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Abstract
Scheduling problems are already difficult on traditional parallel machines. They be-
come extremely challenging on heterogeneous clusters, even when embarrassingly par-
allel applications are considered. In this paper we deal with the problem of scheduling
multiple applications, made of collections of independent and identical tasks, on a
heterogeneous master-worker platform. The applications are submitted online, which
means that there is no a priori (static) knowledge of the workload distribution at the
beginning of the execution. The objective is to minimize the maximum stretch, i.e.
the maximum ratio between the actual time an application has spent in the system
and the time this application would have spent if executed alone.
On the theoretical side, we design an optimal algorithm for the offline version of
the problem (when all release dates and application characteristics are known before-
hand). We also introduce several heuristics for the general case of online applications.
On the practical side, we have conducted extensive simulations and MPI experiments,
showing that we are able to deal with very large problem instances in a few seconds.
Also, the solution that we compute totally outperforms classical heuristics from the
literature, thereby fully assessing the usefulness of our approach.

Keywords: Heterogeneous master-worker platform, online scheduling, multiple applications.

Résumé
Les problèmes liés à l’ordonnancement de tâches sont déjà difficiles sur des machines
traditionnelles. Ils deviennent encore plus inextricables sur des machines hétérogènes,
même lorsque les applications considérées sont facilement parallélisables (de type
tâches indépendantes). Nous nous intéressons ici à l’ordonnancement d’applications
multiples, sous forme de collections de tâches indépendantes et identiques, sur une
plate-forme mâıtre-esclave hétérogène. Les requêtes de calcul surviennent au cours du
temps, ce qui signifie que nous ne disposons pas de connaissance sur la charge de travail
au tout début de l’exécution. Notre objectif est de minimiser l’étirement (stretch)
maximum des applications, c’est-à-dire le rapport entre le temps que l’application
passe dans le système avant d’être terminée et le temps qu’elle y aurait passé si elle
disposait de la plate-forme pour elle seule.
D’un point de vue théorique, nous concevons un algorithme optimal pour le cas hors-
ligne (offline), lorsque toutes les dates d’arrivée et les caractéristiques des applications
sont connues à l’avance. Nous proposons également plusieurs méthodes heuristiques
pour le cas en-ligne (online), sans connaissance sur l’arrivée future des applications.
D’un point vue expérimental, nous avons mené des expérimentations approfondies
sous la forme de simulations avec SimGrid mais aussi dans un environment parallèle
réel, en utilisant MPI. Ces expérimentations montrent que nous sommes capables
d’ordonnancer des problèmes de grande taille en quelques secondes. Enfin, la solution
que nous proposons surpasse les méthodes heuristiques classiques, ce qui démontre
l’intérêt de notre démarche.

Mots-clés: Plate-forme mâıtre-esclave hétérogène, ordonnancement en-ligne, applications
concurrentes.
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1 Introduction

Scheduling problems are already difficult on traditional parallel machines. They become extremely
challenging on heterogeneous clusters, even when embarrassingly parallel applications are consid-
ered. For instance, consider a bag-of-tasks [1], i.e., an application made of a collection of indepen-
dent and identical tasks, to be scheduled on a master-worker platform. Although simple, this kind
of framework is typical of a large class of problems, including parameter sweep applications [21] and
BOINC-like computations [18]. If the master-worker platform is homogeneous, i.e., if all workers
have identical CPUs and same communication bandwidths to/from the master, then elementary
greedy strategies, such as purely demand-driven approaches, will achieve an optimal throughput.
On the contrary, if the platform gathers heterogeneous processors, connected to the master via
different-speed links, then the previous strategies are likely to fail dramatically. This is because it
is crucial to select which resources to enroll before initiating the computation [5, 41].

In this paper, we still target fully parallel applications, but we introduce a much more complex
(and more realistic) framework than scheduling a single application. We envision a situation where
users, or clients, submit several bags-of-tasks to a heterogeneous master-worker platform, using a
classical client-server model. Applications are submitted online, which means that there is no a
priori (static) knowledge of the workload distribution at the beginning of the execution. When
several applications are executed simultaneously, they compete for hardware (network and CPU)
resources.

What is the scheduling objective in such a framework? A greedy approach would execute the
applications sequentially in the order of their arrival, thereby optimizing the execution of each
application onto the target platform. Such a simple approach is not likely to be satisfactory for
the clients. For example, the greedy approach may delay the execution of the second application
for a very long time, while it might have taken only a small fraction of the resources and few
time-steps to execute it concurrently with the first one. More strikingly, both applications might
have used completely different platform resources (being assigned to different workers) and would
have run concurrently at the same speed as in exclusive mode on the platform. Sharing resources
to execute several applications concurrently has two key advantages: (i) from the clients’ point of
view, the average response time (the delay between the arrival of an application and the completion
of its last task) is expected to be much smaller; (ii) from the resource usage perspective, different
applications will have different characteristics, and are likely to be assigned different resources by
the scheduler. Overall, the global utilization of the platform will increase. The traditional measure
to quantify the benefits of concurrent scheduling on shared resources is the maximum stretch. The
stretch of an application is defined as the ratio of its response time under the concurrent scheduling
policy over its response time in dedicated mode, i.e., when it is the only application executed on
the platform. The objective is then to minimize the maximum stretch of any application, thereby
enforcing a fair trade-off between all applications.

The aim of this paper is to provide a scheduling strategy which minimizes the maximum
stretch of several concurrent bags-of-tasks which are submitted online. Our scheduling algorithm
relies on complicated mathematical tools but can be computed in time polynomial to the problem
size. On the theoretical side, we prove that our strategy is optimal for the offline version of the
problem (when all release dates and application characteristics are known beforehand). We also
introduce several heuristics for the general case of online applications. On the practical side, we
have conducted extensive simulations and MPI experiments, showing that we are able to deal
with very large problem instances in a few seconds. Also, the solution that we compute totally
outperforms classical heuristics from the literature, thereby fully assessing the usefulness of our
approach.

The rest of the paper is organized as follows. Section 2 describes the platform and application
models. Section 3 is devoted to the derivation of the optimal solution in the offline case, and to
the presentation of heuristics for online applications. In Section 4 we report an extensive set of
simulations and MPI experiments, and we compare the optimal solution against several classical
heuristics from the literature. Section 5 is devoted to an overview of related work. Finally, we
state some concluding remarks in Section 6.
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2 Framework

In this section, we outline the model for the target platforms, as well as the characteristics of the
applicative framework. Next we survey steady-state scheduling techniques and we introduce the
objective function, namely the maximum stretch of the applications.

2.1 Platform Model

We target a heterogeneous master-worker platform (see Figure 1), also called star network or
single-level tree in the literature.

The master Pmaster is located at the root of the tree, and there are p workers Pu (1 ≤ u ≤ p).
The link between Pmaster and Pu has a bandwidth bu. We assume a linear cost model, hence
it takes X/bu time-units to send (resp. receive) a message of size X to (resp. from) Pu. The
computational speed of worker Pu is su, meaning that it takes X/su time-units to execute X
floating point operations. Without any loss of generality, we assume that the master has no
processing capability. Otherwise, we can simulate the computations of the master by adding an
extra worker paying no communication cost.

· · ·
PpP2P1

Pmaster

bp

sp

Figure 1: A star network.

2.1.1 Communication models

Traditional scheduling models enforce the rule that computations cannot progress faster than
processor speeds would allow: limitations of computation resources are well taken into account.
Curiously, these models do not make similar assumptions for communications: in the literature,
an arbitrary number of communications may take place at any time-step [50, 20]. In particular, a
given processor can send an unlimited number of messages in parallel, and each of these messages
is routed as if was alone in the system (no sharing of resources). Obviously, these models are not
realistic, and we need to better take communication resources into account. To this purpose, we
present two different models, which cover a wide range of practical situations.

Under the bounded multiport communication model [33], the master can send/receive data
to/from all workers at a given time-step. However, there is a limit on the amount of data that
the master can send per time-unit, denoted as BW. In other words, the total amount of data
sent by the master to all workers each time-unit cannot exceed BW. Intuitively, the bound BW
corresponds to the bandwidth capacity of the master’s network card; the flow of data out of the
card can be either directed to a single link or split among several links indifferently, hence the
multiport hypothesis. The bounded multiport model fully accounts for the heterogeneity of the
platform, as each link has a different bandwidth. Simultaneous sends and receives are allowed (all
links are assumed bi-directional, or full-duplex).

Another, more restricted model, is the one-port model [16, 17]. In this model the master can
send data to a single worker at a given time, so that the sending operations have to be serialized.
Suppose for example that the master has a message of size X to send to worker Pu. We recall that
the bandwidth of the communication link between both processors is bu. If the transfer starts at
time t, then the master cannot start another sending operation before time t + X/bu. Usually, a
processor is supposed to be able to perform one send and one receive operation at the same time.
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However, this hypothesis will not be useful in our study, as the master processor is the only one
to send data.

The one-port model seems to fit the performance of some current MPI implementations, which
serialize asynchronous MPI sends as soon as message sizes exceed a few hundreds of kilobytes [44].
However, recent multi-threaded communication libraries such as MPICH [32, 34] allow for initiating
multiple concurrent send and receive operations, thereby providing practical realizations of the
multiport model.

Finally, for both the bounded multiport and the one-port models, we assume that computation
can be overlapped by independent communication, without any interference.

2.1.2 Computation models

We propose two models for the computation. Under the fluid computation model, we assume that
several tasks can be executed at the same time on a given worker, with a time-sharing mechanism.
Furthermore, we assume that we totally control the computation rate for each task. For example,
suppose that two tasks A and B are executed on the same worker at respective rates α and β.
During a time period ∆t, α · ∆t units of work of task A and β · ∆t units of work of task B are
completed. These computation rates may be changed at any time during the computation of a
task.

Our second computation model, the atomic computation model, assumes that only a single
task can be computed on a worker at any given time, and this execution cannot be stopped before
its completion (no preemption).

Under both computation models, a worker can only start computing a task once it has com-
pletely received the message containing the task. However, for the ease of proofs, we add a variant
to the fluid computation model, called synchronous start computation: in this model, the compu-
tation on a worker can start at the same time as the reception of the task starts, provided that
the computation rate is smaller than, or equal to, the communication rate (the communication
must complete before the computation). This models the fact that, in several applications, only
the first bytes of data are needed to start executing a task. In addition, the theoretical results
of this paper are more easily expressed under this model, which provides an upper bound on the
achievable performance.

2.1.3 Proposed platform model taxonomy

We summarize here the various platform and application models under study:

Bounded Multiport with Fluid Computation and Synchronous Start (BMP-FC-SS).
This is the uttermost simple model: communication and computation start at the same time,
communication and computation rates can vary over time within the limits of link and pro-
cessor capabilities. We include this model in our study because it provides a good and
intuitive framework to understand the results presented here. This model also provides an
upper bound on the achievable performance, which we use as a reference for other models.

Bounded Multiport with Fluid Computation (BMP-FC). This model is a step closer to
reality, as it allows computation and communication rates to vary over time, but it imposes
that a task input data is completely received before its execution can start.

Bounded Multiport with Atomic Computation (BMP-AC). In this model, two tasks can-
not be computed concurrently on a worker. This model takes into account the fact that
controlling precisely the computing rate of two concurrent applications is practically chal-
lenging, and that it is sometimes impossible to run simultaneously two applications because
of memory constraints.

One-Port Model with Atomic Computation (OP-AC). This is the same model as the BMP-
AC, but with one-port communication constraint on the master. It represents systems where
concurrent sends are not allowed.
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In the following, we mainly focus on the variants of the bounded multiport model. We explain
the results obtained with the one-port model in Section 3.3.4.

There is a hierarchy among all the multiport models: intuitively, in terms of hardness,

BMP-FC-SS < BMP-FC < BMP-AC

Formally, a valid schedule for BMP-AC is valid for BMP-FC and a valid schedule for BMP-FC is
valid for BMP-FC-SS. This is why studying BMP-FC-SS is useful for deriving upper bounds for
all other models.

