
Mapping Filter Services

on Heterogeneous Platforms

Anne Benoit, Fanny Dufossé and Yves Robert
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Abstract

In this paper, we explore the problem of mapping filtering web services on large-
scale heterogeneous platforms. Two important optimization criteria should be consid-
ered in such a framework. The period, which is the inverse of the throughput, measures
the rate at which data sets can enter the system. The latency measures the response
time of the system in order to process one single data set entirely. Both criteria are
antagonistic. For homogeneous platforms, the complexity of period minimization is
already known [14]; we derive an algorithm to solve the latency minimization problem,
and we provide a bi-criteria algorithm which minimizes latency without exceeding a
prescribed value for the period. However, when adding heterogeneity to the platform,
we prove that minimizing the period or the latency becomes NP-hard. We provide an
integer linear program to solve both problems in the heterogeneous case.

For period minimization on heterogeneous platforms, we design some efficient poly-
nomial time heuristics and we assess their relative and absolute performance through
a set of experiments. For small problem instances, the results are very close to the
optimal solution returned by the integer linear program.

Key words: web services, filters, scheduling, mapping, period, latency, complexity
results, heuristics.
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1 Introduction

This paper deals with the problem of mapping web services on large-scale heteroge-
neous platforms. The main motivation originates from Select-Project-Join query optimiza-
tion over Web services [14, 12, 13]. We start with an informal and intuitive description of
the problem. We refer to Section 2 for a detailed presentation of the framework, and to
Section 3 for motivations and a survey of related work.

We may think of the target application as a set of various services that must be
applied on a stream of consecutive data sets. We can view each service Ci as a “filter”
which operates in pipelined fashion. Consecutive data sets are fed in the service, which
processes each data set with selectivity σi: if the incoming data is of size δ, then the
outgoing data will be of size δ × σi. The initial data is of size δ0. We see that the data is
shrinked (hence the name filter) when σi < 1 but it can also be expanded if σi > 1. Each
service has an elementary cost ci, which represents the volume of computations required
to process a data set of size δ0. The volume of computations is proportional to the data
size. Each service will be mapped onto a server. If server Su has speed su, then the time
to execute a data set of size σ × δ0 when service Ci is mapped onto server Su is σ ci

su
.

We assume that the services are independent, which means that they can be applied
in any order on each data set (but each data set must be processed by all services). A
naive solution is to apply all services in parallel. A better solution may be to chain the
execution of some services. Indeed, assume that we chain the execution of two services
Cj and Ci, meaning that the output of Cj is fed as input to Ci. If the selectivity of Cj is
small (σj < 1), then it shrinks each data set, and Ci will operate on data sets of reduced
volume. As a result, the cost of Cj will decrease in proportion to the volume reduction.
Basically, there are two ways to decrease the final cost of a service: (i) map it on a fast
server; and (ii) map it as a successor of a service with small selectivity.

Altogether, we will organize the execution of the application by assigning a server to
each service and by deciding which service will be a predecessor of which other service
(therefore building an execution graph), with the goal of minimizing some important
objective function. Such an objective function may be the period (the maximum time for
a server to process a data set) or the latency (the time needed for a data set to proceed
through all servers).

Figure 1: Chaining services.

Figure 2: Combining selectivities

We point out that the selectivity of a service influences the execution time of all its
successors, if any, in the mapping. For example if three services C1, C2 and C3 are arranged
along a linear chain, as in Figure 1, then the cost of C2 is σ1c2 and the cost of C3 is σ1σ2c3.
If Ci is mapped onto Si, for i = 1, 2, 3, then the period is

P = max
(
c1
s1
,
σ1c2
s2

,
σ1σ2c3
s3

)
,
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while the latency is
L =

c1
s1

+
σ1c2
s2

+
σ1σ2c3
s3

.

We point out that selectivities are independent: for instance if C1 and C2 are both
predecessors of C3, as in Figure 1 or in Figure 2, then the cost of C3 becomes σ1σ2c3.
With the mapping of Figure 2, the period is

P = max
(
c1
s1
,
c2
s2
,
σ1σ2c3
s3

)
,

while the latency is

L = max
(
c1
s1
,
c2
s2

)
+
σ1σ2c3
s3

.

We see from the latter formulas that the model neglects the cost of joins when combining
two services as predecessors of a third one.

Let us work out a little example in full details. Consider a problem instance with
three services C1, C2 and C3. Assume that c1 = 1, c2 = 4, c3 = 10, and that σ1 = 1

2 ,
σ2 = σ3 = 1

3 . Suppose that we have three servers of respective speeds s1 = 1, s2 = 2 and
s3 = 3. What is the mapping which minimizes the period? and same question for the
latency? We have to decide for an assignment of services to servers, and also to build the
mapping graph (also called a plan).

For the optimization of the period, we can look for a plan with a period smaller than
or equal to 1. In order to obtain an execution time smaller than or equal to 1 for service
C3, we need the selectivity of C1 and C2, and either server S2 or server S3. Server S2

is fast enough to render the time of C3 smaller than 1, so we decide to assign C3 to S2.
Service C2 also needs the selectivity of C1 and a server of speed strictly greater than 1 to
obtain an execution time less than 1. Thus, we assign C1 to S1 and make it a predecessor
of C2. In turn we assign C2 to S3 and make it a predecessor of C3. We obtain a period
of min

(
1
1 ,

1
2

4
3 ,

1
2×3

10
2

)
= 1. It is the optimal solution. In this plan, the latency is equal to

1 + 4
6 + 10

12 = 5
2 .

