have been one of the first authors to introduce actual QoS constraints in the
problem formalization. In their approach, the QoS corresponds to the latency requirements of each
client. Different access policies are considered. First, a replica-aware policy in a general graph is
proven to be NP-complete. When the clients do not know where the replicas are (replica-blind
policy), the graph is simplified to a tree (fixed routing scheme) with the Closest policy, and in this
case again it is possible to find a polynomial algorithm using dynamic programming.

To the best of our knowledge, there is no related work comparing different access policies,
either on tree networks or on general graphs. Most previous works impose the Closest policy.
The Multiple policy is enforced by Rodolakis et al [10] but in a very different context. In fact,
they consider general graphs instead of trees, so they face the combinatorial complexity of finding
good routing paths. Also, they assume an unlimited capacity at each node, since they can add
numerous servers of different kinds on a single node. Finally, they include some QoS constraints
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in their problem formulation, based on the round trip time (in the graph) required to serve the
client requests. In such a context, this (very particular) instance of the Multiple problem is shown
to be NP-hard.

10 Conclusion

In this paper, we have introduced and extensively analyzed two important new policies for the
replica placement problem. The Upwards and Multiple policies are natural variants of the standard
Closest approach, and it may seem surprising that they have not already been considered in the
published literature.

On the theoretical side, we have fully assessed the complexity of the Closest , Upwards and
Multiple policies, both for homogeneous and heterogeneous platforms. The polynomial complexity
of the Multiple policy in the homogeneous case is quite unexpected, and we have provided an
elegant algorithm to compute the optimal cost for this policy. Not surprisingly, all three policies
turn out to be NP-complete for heterogeneous nodes, which provides yet another example of the
additional difficulties induced by resource heterogeneity.

On the practical side, we have designed several heuristics for the Closest , Upwards and Multiple
policies, and we have compared their performance for a simple instance of the problem, without
QoS constraints nor bandwidth limitations. In the experiments, the constraints were only related
to server capacities, and the total cost was the sum of the server capacities (or their number in
the homogeneous case). Even in this simple setting, the impact of the new policies is impressive:
the number of trees which admit a solution is much higher with the Upwards and Multiple policies
than with the Closest policy. Finally, we point out that the absolute performance of the heuristics
is quite good, since their cost is close to the lower bound based upon the solution of the integer
linear program.

There remains much work to extend the results of this paper, in several important directions.
In the short term, we need to conduct more simulations for the Replica Cost problem, varying
the shape of the trees, the distribution law of the requests and the degree of heterogeneity of the
platforms. We also aim at designing efficient heuristics for more general instances of the Replica

Placement problem, taking QoS and bandwidth constraints into account. It will be instructive
to see whether the superiority of the new Upwards and Multiple policies over Closest remains so
important in the presence of QoS constraints. Also, including bandwidth constraints may require
a better global load-balancing along the tree, thereby favoring Multiple over Upwards.

In the longer term, designing efficient heuristics for the problem with various object types, all
with different communication to computation ratios and different QoS constraints is a demanding
algorithmic problem. Also, we would like to extend this work so as to handle more complex
objective functions, including communication costs and update costs as well as replica costs; this
seems to be a very difficult challenge to tackle, especially in the context of heterogeneous resources.
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