2.2 Application model

We consider n bags-of-tasks Ak, 1 ≤ k ≤ n. The master Pmaster holds the input data of each
application Ak upon its release time. Application Ak is composed of a set of Π(k) independent,
same-size tasks. In order to completely execute an application, all its constitutive tasks must be
computed (in any order).

We let w(k) be the amount of computations (expressed in flops) required to process a task of
Ak. The speed of a worker Pu may well be different for each application, depending upon the
characteristics of the processor and upon the type of computations needed by each application.
To take this into account, we refine the platform model and add an extra parameter, using s

(k)
u

instead of su in the following. In other words, we move from the uniform machine model to the
unrelated machine model of scheduling theory [20]. The time required to process one task of Ak

on processor Pu is thus w(k)/s
(k)
u . Each task of Ak has a size δ(k) (expressed in bytes), which

means that it takes a time δ(k)/bu to send a task of Ak to processor Pu (when there are no other
ongoing transfers). For simplicity we do not consider any return message: either we assume that
the results of the tasks are stored on the workers, or we merge the return message of the current
task with the input message of the next one (and update the communication volume accordingly).

2.3 Steady-state scheduling

Assume for a while that a unique bag-of-tasks Ak is executed on the platform. If Π(k), the number
of independent tasks composing the application, is large (otherwise, why would we deploy Ak on
a parallel platform?), we can relax the problem of minimizing the total execution time. Instead,
we aim at maximizing the throughput, i.e., the average (fractional) number of tasks executed per
time-unit. We design a cyclic schedule, that reproduces the same schedule every period, except
possibly for the very first (initialization) and last (clean-up) periods. It is shown in [9, 5] how to
derive an optimal schedule for throughput maximization. The idea is to characterize the optimal
throughput as the solution of a linear program over rational numbers, which is a problem with
polynomial time complexity.

Throughout the paper, we denote by ρ
(k)
u the throughput of worker Pu for application Ak, i.e.,

the average number of tasks of Ak that Pu executes each time-unit. In the special case where
application Ak is executed alone in the platform, we denote by ρ

∗(k)
u the value of this throughput

in the solution which maximizes the total throughput: ρ∗(k) =
p∑

u=1
ρ
∗(k)
u .

We write the following linear program (see Equation (1)), which enables us to compute an
asymptotically optimal schedule. The maximization of the throughput is bounded by three types
of constraints:

• The first set of constraints state that the processing capacity of Pu is not exceeded.

• The second set of constraints states that the bandwidth of the link from Pmaster to Pu is not
exceeded.

• The last constraint states that the total outgoing capacity of the master is not exceeded.
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(1)



Maximize ρ∗(k) =
∑p

u=1 ρ
∗(k)
u subject to

∀1 ≤ u ≤ p, ρ
∗(k)
u

w(k)

s
(k)
u

≤ 1

∀1 ≤ u ≤ p, ρ
∗(k)
u

δ(k)

bu
≤ 1

p∑
u=1

ρ∗(k)
u

δ(k)

BW
≤ 1

The formulation in terms of a linear program is simple when considering a single application.
In this case, a closed-form expression can be derived. First, the first two sets of constraints can
be transformed into:

∀1 ≤ u ≤ p ρ∗(k)
u ≤ min

{
s
(k)
u

w(k)
,

bu

δ(k)

}
.

Then, the last constraint can be rewritten:

p∑
u=1

ρ∗(k)
u ≤ BW

δ(k)
.

So that the optimal throughput is

ρ∗(k) = min

{
BW
δ(k)

,

p∑
u=1

min

{
s
(k)
u

w(k)
,

bu

δ(k)

}}
.

It can be shown [9, 5] that any feasible schedule under one of the multiport model has to
enforce the previous constraints. Hence the optimal value ρ∗(k) is an upper bound of the achievable
throughput. Moreover, we can construct an actual schedule, based on an optimal solution of the
linear program and which approaches the optimal throughput. The reconstruction is particularly
easy. For example the following procedure builds an asymptotic optimal schedule for the BMP-
AC model (bounded multiport communication with atomic computation). As this is the most
constrained multiport model, this schedule is feasible in any multiport model:

• While there are tasks to process on the master, send tasks to processor Pu with rate ρ
∗(k)
u .

• As soon as processor Pu starts receiving a task it processes at the rate ρ
∗(k)
u .

Due to the constraints of the linear program, this schedule is always feasible and it is asymp-
totically optimal, not only among periodic schedules, but more generally among any possible
schedules. More precisely, its execution time differs from the minimum execution time by a con-
stant factor, independent of the total number of tasks Π(k) to process [5]. This allows us to
accurately approximate the total execution time, also called makespan, as:

MS∗(k) =
Π(k)

ρ∗(k)
.

We often use MS∗(k) as a comparison basis to approximate the makespan of an application
when it is alone on the computing platform. If MS

(k)
opt is the optimal makespan for this single

application, then we have
MS

(k)
opt −Mk ≤MS∗(k) ≤MS

(k)
opt

where Mk is a fixed constant, independent of Π(k).
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2.4 Stretch

We come back to the original scenario, where several applications are executed concurrently.
Because they compete for resources, their throughput will be lower. Equivalently, their execution
rate will be slowed down. Informally, the stretch [12] of an application is the slowdown factor.

Let r(k) be the release date of application Ak on the platform. Its execution will terminate at
time C(k) ≡ r(k) + MS(k), where MS(k) is the time to execute all Π(k) tasks of Ak. Because there
might be other applications running concurrently to Ak during part or whole of its execution, we
expect that MS(k) ≥ MS∗(k). We define the average throughput ρ(k) achieved by Ak during its
(concurrent) execution using the same equation as before:

MS(k) =
Π(k)

ρ(k)
.

In order to process all applications fairly, we would like to ensure that their actual (concurrent)
execution is as close as possible to their execution in dedicated mode. The stretch of application
Ak is its slowdown factor

Sk =
MS(k)

MS∗(k)
=

ρ∗(k)

ρ(k)

Our objective function is defined as the max-stretch S, which is the maximum of the stretches
of all applications:

S = max
1≤k≤n

Sk

Minimizing the max-stretch S ensures that the slowdown factor is kept as low as possible for
each application, and that none of them is unduly favored by the scheduler.

3 Theoretical study

The main contribution of this paper is a polynomial algorithm to schedule several bag-of-task
applications arriving online, while minimizing the maximum stretch. We start this section with
the presentation of an asymptotically optimal algorithm for the offline setting, when application
release dates and characteristics are known in advance. Then we present our solution for the online
framework.

3.1 Offline setting for the fluid model

3.1.1 Defining the set of possible solutions

In this section, we assume that all characteristics of the n applications Ak, 1 ≤ k ≤ n are known
in advance.

The scheduling algorithm is the following. Given a candidate value for the max-stretch, we
have a procedure to determine whether there exists a solution that can achieve this value. The
optimal value will then be found using a binary search on possible values.

Consider a candidate value Sl for the max-stretch. If this objective is feasible, all applications
will have a max-stretch smaller than Sl, hence:

∀ 1 ≤ k ≤ n,
MS(k)

MS∗(k)
≤ Sl ⇐⇒ ∀1 ≤ k ≤ n, C(k) = r(k) + MS(k) ≤ r(k) + Sl ×MS∗(k)

Thus, given a candidate value Sl, we have a deadline:

(2) d(k) = r(k) + Sl ×MS∗(k)

for each application Ak, 1 ≤ k ≤ n. This means that the application must complete before this
deadline in order to ensure the expected max-stretch. If this is not possible, no solution is found,
and a larger max-stretch should be tried by the binary search.
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Once a candidate stretch value S has been chosen, we divide the total execution time into time-
intervals whose bounds are epochal times, that is, applications’ release dates or deadlines. Epochal
times are denoted tj ∈ {r(1), ..., r(n)} ∪ {d(1), . . . , d(n)}, such that tj ≤ tj+1, 1 ≤ j ≤ 2n− 1. Our
algorithm consists in running each application Ak during its whole execution window [r(k), d(k)],
but with a different throughput on each time-interval [tj , tj+1] such that r(k) ≤ tj and tj+1 ≤ d(k).
Some release dates and deadlines may be equal, leading to empty time-intervals, for example if
there exists j such that tj = tj+1. We do not try to remove these empty time-intervals so as to
keep simple indices.

Note that contrarily to the steady-state operation with only one application, in the different
time-intervals, the communication throughput may differ from the computation throughput: when
the communication rate is larger than the computation rate, extra tasks are stored in a buffer.
On the contrary, when the computation rate is larger, tasks are extracted from the buffer and
processed. We introduce new notations to take both rates, as well as buffer sizes, into account:

• ρ
(k)
M→u(tj , tj+1) denotes the communication throughput from the master to the worker Pu

during time-interval [tj , tj+1] for application Ak, i.e., the average number of tasks of Ak sent
to Pu per time-units.

• ρ
(k)
u (tj , tj+1) denotes the computation throughput of worker Pu during time-interval [tj , tj+1]

for application Ak, i.e., the average number of tasks of Ak computed by Pu per time-units.

• B
(k)
u (tj) denotes the (fractional) number of tasks of application Ak stored in a buffer on Pu

at time tj .

We write the linear constraints that must be satisfied by the previous variables. Our aim is to
find a schedule with minimum stretch satisfying those constraints. Later, based on rates satisfying
these constraints, we show how to construct a schedule achieving the corresponding stretch.

All tasks sent by the master. The first set of constraints ensures that all the tasks of a given
application Ak are actually sent by the master:

(3) ∀ 1 ≤ k ≤ n,
∑

1≤j≤2n−1

tj ≥ r(k)

tj+1 ≤ d(k)

p∑
u=1

ρ
(k)
M→u(tj , tj+1)× (tj+1 − tj) = Π(k).

Non-negative buffers. Each buffer should always have a non-negative size:

(4) ∀ 1 ≤ k ≤ n,∀1 ≤ u ≤ p,∀1 ≤ j ≤ 2n, B(k)
u (tj) ≥ 0.

Buffer initialization. At the beginning of the computation of application Ak, all corresponding
buffers are empty:

(5) ∀ 1 ≤ k ≤ n,∀1 ≤ u ≤ p, B(k)
u (r(k)) = 0.

Emptying Buffer. After the deadline of application Ak, no tasks of this application should
remain on any node:

(6) ∀ 1 ≤ k ≤ n,∀1 ≤ u ≤ p, B(k)
u (d(k)) = 0.

Task conservation. During time-interval [tj , tj+1], some tasks of application Ak are received and
some are consumed (computed), which impacts the size of the buffer:

(7) ∀ 1 ≤ k ≤ n,∀1 ≤ j ≤ 2n− 1,∀1 ≤ u ≤ p,

B(k)
u (tj+1) = B(k)

u (tj) +
(
ρ
(k)
M→u(tj , tj+1)− ρ(k)

u (tj , tj+1)
)
×
(
tj+1 − tj

)
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Bounded computing capacity. The computing capacity of a node should not be exceeded on
any time-interval:

(8) ∀1 ≤ j ≤ 2n− 1,∀1 ≤ u ≤ p,

n∑
k=1

ρ(k)
u (tj , tj+1)

w(k)

s
(k)
u

≤ 1.

Bounded link capacity. The bandwidth of each link should not be exceeded:

(9) ∀1 ≤ j ≤ 2n− 1,∀1 ≤ u ≤ p,

n∑
k=1

ρ
(k)
M→u(tj , tj+1)

δ(k)

bu
≤ 1.

Limited sending capacity of master. The total outgoing bandwidth of the master should not
be exceeded:

(10) ∀1 ≤ j ≤ 2n− 1,

p∑
u=1

n∑
k=1

ρ
(k)
M→u(tj , tj+1)

δ(k)

BW
≤ 1.

Non-negative throughputs.

(11) ∀1 ≤ u ≤ p,∀1 ≤ k ≤ n,∀1 ≤ j ≤ 2n−1, ρ
(k)
M→u(tj , tj+1) ≥ 0 and ρ(k)

u (tj , tj+1) ≥ 0.

We obtain a convex polyhedron (K) defined by the previous constraints. The problem turns
now into checking whether the polyhedron is empty and, if not, into finding a point in the poly-
hedron.

(K)

{
ρ
(k)
M→u(tj , tj+1), ρ(k)

u (tj , tj+1), ∀k, u, j such that 1 ≤ k ≤ n, 1 ≤ u ≤ p, 1 ≤ j ≤ 2n− 1
under the constraints (3), (7), (5), (6), (4), (8), (9), (10) and (11)

3.1.2 Number of tasks processed

At first sight, it may seem surprising that in this set of linear constraints, we do not have an
equation establishing that all tasks of a given application are eventually processed. Indeed, such a
constraint can be derived from the constraints related to the number of tasks sent from the master
and the size of buffers. Consider the constraints on task conservation (Equation (7)) on a given
processor Pu, and for a given application Ak; these equations can be written:

∀1 ≤ j ≤ 2n− 1, B(k)
u (tj+1)−B(k)

u (tj) =
(
ρ
(k)
M→u(tj , tj+1)− ρ(k)

u (tj , tj+1)
)
×
(
tj+1 − tj

)
.

If we sum all these constraints for all time-interval bounds between tstart = r(k) and tstop = d(k),
we obtain:

B(k)
u (tstop)−B(k)

u (tstart) =
∑

[tj , tj+1]

tj ≥ r(k)

tj+1 ≤ d(k)

ρ
(k)
M→u(tj , tj+1)×

(
tj+1−tj

)
−

∑
[tj , tj+1]

tj ≥ r(k)

tj+1 ≤ d(k)

ρ(k)
u (tj , tj+1)×

(
tj+1−tj

)

Thanks to constraints (5) and (6), we know that B
(k)
u (tstart) = 0 and B

(k)
u (tstop) = 0. So the

overall number of tasks sent to a processor Pu is equal to the total number of tasks computed:∑
[tj , tj+1]

tj ≥ r(k)

tj+1 ≤ d(k)

ρ
(k)
M→u(tj , tj+1)×

(
tj+1 − tj

)
=

∑
[tj , tj+1]

tj ≥ r(k)

tj+1 ≤ d(k)

ρ(k)
u (tj , tj+1)×

(
tj+1 − tj

)
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This is true for all processors, and constraints (3) tells us that the total number of tasks sent for
application Ak is Π(k), so:

p∑
u=1

∑
[tj , tj+1]

tj ≥ r(k)

tj+1 ≤ d(k)

ρ(k)
u (tj , tj+1)×

(
tj+1 − tj

)
= Π(k)

Therefore in any solution in Polyhedron (K), all tasks of each application are processed.

3.1.3 Bounding the buffer size

The size of the buffers could also be bounded by adding constraints:

∀1 ≤ u ≤ p,∀1 ≤ j ≤ 2n,

n∑
k=1

B(k)
u (tj)δ(k) ≤Mu

where Mu is the size of the memory available on node Pu. We bound the needed memory only
at time-interval bounds, but the above argument can be used to prove that the buffer size on Pu

never exceeds Mu. We choose not to include this constraint in our basic set of constraints, as this
buffer size limitation only applies to the fluid model. Indeed, we have earlier proven that limiting
the buffer size for independent tasks scheduling leads to NP-complete problems [10].

3.1.4 Equivalence between non-emptiness of Polyhedron (K) and achievable stretch

Finding a point in Polyhedron (K) allows to determine whether the candidate value for the stretch
is feasible. Depending on whether Polyhedron (K) is empty, the binary search will be continued
with a larger or smaller stretch value:

• If the polyhedron is not empty, then there exists a schedule achieving stretch S. S becomes
the upper bound of the binary search interval and the search proceeds.

• On the contrary, if the polyhedron is empty, then it is not possible to achieve S. S becomes
the lower bound of the binary search.

This binary search and its proof are described below. For now, we concentrate on proving that
the polyhedron is not empty if and only if the stretch S is achievable.

Note that the previous study assumes a fluid framework, with flexible computing and commu-
nicating rates. This is particularly convenient for the totally fluid model (BMP-FC-SS) and we
prove below that the algorithm computes the optimal stretch under this model. The strength of
our method is that this study is also valid for the other models. The results are slightly different,
leading to asymptotic optimality results and the proofs detailed below are slightly more involved.
However, this technique allows to approach optimality.

Theorem 1. Under the totally fluid model, Polyhedron (K) is not empty if and only if there exists
a schedule with stretch S.

In practice, to know if the polyhedron is empty or to obtain a point in (K), we can use
classical tools for linear programs, just by adding a fictitious linear objective function to our set
of constraints. Some solvers allow the user to limit the number of refinement steps once a point is
found in the polyhedron; this could be helpful to reduce the running time of the scheduler.

Proof. ⇒ Assume that the polyhedron is not empty, and consider a point in (K), given by the
values of the ρ

(k)
M→u(tj , tj+1) and ρ

(k)
u (tj , tj+1). We construct a schedule which obeys exactly these

values. During time-interval [tj , tj+1], the master sends tasks of application Ak to processor Pu

with rate ρ
(k)
M→u(tj , tj+1), and this processor computes these tasks at a rate ρ

(k)
u (tj , tj+1).
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To prove that this schedule is valid under the fluid model, and that it has the expected stretch,
we define ρ

(k)
M→u(t) as the instantaneous communication rate, and ρ

(k)
u (t) as the instantaneous

computation rate. Then the (fractional) number of tasks of Ak sent to Pu in interval [0, T ] is∫ T

0

ρ
(k)
M→u(t)dt

With the same argument as in the previous remark, applied on interval [0, T ], we have

B(k)
u (T ) =

∫ T

0

ρ
(k)
M→u(t)dt−

∫ T

0

ρ(k)
u (t)dt

Since the buffer size is positive for all tj and evolves linearly in each interval [tj , tj+1], it is not
possible that a buffer has a negative size, so∫ T

0

ρ(k)
u (t)dt ≤

∫ T

0

ρ
(k)
M→u(t)dt

Hence data is always received before being processed.
With the constraints of Polyhedron (K), it is easy to check that no processor or no link is over-

utilized and the outgoing capacity of the master is never exceeded. All the deadlines computed
for stretch S are satisfied by construction, so this schedule achieves stretch S.
⇐ Now we prove that if there exists a schedule S1 with stretch S, Polyhedron (K) is not

empty. We consider such a schedule, and we call ρ
(k)
M→u(t) (and ρ

(k)
u (t)) the communication (and

computation) rate in this schedule for tasks of application Ak on processor Pu at time t. We
compute as follows the average values for communication and computation rates during time
interval [tj , tj+1]:

ρ
(k)
M→u(tj , tj+1) =

∫ tj+1

tj

ρ
(k)
M→u(t)dt

tj+1 − tj
and ρ(k)

u (tj , tj+1) =

∫ tj+1

tj

ρ(k)
u (t)dt

tj+1 − tj
.

In this schedule, all tasks of application Ak are sent by the master, so∫ d(k)

r(k)
ρ
(k)
M→u(t)dt = Π(k).

With the previous definitions, Equation (3) is satisfied. Along the same line, we can prove that the
task conservation constraints (Equation (7)) are satisfied. Constraints on buffers (Equations 5, 6
and 4) are necessarily satisfied by the size of the buffer in schedule S1 since it is feasible. Similarly,
we can check that the constraints on capacities are verified.

3.1.5 Binary search

To find the optimal stretch, we perform a binary search using the emptiness of Polyhedron (K)
to determine whether it is possible to achieve the current stretch.

The initial upper bound for this binary search is computed using a naive schedule where all
applications are computed sequentially. For the sake of simplicity, we consider that all applications
are released at time 0 and terminate simultaneously. This is clearly a worst case scenario. We
recall that the throughput for a single application on the whole platform can be computed as:

ρ∗(k) = min

{
BW
δ(k)

,

p∑
u=1

min

{
s
(k)
u

w(k)
,

bu

δ(k)

}}
Then the execution time for application Ak is simply Π(k)/ρ∗(k). We consider that all applica-

tions terminate at time
∑

k Π(k)/ρ∗(k), so that the worst stretch is
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Smax = max
k

Π(k)/ρ∗(k)∑
k Π(k)/ρ∗(k)

.

The lower bound on the achievable stretch is 1. Determining the termination criterion of the
binary search, that is the minimum gap ε between two possible stretches, is quite involved, and
not very useful in practice. We focus here on the case where this precision ε is given by the user.
Please refer to Section 3.4 for a low-complexity technique (a binary search among stretch-intervals)
to compute the optimal maximum stretch.

Algorithm 1: Binary search
begin
Sinf ← 1
Ssup ← Smax

while Ssup − Sinf > ε do
S ← (Ssup + Sinf)/2
if Polyhedron (K) is empty then
Sinf ← S

else
Ssup ← S

return Ssup

end

Suppose that we are given ε > 0. The binary search is conducted using Algorithm 1. This
algorithm allows us to approach the optimal stretch, as stated by the following theorem.

Theorem 2. For any ε > 0, Algorithm 1 computes a stretch S such that there exists a schedule
achieving S and S ≤ Sopt + ε, where Sopt is the optimal stretch. The complexity of Algorithm 1 is
O(log Smax

ε ).

Proof. We prove that at each step, the optimal stretch is contained in the interval [Sinf,Ssup]
and Ssup is achievable. This is obvious at the beginning. At each step, we consider the set of
constraints for a stretch S in the interval. If the corresponding polyhedron is empty, Theorem 1
tells us that stretch S is not achievable, so the optimal stretch is greater than S. If the polyhedron
is not empty, there exists a schedule achieving this stretch, thus the optimal stretch is smaller
than S.

The size of the work interval is divided by 2 at each step, and we stop when this size is smaller
than ε. Thus the number of steps is O(log Smax

ε ). At the end, Sopt ∈ [Sinf,Ssup] with Ssup−Sinf ≤ ε,
so that Ssup ≤ Sopt + ε, and Ssup is achievable.

3.2 Property of the one-dimensional load-balancing schedule

Before showing how to extend the previous result to more complex platform models, we introduce
a tool that will prove helpful for the proofs: the one-dimensional load-balancing schedule and its
properties.

A significant part of this paper is devoted to comparing results under different models. One of
the major differences between these models is whether they allow –or not– preemption and time-
sharing. On the one hand, we study “fluid”models, where a resource (processor or communication
link) can be simultaneously used by several tasks, provided that the total utilization rate is below
one. On the other hand, we also study “atomic” models, where a resource can be devoted to only
one task, which cannot be preempted: once a task is started on a given resource, this resource
cannot perform other tasks before the first one is completed. In this section, we show how to
construct a schedule without preemption from fluid schedules, in a way that keeps the interesting
properties of the original schedule. Namely, we aim at constructing atomic-model schedules in
which tasks terminate not later, or start not earlier, than in the original fluid schedule.



12 A. Benoit, L. Marchal, J.-F. Pineau, Y. Robert, F. Vivien

We consider a general case of n applications A1, . . . , An to be scheduled on the same resource,
typically a given processor, and we denote by tk the time needed to process one task of application
Ak at full speed. We start from a fluid schedule Sfluid where each application Ak is processed at
a rate of αk tasks per time-units, such that

∑n
k=1 αk ≤ 1. Figure 2(a) illustrates such a schedule.
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(a) fluid schedule Sfluid
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(b) atomic schedule S1D

Figure 2: Gantt charts for the proof illustrating the one-dimensional load-balancing algorithm.

From Sfluid, we build an atomic-model schedule S1D using a one-dimensional load-balancing
algorithm [19, 6]: at any time step, if nk is the number of tasks of application Ak that have
already been scheduled, the next task to be scheduled is the one which minimizes the quantity
(nk+1)×tk

αk
. Figure 2(b) illustrates the schedule obtained. We now prove that this schedule has the

nice property that a task is not processed later in S1D than in Sfluid.

Lemma 1. In the schedule S1D, a task T does not terminate later than in Sfluid.

Proof. First, we point out that tk/αk is the time needed to process one task of application Ak in
Sfluid (with rate αk). So nk×tk

αk
is the time needed to process the first nk tasks of application Ak.

The scheduling decision which chooses the application minimizing (nk+1)×tk

αk
consists in choosing

the task which is not yet scheduled and which terminates first in Sfluid. Thus, in S1D, the tasks
are executed in the order of their termination date in Sfluid. Note that if several tasks terminate
at the very same time in Sfluid, then these tasks can be executed in any order in S1D, and the
partial order of their termination date is still observed in S1D.

Tother

dfluid

Tbefore tki
Tbefore

d1D

tki

Then, consider a task Ti of a given application Aki , its termination date dfluid in Sfluid, and its
termination date d1D in S1D. We call Sbefore the set of tasks which are executed before Ti in S1D.
Because S1D executes the tasks in the order of their termination date in Sfluid, Sbefore is made of
tasks which are completed before Ti in Sfluid, and possibly some tasks completed at the same time
as Ti (at time dfluid). We denote by Tbefore the time needed to process the tasks in Sbefore.

In S1D, we have d1D = Tbefore + tki whereas in Sfluid, we have dfluid = Tbefore + tki + Tother

where Tother is the time spent processing tasks from other application than Ak and which are not
completed at time dfluid, or tasks completing at time dfluid and scheduled later than Ti in S1D.
Since Tother ≥ 0, we have d1D ≤ dfluid.

The previous property is useful when we want to construct an atomic-model schedule, that is a
schedule without preemption, in which task results are available no later than in a fluid schedule.
On the contrary, it can be useful to ensure that no task will start earlier in an atomic-model
schedule than in the original fluid schedule. Here is a procedure to construct a schedule with the
latter property.

1. We start again from a fluid schedule Sfluid, of makespan M . We transform this schedule
into a schedule S−1

fluid by reversing the time: a task starting at time d and finishing at time
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f in Sfluid is scheduled to start at time M − f and to terminate at M − d in S−1
fluid, and is

processed at the same rate as in Sfluid. Note that this is possible since we have no precedence
constraints between tasks.

2. Then, we apply the previous one-dimensional load-balancing algorithm on S−1
fluid, leading to

the schedule S−1
1D . Thanks to the previous result, we know that a task T does not terminate

later in S−1
1D than in S−1

fluid.

3. Finally, we transform S−1
1D by reverting the time one last time: we obtain the schedule S−2

1D .
A task starting at time d and finishing at time f in S−1

1D starts at time M − f and finishes
at time M − d in S−2

1D . Note that S−1
1D may have a makespan smaller that M (if the resource

was not totally used in the original schedule Sfluid). In this case, our method automatically
introduces idle time in the one-dimensional schedule, to avoid that a task is started too early.

Lemma 2. A task does not start sooner in S−2
1D than in Sfluid.

Proof. Consider a task T , call f1 its termination date in S−1
fluid, and f2 its termination date in

S−1
1D . Thanks to Lemma 1, we know that f2 ≤ f1. By construction of the reverted schedules, the

starting date of task T in Sfluid is M − f1. Similarly, its starting date in S−2
1D is M − f2 and we

have M − f2 ≥M − f1.

3.3 Quasi-optimality for more realistic models

In this section, we explain how the previous optimality result can be adapted to the other models
presented in Section 2.1.3. As expected, the more realistic the model, the less tight the optimality
guaranty. Fortunately, we are always able to reach asymptotic optimality : our schedules get closer
to the optimal as the number of tasks per application increases.

We describe the delay induced by each model in comparison to the fluid model: starting from a
schedule optimal under the fluid model (BMP-FC-SS), we try to build a schedule with comparable
performance under a more constrained scenario.

In the following, we consider a schedule S1, with stretch S, valid under the totally fluid model
(BMP-FC-SS). For the sake of simplicity, we consider that this schedule has been built from a
point in Polyhedron (K) as explained in the previous section: the computation and communication
rates (ρ(k)

u (tj , tj+1) and ρ
(k)
M→u(tj , tj+1)) are constant during each interval, and are defined by the

coordinates of the point in Polyhedron (K).
We assess the delay induced by each model. Given the stretch S, we can compute a deadline

d(k) for each application Ak. By moving to more constrained models, we will not be able to
ensure that the finishing time MS(k) is smaller than d(k). We call lateness for application Ak the
quantity max{0,MS(k) − d(k)}, that is the time between the due date of an application and its
real termination. Once we have computed the maximum lateness for each model, we show how to
obtain asymptotic optimality in Section 3.3.3.

3.3.1 Without simultaneous start: the BMP-FC model

We consider here the BMP-FC model, which differs from the previous model only by the fact that
a task cannot start before it has been totally received by a processor.

Theorem 3. From schedule S1, we can build a schedule S2 obeying the BMP-FC model where the

maximum lateness for each application is max
1≤u≤p

n∑
k=1

w(k)

s
(k)
u

.

Proof. From the schedule S1, valid under the fluid model (BMP-FC-SS), we aim at building S2

with a similar stretch where the execution of a task cannot start before the end of the corresponding
communication. We first build a schedule as follows, for each processor Pu (1 ≤ u ≤ p):

1. Communications to Pu are the same as in S1;
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2. By comparison to S1, the computations on Pu are shifted for each application Ak: the com-
putation of the first task of Ak is not really performed (Pu is kept idle instead of computing
this task), and we replace the computation of task i by the computation of task i− 1.

Because of the shift of the computations, the last task of application Ak is not executed in this
schedule at time d(k). We complete the construction of S2 by adding some delay after deadline
d(k) to process this last task of application Ak at full speed, which takes a time w(k)

s
(k)
u

. All the
following computations on processor Pu (in the next time-intervals) are shifted by this delay.

The lateness for any application Ak on processor Pu is at most the sum of the delays for all
applications on this processor,

∑n
k=1

w(k)

s
(k)
u

, and the total lateness of Ak is bounded by the maximum
lateness between all processors:

lateness(k) ≤ max
1≤u≤p

n∑
k=1

w(k)

s
(k)
u

An example of such a schedule S2 is shown on Figure 3 (on a single processor).

ρ
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t
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(a) Schedule S1 (BMP-FC-SS model)
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(b) Schedule S2 (BMP-FC model)

Figure 3: Example of the construction of a schedule S2 for BMP-FC model from a schedule S1 for
BMP-FC-SS model. We plot only the computing rate. Each box corresponds to the execution of
one task.

3.3.2 Atomic execution of tasks: the BMP-AC model

We now move to the BMP-AC model, where a given processor cannot compute several tasks in
parallel, and the execution of a task cannot be preempted: a started task must be completed
before any other task can be processed.

Theorem 4. From schedule S1, we can build a schedule S3 obeying the BMP-AC model where the
maximum lateness for each application is

max
1≤u≤p

2n×
n∑

k=1

w(k)

s
(k)
u

.

Proof. Starting from a schedule S1 valid under the fluid model (BMP-FC-SS), we want to build
S3, valid in BMP-AC. We take here advantage of the properties described in Section 3.2 of one-
dimensional load-balancing schedules, and especially of S−2

1D . Schedule S3 is built as follows:
1. Communications are kept unchanged;
2. We consider the computations taking place in S1 on processor Pu during time-interval

[tj , tj+1]. A rational number of tasks of each application may be involved in the fluid sched-
ule. We first compute the integer number of tasks of application Ak to be computed in
S3:

nu,j,k =
⌊
ρ(k)

u (tj , tj+1)× (tj+1 − tj)
⌋
.

The first nu,j,k tasks of Ak scheduled in time-interval [tj , tj+1] on Pu are organized using the
transformation to build S−2

1D in Section 3.2.
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3. Then, the computations are shifted as for S2: for each application Ak, the computation of
the first task of Ak is not really performed (the processor is kept idle instead of computing
this task), and we replace the computation of task i by the computation of task i− 1.

Lemma 2 proves that, during time-interval [tj , tj+1], on processor Pu, a computation does not
start earlier in S3 than in S1. As S1 obeys the totally fluid model (BMP-FC-SS), a computation
of S1 does not start earlier than the corresponding communication, so a computation of task i of
application Ak in S1 does not start earlier than the finish time of the communication for task i−1
of Ak. Together with the shifting of the computations, this proves that in S3, the computation of
a task does not start earlier than the end of the corresponding communication, on each processor.

Because of the rounding down to the closest integer, on each processor Pu, at each time-
interval, S3 computes at most one task less than S1 of application Ak. Moreover, one more task
computation of application Ak is not performed in S3 due to the computation shift. On the whole,
as there are at most 2n− 1 time-intervals, at most 2n tasks of Ak remain to be computed on Pu

at time d(k). The delay for application Ak is:

lateness(k) ≤ max
1≤u≤p

2n×
n∑

k=1

×w(k)

s
(k)
u

.

This is obviously not the most efficient way to construct a schedule for the BMP-AC model:
in particular, each processor is idle during each interval (because of the rounding down). It would
certainly be more efficient to sometimes start a task even if it cannot be terminated before the end
of the interval. This is why for our experiments, we implemented on each worker a greedy schedule
with Earliest Deadline First Policy instead of this complex construction. However, we can easily
prove that this construction has an asymptotic optimal stretch, unlike other greedy strategies.

3.3.3 Asymptotic optimality

In this section, we show that the previous schedules are close to the optimal, when applications are
composed of a large number of tasks. To establish such an asymptotic optimality, we have to prove
that the gap computed above gets smaller when the number of tasks gets larger. At first sight, we
would have to study the limit of the application stretch when Π(k) is large for each application.
However, if we simply increase the number of tasks in each application without changing the release
dates and the tasks characteristics, then the problem will look totally different: any schedule will
run for a very long time, and the time separating the release dates will be negligible in front of
the whole duration of the schedule. This behavior is not meaningful for our study.

To study the asymptotic behavior of the system, we rather change the granularity of the tasks:
we show that when applications are composed of a large number of small-size tasks, then the
maximal stretch is close to the optimal one obtained with the fluid model. To take into account
the application characteristics, we introduce the granularity g, and we redefine the application
characteristics with this new variable:

Π(k)
g =

Π(k)

g
, w(k)

g = g × w(k) and δ(k)
g = g × δ(k).

When g = 1, we get back to the previous case. When g < 1, there are more tasks but they
have smaller communication and computation size. For any g, the total communication and
computation amount per application is kept the same, thus it is meaningful to consider the original
release dates.

Our goal is to study the case g → 0. Note that under the totally fluid model (BMP-FC-SS),
the granularity has no impact on the performance (or the stretch). Indeed, the fluid model can be
seen as the extreme case where g = 0. The optimal stretch under the BMP-FC-SS Sopt does not
depend on g.
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Theorem 5. When the granularity is small, the schedule constructed above for the BMP-FC
(respectively BMP-AC) model is asymptotically optimal for the maximum stretch, that is

lim
g→0
S = Sopt

where S is the stretch of the BMP-FC (resp. BMP-AC) schedule, and Sopt the stretch of the
optimal fluid schedule.

Proof. The lateness of the applications computed in Section 3.3.1 for the BMP-FC model, and
in Section 3.3.2 for the BMP-AC model, becomes smaller when the granularity increase: for the
BMP-FC model, we have

lateness(k) ≤ max
1≤u≤p

n∑
k=1

w
(k)
g

s
(k)
u

−−−−→
g→0

0.

Similarly, for the BMP-AC model,

lateness(k) ≤ max
1≤u≤p

2n×
n∑

k=1

w
(k)
g

s
(k)
u

−−−−→
g→0

0.

Thus, when g gets close to 0, the stretch obtained by these schedules is close to Sopt.

3.3.4 One-port model

In this section, we explain how to modify the previous study to cope with the one-port model.
We cannot simply extend the result obtained for the fluid model to the one-port model (as we
have done for the other models) since the parameters for modeling communications are not the
same. Actually, the one-port model limits the time spent by a processor (here the master) to send
data whereas the multiport model limits its bandwidth capacity. Thus, we have to modify the
corresponding constraints. Constraint (10) is replaced by the following one.

(10-b) ∀1 ≤ j ≤ 2n− 1,

p∑
u=1

n∑
k=1

ρ
(k)
M→u(tj , tj+1)

δ(k)

bu
≤ 1

Note that the only difference with Constraint (10) is that, now, we bound the time needed
by the master to send all data instead of the volume of the data itself. The set of constraints
corresponding to the scheduling problem under the one-port model, for a maximum stretch S, are
gathered by the definition of Polyhedron (K1):

(K1)

{
ρ
(k)
M→u(tj , tj+1), ρ(k)

u (tj , tj+1), ∀k, u, j such that 1 ≤ k ≤ n, 1 ≤ u ≤ p, 1 ≤ j ≤ 2n− 1
under the constraints (3), (7), (5), (6), (4), (8), (9), (10-b), and (11)

As previously, the existence of a point in the polyhedron is linked to the existence of a schedule
with stretch S. However, we have no fluid model which could perfectly follow the behavior of the
linear constraints. Thus we only target asymptotic optimality.

Theorem 6. (a) If there exists a schedule valid under the one-port model with stretch S1, then
Polyhedron (K1) is not empty for S1.

(b) Conversely, if Polyhedron (K1) is not empty for the stretch objective S2, then there exists
a schedule valid for the problem under the one-port model with parameters Π(k)

g , δ
(k)
g , and

w
(k)
g , as defined in Section 3.3.3, whose stretch S is such that

lim
g→0
S = S2.
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Proof. (a) To prove the first part of the theorem, we prove that for any schedule with stretch
S1, we can construct a point in Polyhedron (K1). Given such a schedule, we denote by
A

(k)
M→u(tj , tj+1) the total number of tasks of application Ak sent by the master to processor

Pu during interval [tj , tj+1]. Note that this may be a rational number if there are ongoing
transfers at times tj and/or tj+1. Similarly, we denote by A

(k)
u (tj , tj+1) the total (rational)

number of tasks of Ak processed by Pu during interval [tj , tj+1]. Then we compute:

ρ
(k)
M→u(tj , tj+1) =

A
(k)
M→u(tj , tj+1)

tj+1 − tj
and ρ(k)

u (tj , tj+1) =
A

(k)
u (tj , tj+1)
tj+1 − tj

.

As in the fluid case, we can also compute the state of the buffers based on these quantities:

B(k)
u (tj) =

∑
ti+1≤tj

A
(k)
M→u(ti, ti+1)−A(k)

u (ti, ti+1)

We can easily check that all constraints (3),(4), (5), (6), (7), (8), (9), and (10-b) are satisfied.
Variables B

(k)
u (tj), ρ

(k)
M→u(tj , tj+1), and ρ

(k)
u (tj , tj+1) define a point in Polyhedron (K1).

(b) From a point in Polyhedron (K1), we build a schedule which is asymptotically optimal, as
defined in Section 3.3.3. During each interval [tj , tj+1], for each worker Pu, we proceed as
follows.

1. We first consider a fluid-model schedule Sf following exactly the rates defined by the
point in the polyhedron: the tasks of application Ak are sent with rate ρ

(k)
M→u(tj , tj+1)

and processed at rate ρ
(k)
u (tj , tj+1).

2. We transform both the communication schedule and the computation schedule using
one-dimensional load-balancing algorithms. We first compute the integer number of
tasks that can be sent in the one-port schedule:

ncomm
u,j,k =

⌊
ρ
(k)
M→u(tj , tj+1)× (tj+1 − tj)

⌋
.

The number of tasks that can be computed on Pu in this time-interval is bounded both
by the number of tasks processed in the fluid-model schedule, and by the number of
tasks received during this time-interval plus the number of remaining tasks:

ncomp
u,j,k = min

{ ⌊
ρ(k)

u (tj , tj+1)× (tj+1 − tj)
⌋

, ncomm
u,j,k +

j−1∑
i=1

(
ncomm

u,i,k − ncomp
u,i,k

) }

The first ncomm
u,j,k tasks sent in schedule Sf are organized with the one-dimensional

load-balancing algorithm into S1D, while the last ncomp
u,j,k tasks executed in schedule

Sf are organized with the inverse one-dimensional load-balancing algorithm S−2
1D (see

Section 3.2).
3. Then, the computations are shifted: for each application Ak, the computation of the

first task of Ak is not really performed (the processor is kept idle instead of computing
this task), and we replace the computation of task i by the computation of task i− 1.

The proof of the validity of the obtained schedule is very similar to the proof of Theorem 4
for the BMP-AC model: we use the fact that a task does not start earlier in S−2

1D than in Sf ,
and no later in S1D than in Sf to prove that the data needed for the execution of a given
task are received in time.

At time d(k), some tasks of application Ak are still not processed, and some may even not be
received yet. Let us denote by Lk the number of time-intervals between r(k) and d(k), that
is time-intervals where tasks of application Ak may be processed (Lk ≤ 2n − 1). Because
of the rounding of the numbers of tasks sent, at most one task is not transmitted in each
interval, for each application. At time d(k), we thus have at most Lk tasks of application Ak
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to be sent to each processor Pu. We have to serialize the sending operations, which takes a
time at most

n∑
u=1

Lk × δ(k)

bu

Then, the number of tasks remaining to be processed on processor Pu is upper bounded
by 2Lk + 1: at most Lk are received late because of the rounding of the number of tasks
received, at most Lk tasks are received but not computed because we also round the number
of tasks processed, and one more task may also remain because of the computation shift.
The computation (at full speed) of all these tasks takes at most a time (2Lk + 1)w(k)

s
(k)
u

on
processor Pu. Overall, the delay induced on all processors for finishing application Ak can
be bounded by:

n∑
u=1

Lk × δ(k)

bu
+ max

1≤u≤p
(2Lk + 1)× w(k)

s
(k)
u

.

As Lk ≤ 2n− 1, the lateness of any application Ak is thus:

lateness(k) ≤
∑

k

(
n∑

u=1

(2n− 1)× δ(k)

bu
+ max

1≤u≤p
(4n− 1)× w(k)

s
(k)
u

)
.

As in the proof of Theorem 5, when the granularity becomes small, the stretch of the obtained
schedule becomes as close to S2 as we want.

3.4 Binary search with stretch-intervals

In this section, we present another method to compute the optimal stretch in the offline case. This
method is based on a linear program built from the constraints of the convex polyhedron (K) with
the minimization of the stretch as objective. To do this, we need that other parameters (especially
the deadlines) are functions of the stretch. We recall that the deadlines of the applications are
computed from their release date and the targeted stretch S :

d(k) = r(k) + S ×MS∗(k).

d1

d3

t

r3r2r1S

d2

S4

S3

S2

S1 = 1

S5

Figure 4: Relation between stretch and deadlines

Figure 4 represents the evolution of the deadlines d(k) over the targeted stretch S: each deadline
is an affine function in S. For the sake of readability, the time is represented on the x axis, and
the stretch on the y axis. Special values of stretches S1,S2, . . . ,Sm are represented on the figure.
These critical values of the stretch are points where the ordering of the release dates and deadlines
of the applications is modified:

• When S is such a critical value, some release dates and deadlines have the same values;
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• When S varies between two such critical values, i.e., when Sa < S < Sa+1, then the ordering
of the release dates and the deadlines is preserved.

To simplify our notations, we add two artificial critical values corresponding to the natural bound
of the stretch: S1 = 1 and Sm =∞.

Our goal is to find the optimal stretch by slicing the stretch space into a number of intervals.
Within each interval defined by the critical values, the deadlines are linear functions of the stretch.
We first show how to find the best stretch within a given interval using a single linear program,
and then how to explore the set of intervals with a binary search, so as to find the one containing
the optimal stretch.

3.4.1 Within a stretch-interval

In the following, we work on one stretch-interval, called [Sa,Sb]. For all values of S in this interval,
the release dates r(k) and deadlines d(k) are in a given order, independent of the value of S. As
previously, we note {tj}j=1...2n = {r(k), d(k)}, with tj ≤ tj+1. As the values of the tj may change
when S varies, we write tj = αjS + βj . This notation is general enough for all r(k) and d(k) :

• If tj = r(k), then αj = 0 and βj = r(k).

• If tj = d(k), then αj = MS∗(k) and βj = r(k).

Note that like previously, some tj might be equal, and especially when the stretch reaches a
bound of the stretch-interval (S = Sa or S = Sb), that is a critical value. For the sake of simplicity,
we do not try to discard the empty time-intervals, to avoid the renumbering of the epochal times.

When we rewrite the constraints defining the convex polyhedron (K) with these new notations,
we obtain quadratic constraints instead of linear constraints. To avoid this, we introduce new
notations. Instead of considering the instantaneous communication and computation rates, we
use the total amount of tasks sent or computed during a given time-interval. Formally we define
A

(k)
M→u(tj , tj+1) to be the fractional number of tasks of application Ak sent by the master to

processor Pu during the time-interval [tj , tj+1]. Similarly, we denote by A
(k)
u (tj , tj+1) the fractional

number of tasks of application Ak computed by processor Pu during the time-interval [tj , tj+1].
Of course, these quantities are linked to our previous variables. Indeed, we have:

A
(k)
M→u(tj , tj+1) = ρ

(k)
M→u(tj , tj+1)× (tj+1 − tj)

A(k)
u (tj , tj+1) = ρ(k)

u (tj , tj+1)× (tj+1 − tj)

with tj+1 − tj = (αj+1 − αj)S + (βj+1 − βj).
We rewrite the set of constraints with these new notations:

Total number of tasks We make sure that all tasks of application Ak are sent by the master:

(12) ∀ 1 ≤ k ≤ n,
∑

1≤j≤2n−1

tj ≥ r(k)

tj+1 ≤ d(k)

p∑
u=1

A
(k)
M→u(tj , tj+1) = Π(k)

Non-negative buffer Each buffer should always have a non-negative size:

(13) ∀ 1 ≤ k ≤ n,∀1 ≤ u ≤ p,∀1 ≤ j ≤ 2n, B(k)
u (tj) ≥ 0

Buffer initialization At the beginning of the computation of application Ak, all corresponding
buffers are empty:

(14) ∀ 1 ≤ k ≤ n,∀1 ≤ u ≤ p, for tj = r(k), B(k)
u (tj) = 0
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Emptying Buffer After the deadline of application Ak, no tasks of this application should remain
on any node:

(15) ∀ 1 ≤ k ≤ n,∀1 ≤ u ≤ p, for tj = d(k), B(k)
u (tj) = 0

Task conservation During time-interval [tj , tj+1], some tasks of application Ak are received and
some are consumed (computed), which impacts the size of the buffer:
(16)
∀ 1 ≤ k ≤ n,∀1 ≤ j ≤ 2n−1,∀1 ≤ u ≤ p, B(k)

u (tj+1) = B(k)
u (tj)+A

(k)
M→u(tj , tj+1)−A(k)

u (tj , tj+1)

Bounded computing capacity The computing capacity of a node should not be exceeded on
any time-interval:

(17) ∀1 ≤ j ≤ 2n− 1,∀1 ≤ u ≤ p,

n∑
k=1

A(k)
u (tj , tj+1)

w(k)

s
(k)
u

≤ (αj+1 − αj)S + (βj+1 − βj)

Bounded link capacity The bandwidth of each link should not be exceeded:

(18) ∀1 ≤ j ≤ 2n− 1,∀1 ≤ u ≤ p,

n∑
k=1

A
(k)
M→u(tj , tj+1)

δ(k)

bu
≤ (αj+1 − αj)S + (βj+1 − βj)

Limited sending capacity of master The total outgoing bandwidth of the master should not
be exceeded:

(19) ∀1 ≤ j ≤ 2n− 1,

p∑
u=1

n∑
k=1

A
(k)
M→u(tj , tj+1)δ(k) ≤ BW×

(
(αj+1 − αj)S + (βj+1 − βj)

)
We also add a constraint to bound the objective stretch to be in the targeted stretch-interval:

(20) Sa ≤ S ≤ Sb

Even if the bounds of the sum on the time-intervals in Equation (12) seem to depend on S,
the set of intervals involved in the sum does not vary as the order of the tj values is fixed for
Sa ≤ S ≤ Sb. With the objective of minimizing the stretch, we get the following linear program.

(LP)

{
Minimize S,
under the constraints (12), (13), (14), (15), (16), (17), (18), (19), (20)

Solving this linear program allows to find the minimum possible stretch in the stretch-interval
[Sa,Sb]. If the minimum stretch computed by the linear program is Sopt > Sa, this means that
there is not better possible stretch in [Sa,Sb], and thus there is no better stretch for all possible
values. On the contrary, if Sopt = Sa, we cannot conclude: Sa may be the optimal stretch, or
the optimal stretch is smaller than Sa. In this case, the binary search is continued with smaller
stretch values. At last, if there is no solution to the linear program, then there exists no possible
stretch smaller or equal to Sb, and the binary search is continued with larger stretch values. This
binary search and its proof are described below.

When Sa < Sopt ≤ Sb, we can prove that Sopt is the optimal stretch.

Theorem 7. The linear program (LP) finds the optimal stretch provided that the optimal stretch
is in ]Sa,Sb].
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Proof. The proof highly depends on Theorem 1. First, consider an optimal solution of the linear
program (LP). We compute

ρ
(k)
M→u(tj , tj+1) =

A
(k)
M→u(tj , tj+1)

(αj+1 − αj)S + (βj+1 − βj)
and ρ(k)

u (tj , tj+1) =
A

(k)
u (tj , tj+1)

(αj+1 − αj)S + (βj+1 − βj)
.

These variables constitute a valid solution of the set of constraints of Theorem 1 for S = Sopt.
Therefore there exists a schedule achieving stretch Sopt.

Assume now that there exists a schedule with stretch S such that Sa < S < Sb. Due to
Theorem 1, there exists values for ρ

(k)
M→u(tj , tj+1) and ρ

(k)
u (tj , tj+1) satisfying the corresponding

set of constraints for S. Then we compute

A
(k)
M→u(tj , tj+1) = ρ

(k)
M→u(tj , tj+1)×

(
(αj+1 − αj)S + (βj+1 − βj)

)
A(k)

u (tj , tj+1) = ρ(k)
u (tj , tj+1)×

(
(αj+1 − αj)S + (βj+1 − βj)

)
A

(k)
M→u(tj , tj+1) and A

(k)
u (tj , tj+1) constitute a solution of the linear program (LP) with objective

value S. As the objective value Sopt found by the linear program is minimal among all possible
solutions, we have Sopt ≤ S.

3.4.2 Binary search among stretch intervals

We assume that we have computed the bounds of the stretch intervals: S1, . . . ,Sm. The binary
search to reach the optimal stretch works as follows:

Algorithm 2: Binary search among stretch-intervals
begin

L← 1 and U ← max
while U − L > 1 do

M ←
⌊

L + U

2

⌋
Solve the linear program (LP) for interval [SM ,SM+1]
if there is a solution with objective value Sopt then

if Sopt > SM then
return Sopt

else
U ←M

else
L←M

Solve the linear program (LP) for interval [SL,SU ]
return the objective value Sopt of the solution

end

Theorem 8. Algorithm 2 finds the optimal stretch value in a polynomial number of steps.

Proof. This algorithm performs a binary search among the m stretch-intervals. Thus, the number
of steps of this search is O(log m) and each step consists in solving a linear program, which can
be done in polynomial time.

We prove that the optimal stretch is always contained in the interval [SL,SU ]. This is obviously
true in the beginning. On a stretch-interval [SM ,SM+1], the minimum possible stretch Sopt is
computed. If Sopt > SM , thanks to Theorem 7, we know that Sopt is the optimal stretch. If there
is no solution, no stretch values in the stretch-interval [SM ,SM+1] is feasible, so the optimal stretch
is in [SM+1,SU ]. If Sopt = SM , then the optimal stretch smaller or equal than SM . Thus, the
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optimal stretch is still contained in [SM ,SM+1] after one iteration. If we exit while loop without
having return the optimal stretch, then U = L + 1 and the optimal stretch is contained in the
stretch-interval [SL,SU ]. We compute this value with the linear program and return it.

3.5 Online setting

We now move to the study of the online setting. Because we target an online framework, the
scheduling policy needs to be modified upon the completion of an application, or upon the arrival
of a new one. Resources will be re-assigned to the various applications in order to optimize the
objective function. The scheduler is making best use of its partial knowledge of the whole process
(we know neither the release date, nor the number of tasks, nor the characteristics of the next
application to arrive into the system). The idea is to make use of our study of the offline case.
When a new application is released, we recompute the achievable max-stretch using the binary
search described in the offline case. However, we cannot pretend to optimality any longer as we
now have only limited information on the applications.

When a new application Aknew arrives at time Tnew = r(knew), we consider the applications
A0, . . . , Aknew−1, released before Tnew.

We call Π(k)
rem the (fractional) number of tasks of application Ak remaining at the master at time

Tnew. For the sake of simplicity, we do not consider the applications that are totally processed, and
we thus have Π(k)

rem 6= 0 for all applications. For the new application, we have Π(knew)
rem = Π(knew).

We also consider as parameters the state B
(k)
u (tknew) of the buffers at time Tnew. We also have

B
(knew)
u (tknew) = 0

As previously, we compute the optimal max-stretch using Algorithm 1. For a given objective
S, we have a convex polyhedron defined by the linear constraints, which is non empty if and only
if stretch S is achievable. The constraints are slightly modified in order to fit the online context.
First, we recompute the deadlines of the applications: d(k) = r(k) + S ×MS∗(k). Note that now,
all release dates are smaller than Tnew, and all deadlines are larger than Tnew.

We sort the deadlines by increasing order, and denote by tj the set of orderer deadlines:
{tj} = {d(k)} ∪ {Tnew} such that tj ≤ tj+1. The constraints are the same as the ones used for
Polyhedron (K), except the constraint on the number of task processed, which is updated to
account for the remaining number of tasks to be processed.

As described for the offline setting, a binary search allows to find the optimal max-stretch.
Note that this “optimality” concerns only the time interval [Tnew,+∞], assuming that no other
application will be released after Tnew. This assumption will not hold true in general, hence our
schedule will be suboptimal (which is the price to pay without information about future released
applications). The stretch achieved for the whole application set is bounded by the maximum of
the stretches obtained by the binary search each time a new application is released.

4 MPI experiments and SimGrid simulations

We have conducted several experiments in order to compare different scheduling strategies, and
to show the benefits of the algorithms presented in this work. We first present the heuristics.
Then we detail the platforms and applications used for the experiments. Finally, we expose and
comment the numerical results.

The code and the experimental results can be downloaded from: http://graal.ens-lyon.
fr/~lmarchal/cbs3m/.

4.1 Heuristics

In this section, we present strategies that are able to schedule multi-applications in an online set-
ting. Most of these strategies are simple and wait for an application to terminate before scheduling
another application. Although far from the optimal in a number of cases, such strategies are rep-
resentative of existing Grid schedulers.

http://graal.ens-lyon.fr/~lmarchal/cbs3m/
http://graal.ens-lyon.fr/~lmarchal/cbs3m/
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We compare sixteen algorithms in the experiments. First we outline policies for selecting the
set of applications to be executed:

FIFO (First In First Out): applications are computed in the order of their release dates.

SPT (Shortest Processing Time): released applications are sorted by non-decreasing process-
ing time (which is approximated by MS∗, see Section 2.3). The first application must be
completed before we determine the next one to be executed.

SRPT (Shortest Remaining Processing Time): at each release date, released applications are
sorted by non-decreasing processing time, according to the tasks that remains to be sched-
uled, and the applications are fully executed one after the other in this order until a new
release date occurs.

SWRPT (Shortest Weighted Remaining Processing Time): it is very similar to SRPT, but the
remaining processing time of the released applications are weighted with MS∗. In practice,
it gives small applications a priority against large applications which are almost finished,
which is better in order to minimize the stretch.

The importance and relevance of the above heuristics are outlined in the related work section
(Section 5). Next we outline policies for resource selection:

RR (Round-Robin): all workers are selected in a cyclic way.

MCT (Minimum Completion Time): given a task of an application, it selects the worker which
will finish this task first, given the current load of the platform.

DD (Demand-Driven): workers are themselves asking for a task to compute as soon as they
become idle.

The four application selection policies and the three resource selection rules lead to twelve
different greedy algorithms. We also test a more sophisticated algorithm:

MWMA (Master Worker Multi-Applications): this algorithm computes on each time interval
a steady-state strategy to schedule the available applications, as presented in [7, 8]. All
available applications are running at the same time, and each application is given a different
fraction of the platform according to its weight. This weight can be derived from:

• the remaining number of tasks of the applications (variant called NBT);
• the remaining time of computation of the applications (variant called MS).

Both variants are compared in the experiments.

Finally, there is the strategy presented in this paper, called CBS3M (Clever Burst Steady-
State Stretch Minimization). We test it with two variants, both a FIFO or EDF policy for the
workers to choose the next task to compute among those they have received. Both the CBS3M
and the MWMA strategies make use of linear programs to compute their schedule. These linear
programs are solved using glpk, the Gnu Linear Programming Kit [30].

4.2 Platforms

In this section, we conduct experiments on a real platform, in order to have an insight of the
behavior of the algorithms. We also run multiple simulations, in order to get more results about
their performance. For the sake of simplicity, we suppose in this section that the processors are
related, which means that the computation time of a task of each set will only depends on the size
of the task and of the computation speed of the worker, and not on the applications.

Because our MPI library serializes communications, we use the one-port model for all experi-
ments and simulations: the linear program used for CBS3M is the one adapted for the one-port
model (see Section 3.3.4), and we serialize communications both in the MPI program and in the
simulations.
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4.2.1 Experimental settings

Experiments were conducted on a cluster composed of nine processors. The master is a SuperMicro
server 6013PI, with a P4 Xeon 2.4 GHz processor, and the workers are all SuperMicro servers
5013-GM, with P4 2.4 GHz processors. All nodes have 1 GB of memory and are running Linux.
They are connected with a switched 10 Mbps Fast Ethernet network. As this platform may
not be as heterogeneous as we would like, we sometimes artificially enhance its heterogeneity by
slowing down some communications and/or some computations. In order to artificially slow down
a communication link, we send several times the same message to one worker. The same idea
works for processor speeds: we ask a worker to compute a given matrix-product several times in
order to slow down its computation capability. The experiments are performed using the MPICH-2
communication library [31].

We create ten different fully heterogeneous platforms. The communication and computation
slowdowns were uniformly chosen between 1 to 10.

4.2.2 Simulations

An extensive set of simulations is performed using SimGrid [36]. The parameters of the simulated
platforms were kept as close as possible to the actual experimental framework so that simulations
can be considered a direct complement of the experimental MPI setting. In a first step, we run
the exact same experiments (with the same platform configuration and application scenario) to
make sure that our simulation behaves similarly to the MPI experiments. Then, we conducted an
extensive set of simulations with larger applications.

4.3 Applications

A bag-of-tasks is described by its release date, its number of tasks, and the communication and
computation sizes of one task. For our experiments and simulations, we randomly generated the
applications, with the following constraints in order to be realistic:

1. the release dates of the applications follow a log-normal distribution as suggested in [27];
2. the total amount of communications and computations for an application is randomly chosen

with a log-normal distribution between realistic bounds, and then split into tasks. The
parameters used in the generation of the applications for the experiments and the simulations
are described in Tables 1 and 2.

general number of workers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
number of applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

arrival dates mean of the distribution in the log space . . . . . . . . . . . 4.0
standard deviation in the log space . . . . . . . . . . . . . . . . . 1.2

computations maximum amount of work application . . . . . . . . . . . . . . 76.8 Gflops
minimum amount of work per task . . . . . . . . . . . . . . . . . 3.1 Gflops

communications maximum amount of communication per application 800 MB
minimum amount of communication per task . . . . . . . 40 MB

number of tasks minimum number of tasks per application . . . . . . . . . . 10

Table 1: Parameters for the MPI experiments

The number of tasks for one application is bounded above by the minimum amount of com-
munication and computation allowed for one task.

4.4 Results

In this section we describe the results obtained on all different platforms, experimental or simu-
lated.
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general number of workers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
number of applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

arrival dates mean of the distribution in the log space . . . . . . . . . . . 4.0
standard deviation in the log space . . . . . . . . . . . . . . . . . 1.2

computations maximum amount of work application . . . . . . . . . . . . . . 409 Gflops
minimum amount of work per task . . . . . . . . . . . . . . . . . 3.1 Gflops

communications maximum amount of communication per application 6 GB
minimum amount of communication per task . . . . . . . 40 MB

number of tasks minimum number of tasks per application . . . . . . . . . . 10

Table 2: Parameters for the SimGrid simulations

4.4.1 Experimental results

We express the performance of any given algorithm on one problem instance as the ratio of the
max-stretch obtained by the algorithm on this instance over the theoretical optimal max-stretch
obtained by linear programming.

The results of the experiments are shown in Table 3. Figure 5 summarizes the experiments
for the best four algorithms, CBS3M using EDF policy, in both the offline and online versions,
MWMA NBT and SWRPT.

Algorithm Exp1 Exp2 Exp3 Exp4 Exp5 Exp6 Exp7 Exp8 Exp9 Exp10 Average

CBS3M EDF OFFLINE 1.20 1.21 1.27 1.32 1.18 1.16 1.34 1.68 1.28 1.13 1.28
CBS3M EDF ONLINE 1.28 1.25 1.35 1.45 1.37 1.14 1.27 1.45 1.45 1.09 1.31

CBS3M FIFO OFFLINE 1.38 1.25 1.28 1.37 1.34 1.22 1.35 1.64 1.27 1.37 1.35
CBS3M FIFO ONLINE 1.42 1.26 1.48 1.43 1.47 1.15 1.54 1.55 1.36 1.16 1.38

FIFO MCT 1.71 2.46 1.87 2.54 1.53 1.28 2.77 1.66 2.27 1.37 1.95
FIFO RR 5.06 3.03 2.88 3.58 4.31 4.42 3.75 9.37 3.70 2.55 4.26

MWMA MS 1.66 1.99 2.42 1.80 2.17 2.18 1.80 2.98 2.28 3.18 2.24
MWMA NBT 1.22 1.45 1.43 1.53 1.53 1.63 1.36 1.67 1.48 1.49 1.48

SPT DD 4.27 3.06 2.36 2.74 5.00 9.20 4.18 11.17 3.33 2.32 4.76
SPT MCT 1.89 2.48 1.71 1.99 2.17 1.74 2.78 1.28 2.30 1.37 1.97

SRPT MCT 1.91 2.41 1.72 2.00 2.17 1.76 2.79 1.64 2.27 1.38 2.00
SWRPT MCT 1.92 2.44 1.72 1.99 2.17 1.76 2.97 1.63 2.28 1.38 2.03

Table 3: Results of the experiments.

We can see in Table 3 that the four versions of CBS3M achieve a better relative max-stretch
than most other strategies. In fact, they all achieve far better performance than any other strategy
in all but two experiments. We also see that resource selection is important on heterogeneous
platforms, as the algorithms which have the worst relative max-stretch are the ones using round-
robin or demand-driven policies. The MWMA algorithms lie in between our algorithms and the
greedy strategies, but sometimes they achieve a very bad relative max-stretch (up to 2.98).

On Figure 5, one can clearly see that our algorithms outperform the other algorithms. Sur-
prisingly, the offline version is not always better than the online version. The offline version knows
the future and thus should achieve better performance. However, it suffers from discrepancies
between the actual characteristics of the platform and those of the platform model. The online
version is able to circumvent this problem as it takes into account the work effectively processed
to recompute the schedule at each new application arrival. This gain of reactivity compensates
for the loss due to the lack of knowledge of the future.

4.4.2 Simulations on experimental platforms

We have run exactly the same experiments with simulations, using the same platform configura-
tions and application scenarios. We compare the difference between the relative max-stretch in
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Figure 5: Relative max-stretch of best four heuristics.

both cases. As a result, we found that the average difference on the relative max-stretch (that is
the ratio between the max-stretch obtain by any heuristic and the optimal max-stretch computed
by the linear program) is around 21%, with a standard deviation of 57%. These results show that
our simulations are generally close to those obtained on a real platform. Indeed, only one scenario
has very different executions in the MPI experiment and in the simulation, with a 566% differ-
ence. In this case, the slowdown of the processors is not correctly achieved, leading for the SPT
scheduler to take a totally different decision. If we discard this execution, the average difference
drops down to 16%, with a standard deviation of 14% (and a maximum of 72%).

4.4.3 Simulation results

In this section, we detail the results of the simulations. We run 1000 experiments based on the
parameters described in Table 2. Table 4 presents the results of all heuristics for the max-stretch
metric, whereas Figure 6 shows the evolution of some heuristics (the best ones) over the load of
the scenario. Here the load is characterized with the optimal achievable max-stretch: we consider
that a scenario where the optimal max-stretch is 6 is twice as loaded as a scenario with an optimal
max-stretch of 3.

The CBS3M heuristics perform very well for the max-stretch: CBS3M EDF ONLINE
achieves the optimal max-stretch in 65.2% of the experiments. This heuristic achieves great per-
formance, with an average max-stretch of 1.16 times the optimal max-stretch, and a worst case of
1.93.

More surprisingly, CBS3M also gives the best average results for the makespan and the max-
flow objectives. With respect to sum-flow, CBS3M gives the best results for light-loaded scenarios,
whereas SRPT and SWRPT give better results for high-loaded scenarios. Finally, CBS3M is
outperformed by SRPT and SWRPT for sum-stretch.

The good results of the CBS3M heuristics can be explained by the fact that they make very
good use of the platform, by scheduling simultaneously several applications when it is possible,
for example when the communication medium has still some free bandwidth after scheduling the
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most critical application. All other heuristics (except MWMA) are limited to scheduling only
one application at a time, leading to an overall bad utilization of the computing platform.

Another comment is the relative bad result of the involved strategies MWMA (MWMA
NBT and MWMA MS): although they schedule several applications concurrently on the plat-
forms, they use a somewhat wrong computation of the priorities, leading to poor results.

Algorithm minimum average (± stddev) maximum (fraction of best result)

FIFO RR 4.550 16.689 (± 7.897) 62.6 (the best in 0.0 %)
FIFO MCT 1.857 6.912 (± 2.404) 17.9 (the best in 0.0 %)
FIFO DD 4.550 16.689 (± 7.897) 62.6 (the best in 0.0 %)
SPT RR 1.348 4.274 (± 1.771) 13.8 (the best in 0.0 %)

SPT MCT 1.007 1.928 (± 0.610) 5.99 (the best in 1.3 %)
SPT DD 1.348 4.274 (± 1.771) 13.8 (the best in 0.0 %)

SRPT RR 1.348 4.121 (± 1.737) 13.8 (the best in 0.0 %)
SRPT MCT 1.007 1.861 (± 0.601) 6.87 (the best in 2.2 %)
SRPT DD 1.348 4.121 (± 1.737) 13.8 (the best in 0.0 %)

SWRPT RR 1.344 4.119 (± 1.739) 13.8 (the best in 0.0 %)
SWRPT MCT 1.007 1.857 (± 0.601) 6.87 (the best in 1.9 %)
SWRPT DD 1.344 4.119 (± 1.739) 13.8 (the best in 0.0 %)
MWMA NBT 1.477 3.433 (± 1.044) 8.49 (the best in 0.0 %)
MWMA MS 2.435 8.619 (± 2.420) 20.4 (the best in 0.0 %)

CBS3M FIFO ONLINE 1.003 1.322 (± 0.208) 2.83 (the best in 6.9 %)
CBS3M EDF ONLINE 1.003 1.163 (± 0.118) 1.93 (the best in 64.0 %)
CBS3M FIFO OFFLINE 1.022 1.379 (± 0.276) 3.74 (the best in 3.8 %)

CBS3M EDF OFFLINE 1.011 1.213 (± 0.125) 2.06 (the best in 26.2 %)

Table 4: Max-stretch of all heuristics in the simulations.
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Algorithm minimum average (± stddev) maximum (fraction of best result)

FIFO RR 2.064 6.783 (± 3.210) 30.7 (the best in 0.0 %)
FIFO MCT 1.322 2.754 (± 0.670) 6.45 (the best in 0.0 %)
FIFO DD 2.064 6.783 (± 3.210) 30.7 (the best in 0.0 %)
SPT RR 1.019 2.942 (± 1.221) 10.1 (the best in 0.0 %)

SPT MCT 1.000 1.182 (± 0.183) 2.53 (the best in 2.4 %)
SPT DD 1.019 2.942 (± 1.221) 10.1 (the best in 0.0 %)

SRPT RR 1.007 2.607 (± 1.071) 8.93 (the best in 0.0 %)
SRPT MCT 1.000 1.045 (± 0.098) 1.92 (the best in 25.5 %)

SRPT DD 1.007 2.607 (± 1.071) 8.93 (the best in 0.0 %)
SWRPT RR 1.000 2.596 (± 1.068) 8.96 (the best in 0.1 %)

SWRPT MCT 1.000 1.038 (± 0.098) 1.92 (the best in 60.1 %)
SWRPT DD 1.000 2.596 (± 1.068) 8.96 (the best in 0.1 %)
MWMA NBT 1.051 2.013 (± 0.644) 5.41 (the best in 0.0 %)
MWMA MS 1.663 4.183 (± 1.269) 11.5 (the best in 0.0 %)

CBS3M FIFO ONLINE 1.000 1.294 (± 0.208) 2.16 (the best in 0.4 %)
CBS3M EDF ONLINE 1.000 1.201 (± 0.190) 2.08 (the best in 20.2 %)
CBS3M FIFO OFFLINE 1.000 1.332 (± 0.227) 2.57 (the best in 0.1 %)
CBS3M EDF OFFLINE 1.000 1.272 (± 0.214) 2.49 (the best in 3.8 %)

Table 5: Sum-stretch of all heuristics in the simulations.
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Algorithm minimum average (± stddev) maximum (fraction of best result)

FIFO RR 1.343 2.716 (± 0.684) 5.31 (the best in 0.0 %)
FIFO MCT 1.000 1.329 (± 0.202) 2.11 (the best in 0.1 %)
FIFO DD 1.343 2.716 (± 0.684) 5.31 (the best in 0.0 %)
SPT RR 1.325 2.714 (± 0.685) 5.33 (the best in 0.0 %)

SPT MCT 1.000 1.329 (± 0.202) 2.1 (the best in 0.0 %)
SPT DD 1.325 2.714 (± 0.685) 5.33 (the best in 0.0 %)

SRPT RR 1.325 2.714 (± 0.686) 5.32 (the best in 0.0 %)
SRPT MCT 1.000 1.328 (± 0.202) 2.1 (the best in 0.0 %)
SRPT DD 1.325 2.714 (± 0.686) 5.32 (the best in 0.0 %)

SWRPT RR 1.322 2.715 (± 0.686) 5.32 (the best in 0.0 %)
SWRPT MCT 1.000 1.328 (± 0.202) 2.1 (the best in 0.0 %)
SWRPT DD 1.322 2.715 (± 0.686) 5.32 (the best in 0.0 %)
MWMA NBT 1.000 1.079 (± 0.070) 1.45 (the best in 4.6 %)
MWMA MS 1.000 1.078 (± 0.067) 1.42 (the best in 2.1 %)

CBS3M FIFO ONLINE 1.000 1.029 (± 0.029) 1.17 (the best in 7.5 %)
CBS3M EDF ONLINE 1.000 1.004 (± 0.006) 1.05 (the best in 35.0 %)

CBS3M FIFO OFFLINE 1.000 1.018 (± 0.023) 1.22 (the best in 17.6 %)
CBS3M EDF OFFLINE 1.000 1.003 (± 0.006) 1.07 (the best in 53.0 %)

Table 6: Makespan of all heuristics in the simulations.

 1

 1.05

 1.1

 1.15

 1.2

 1.25

 1.3

 1.35

 1.4

 4  5  6  7  8  9  10  11  12

av
er

ag
e 

m
ak

es
pa

n 
/ b

es
t m

ak
es

pa
n

load (optimal stretch)

SRPT_MCT
SWRPT_MCT
MWMA_NBT

CBS3M_EDF_OFFLINE
CBS3M_EDF_ONLINE

Figure 8: Evolution of the makespan of best heuristics in the simulations under different load
conditions.
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Algorithm minimum average (± stddev) maximum (fraction of best result)

FIFO RR 1.146 3.097 (± 1.135) 10.2 (the best in 0.0 %)
FIFO MCT 1.000 1.281 (± 0.258) 2.83 (the best in 14.4 %)

FIFO DD 1.146 3.097 (± 1.135) 10.2 (the best in 0.0 %)
SPT RR 1.386 3.282 (± 1.222) 10.9 (the best in 0.0 %)

SPT MCT 1.002 1.460 (± 0.287) 3.09 (the best in 0.0 %)
SPT DD 1.386 3.282 (± 1.222) 10.9 (the best in 0.0 %)

SRPT RR 1.386 3.289 (± 1.225) 10.9 (the best in 0.0 %)
SRPT MCT 1.003 1.473 (± 0.306) 4.28 (the best in 0.0 %)
SRPT DD 1.386 3.289 (± 1.225) 10.9 (the best in 0.0 %)

SWRPT RR 1.382 3.291 (± 1.225) 10.9 (the best in 0.0 %)
SWRPT MCT 1.000 1.477 (± 0.309) 4.28 (the best in 0.1 %)
SWRPT DD 1.382 3.291 (± 1.225) 10.9 (the best in 0.0 %)
MWMA NBT 1.000 1.181 (± 0.153) 1.99 (the best in 7.0 %)
MWMA MS 1.000 1.261 (± 0.189) 2.32 (the best in 1.1 %)

CBS3M FIFO ONLINE 1.000 1.054 (± 0.061) 1.52 (the best in 5.8 %)
CBS3M EDF ONLINE 1.000 1.031 (± 0.057) 1.48 (the best in 23.2 %)

CBS3M FIFO OFFLINE 1.000 1.037 (± 0.058) 1.48 (the best in 21.6 %)
CBS3M EDF OFFLINE 1.000 1.023 (± 0.055) 1.48 (the best in 48.7 %)

Table 7: Max-flow of all heuristics in the simulations.
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Algorithm minimum average (± stddev) maximum (fraction of best result)

FIFO RR 1.644 4.020 (± 1.567) 16.3 (the best in 0.0 %)
FIFO MCT 1.134 1.652 (± 0.264) 3.33 (the best in 0.0 %)
FIFO DD 1.644 4.020 (± 1.567) 16.3 (the best in 0.0 %)
SPT RR 1.196 2.811 (± 1.081) 9.21 (the best in 0.0 %)

SPT MCT 1.000 1.149 (± 0.171) 2.32 (the best in 3.5 %)
SPT DD 1.196 2.811 (± 1.081) 9.21 (the best in 0.0 %)

SRPT RR 1.079 2.704 (± 1.048) 9.03 (the best in 0.0 %)
SRPT MCT 1.000 1.105 (± 0.151) 2.23 (the best in 32.1 %)

SRPT DD 1.079 2.704 (± 1.048) 9.03 (the best in 0.0 %)
SWRPT RR 1.079 2.706 (± 1.049) 9.03 (the best in 0.0 %)

SWRPT MCT 1.000 1.108 (± 0.152) 2.23 (the best in 15.4 %)
SWRPT DD 1.079 2.706 (± 1.049) 9.03 (the best in 0.0 %)
MWMA NBT 1.000 1.404 (± 0.217) 2.29 (the best in 0.1 %)
MWMA MS 1.359 2.333 (± 0.355) 3.7 (the best in 0.0 %)

CBS3M FIFO ONLINE 1.000 1.122 (± 0.101) 1.62 (the best in 1.4 %)
CBS3M EDF ONLINE 1.000 1.065 (± 0.090) 1.53 (the best in 35.6 %)
CBS3M FIFO OFFLINE 1.000 1.120 (± 0.103) 1.67 (the best in 0.3 %)

CBS3M EDF OFFLINE 1.000 1.087 (± 0.101) 1.66 (the best in 18.7 %)

Table 8: Sum-flow of all heuristics in the simulations.
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Figure 10: Evolution of the sum-flow of best heuristics in the simulations under different load
conditions.

5 Related work

Related literature can be classified into three main categories: (i) bags-of-tasks; (ii) steady-state
scheduling; and (iii) flow-type objective functions and online scheduling.

5.1 Bags-of-Tasks

Bags-of-tasks are parallel applications whose tasks are all independent. Their study is motivated by
problems that are addressed by collaborative computing efforts such as SETI@home [46], factoring
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large numbers [25], the Mersenne prime search [42], and those distributed computing problems or-
ganized by companies such as Entropia [26]. Bags-of-tasks are well suited for computational grids,
because communication can easily become a bottleneck for tightly-coupled parallel applications.

Condor [39] and APST [14, 21] are among the first projects providing specific support for such
applications. Condor was initially conceived for campus-wide networks [39], but has been extended
to run on grids [28]. While APST is user-centric and does not handle multiple-applications, Condor
is system-centric. Those two projects are designed for standard grids but more recent and active
projects like OurGrid [24] or BOINC [18] target more distributed architectures like desktop grids.
BOINC [18] is a centralized scheduler that distributes tasks for participating applications, such
as SETI@home, ClimatePrediction.NET, and Einstein@Home. The set of resources is thus very
large while the set of applications is small and very controlled. OurGrid is a Brazilian project
that encourages people to donate their computing resources while maintaining the symmetry
between consumers and providers. All these projects generally focus on designing and providing
a working infrastructure, and they do not provide any analysis of scheduling techniques suited to
such environments.

5.2 Steady-State Scheduling

Minimizing the makespan, i.e., the total execution time, is a NP-hard problem in most practical
situations [29, 47, 23], while it turns out that the optimal steady-state schedule can often be
characterized very efficiently, with low-degree polynomial complexity.

The steady-state approach has been pioneered by Bertsimas and Gamarnik [15]. It has been
used successfully in many situations [11]. In particular, steady-state scheduling has been used
to schedule independent tasks on heterogeneous tree-overlay networks [9, 5]. Bandwidth-centric
scheduling is introduced in [9], and extensive experiments are reported in [35]. The steady-state
approach has also been used by Hong et al. [33] who extend the work of [9] to deploy a divisible
workload on a heterogeneous platform. However, and to the best of our knowledge, the only
reference dealing with steady-state scheduling for several applications is [7].

5.3 Flow-type objective functions and online scheduling

The flow of a task is the time it spends in the system, that is the time elapsed between its release
date and its completion time. The stretch of a task is therefore a weighted form of its flow time,
where the weight is the inverse of the task running time, if it were alone on the platform. Most of
the existing work on stretch minimization deals with the mono-processor case. In fact, there has
been a lot of work on the performance of simple list scheduling heuristics for the optimization of
flow-like metrics with preemption. We will therefore first consider this work.

Flow optimization. On a single processor, the max-flow is optimized by First-Come First-Serve
(FCFS) (see Bender et al. [12] for example), and the sum-flow is optimized by shortest remaining
processing time first (SRPT) [4].

Things are more difficult for stretch minimization. First, any online algorithm which has a
better competitive ratio for sum-stretch minimization than FCFS is subject to starvation, and
is thus not a competitive algorithm for max-stretch minimization [38]. In other words, the two
objective functions cannot be optimized simultaneously to obtain a non trivial competitive factor
(FCFS is not taking into account the weight of tasks in the objective).

Sum-stretch minimization. The complexity of the offline minimization of the sum-stretch with
preemption is still an open problem. At the very least, this is a hint at the difficulty of this problem.
Bender, Muthukrishnan, and Rajaraman [13] designed a Polynomial Time Approximation Scheme
(PTAS) for minimizing the sum-stretch with preemption. Chekuri and Khanna [22] proposed an
approximation scheme for the more general sum weighted flow minimization problem. On the
online side, no online algorithm has a competitive ratio less than or equal to 1.19484 for the
minimization of sum-stretch [37, 38].
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As we recalled, on one processor, SRPT is optimal for minimizing the sum-flow. When SRPT
takes a scheduling decision, it only considers the remaining processing time of a task, and not
its original processing time, i.e., the weight of the task in the objective function. Nevertheless,
Muthukrishnan, Rajaraman, Shaheen, and Gehrke have shown [40] that SRPT is 2-competitive for
sum-stretch. Another well studied algorithm is the Smith’s ratio rule [49] also known as shortest
weighted processing time (SWPT). Whatever the weights, SWPT is 2-competitive [45] for the
minimization of the sum of weighted completion times. However, SWPT is not an approximation
algorithm for minimizing the sum-stretch. Indeed, both SPT (shortest processing time) and SWPT
are not competitive algorithms for minimizing the sum-stretch [37, 38]. To address the weaknesses
of both SRPT and SWPT, one might consider a heuristic that takes into account both the original
and the remaining processing times of the jobs, which leads to the shortest weighted remaining
processing time heuristic (SWRPT). Muthukrishnan, Rajaraman, Shaheen, and Gehrke [40] proved
that SWRPT is actually optimal when there are only two job sizes. However, in the general case,
the worst case for SWRPT for sum-stretch minimization is at least 2, and thus is no better than
that of SRPT [37, 38].

Max-stretch minimization. Max-stretch can be optimally minimized in the offline case [37,
38], even on unrelated machines (either with preemption or in the divisible load framework). The
online case is far more difficult. With only two task sizes, SWRPT is optimal, as we have already
recalled. However, as soon as there are at least three task sizes, no algorithm as a competitive
ration lower than 1

2∆
√

2−1, where ∆ is the ratio of the largest to the smallest size of tasks [37, 38].
In fact, this latter work is the only one targeting max stretch minimization in a multi-processor

environment. This work is done in the divisible load framework, meaning that applications can be
arbitrarily divided in sub-tasks when, in the context of the current paper, the granularity of the
tasks of each application is fixed independently of the scheduler. Furthermore, communications
can be neglected for the applications targeted in [37, 38], when they play a major role in our case.

General online scheduling. More generally, we refer the reader to surveys on online scheduling
algorithms [43], on randomized online scheduling algorithms [2], or even more generally on online
algorithms [3].

6 Conclusion

In this paper, we have studied the problem of scheduling multiple applications, made of collections
of independent and identical tasks, on a heterogeneous master-worker platform. Applications
have different release dates. We aimed at minimizing the maximum stretch, or equivalently at
minimizing the largest relative slowdown of each application due to their concurrent execution.
We derived an optimal algorithm for the off-line setting (when all application sizes and release
dates are known beforehand). We have adapted this algorithm to an online scenario, so that it
can react when new applications are released.

We have compared our new algorithms against classical greedy heuristics, and also against some
involved static multi-applications strategies. Experiments were run both on a real cluster, using
MPI, and through extensive simulations, conducted with SimGrid. Both experimental comparisons
show a great improvement when using our CBS3M strategy, which achieves an averaged worse
max-stretch only 16% greater than the off-line optimal max-stretch. To the best of our knowledge,
this work is the first attempt to provide efficient scheduling techniques for multiple bags-of-tasks
in an online scenario.

Future work includes extending the approach to other communication models (such as the
one-port model of [48]) and to more general platforms (such as multi-level trees). It would also
be very interesting to deal with more complex application types, such as pipeline or even general
DAGs.
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