For the optimization of the latency, we have a first bound: 5
2 . Because of its cost,

service C3 needs at least one predecessor. If C1 is the only predecessor of C3, we have
to assign C3 to S3 in order to keep the latency under 5

2 . The fastest computation time
that we can obtain in this case for C3 is 1

2 + 1
2

10
3 with C1 assigned to S2. In this case, the

fastest completion time that we can obtain for C2 is 5
2 : this is achieved by letting C2 be a

successor of C1 in parallel with C3. Suppose now that C2 is a predecessor of C3, and that
there is an optimal solution in which C2 is the only predecessor of C3. Independently of the
choice of the servers assigned to C1 and C2, if we put C1 without any predecessor, it will
end before C2. So, we can make it a predecessor of C3 without increasing its completion
time. So, we are looking for a solution in which C1 and C2 are predecessors of C3. There
are three possibilities left: (i) C1 is a predecessor of C2; (ii) C2 is a predecessor of C1;
and (iii) C1 and C2 have no predecessors. In the first two cases, we compute for each
service a cost weighted by the product of the selectivities of its predecessors. Then, we
associate the fastest server to the service with the longest weighted cost and so on. We
obtain 5

2 in both cases. For the last case, we know that the real cost of C1 will have no
influence on the latency, hence we assign it to the slowest server S1. The weighted cost
of the remaining services is 4 for C2 and 10

6 for C3. So, we assign S3 to C2 and S2 to C3.
We obtain a latency of 4

3 + 1
2×3

10
2 = 13

6 . We cannot obtain a strictly faster solution if C2
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is not a predecessor of C3. As a result, 13
6 is the optimal latency. In this optimal plan for

the latency the period is 4
3 .

This little example gives a hint on the very combinatorial nature of the problem.

Period and latency are both very important objectives. The inverse of the period (the
throughput) measures the aggregate rate of processing of data, and it is the rate at which
data sets can enter the system. The latency is the time elapsed between the beginning
and the end of the execution of a given data set, hence it measures the response time
of the system to process the data set entirely. Minimizing the latency is antagonistic to
minimizing the period, and tradeoffs should be found between these criteria. Efficient
mappings aim at the minimization of a single criterion, either the period or the latency,
but they can also use a bi-criteria approach, such as minimizing the latency under period
constraints (or the converse). The main objective of this work is to assess the complexity
of the previous optimization problems with different-speed servers.

In this paper, we establish several important complexity results. We prove the NP-
completeness of the period minimization problem on a heterogeneous platform. The same
problem on homogeneous platforms had been shown to have polynomial complexity in [14].
We introduce a polynomial time algorithm for the latency minimization problem on a
homogeneous platform. The complexity of this problem for heterogeneous platforms is left
open. For period and latency on heterogeneous platforms, we present two integer linear
programs. We also design a polynomial time algorithm for a bi-criteria optimization
problem in the homogeneous case. Finally, we design some efficient polynomial time
heuristics for period minimization on heterogeneous platforms (the problem which we have
shown to be NP-hard), and we assess their relative and absolute performance through a
set of experiments. For small problem instances, the results are very close to the optimal
solution returned by the integer linear program.

The rest of this paper is organized as follows. First we formally state the optimization
problems that we address in Section 2. Next we give an overview of related work in Sec-
tion 3. Then Section 4 is devoted to the minimization of the period, while Section 5 is the
counterpart for the latency. Section 6 deals with bi-criteria (period/latency) optimization.
We provide a set of heuristics and experiments for period minimization in Sections 7 and 8.
Finally we give some conclusions and perspectives in Section 9.

2 Framework

As stated above, a web service Ci is characterized by its cost ci and its selectivity σi,
while a server Su is characterized by its speed su.

We always assume that there are more servers available than services, and we search
a one-to-one mapping, or allocation, of services to servers. The one-to-one allocation
function alloc associates to each service Ci a server Salloc(i). We also have to build a graph
G = (C, E) that summarizes all precedence relations in the mapping. The nodes of the
graph C are couples (Ci, Salloc(i)) and thus define the allocation function. Then we add an
arc e = (Ci, Cj) in E if Ci precedes Cj in the execution. The graph G is called a plan.

Given a plan G, the execution time of a service Ci is

costi(G) =
∏

Cj∈Ancesti(G)

σj ×
ci

salloc(i)

where Ancesti(G) denotes the set of all ancestors1 of Ci in G. We note ti(G) the completion
1The ancestors of a service are the services preceding it, and the predecessors of their predecessors, and
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time of service Ci with the plan G, which is the length of the path from an entry node to
Ci, where each node is weighted with its execution time.

We can now formally define the period P and latency L of a plan G:

P(G) = max
(Ci,Su)∈C

costi(G)

L(G) = max
(Ci,Su)∈C

ti(G)

In the following we study three optimization problems:

• MinPeriod: find a plan G that minimizes the period;

• MinLatency: find a plan G that minimizes the latency;

• BiCriteria: given a bound on the period K, find a plan G whose period does not
exceed K and whose latency is minimal.

Each of these problems can be tackled either with identical servers (su = s for all servers
Su, homogeneous case Hom), or with different-speed servers (heterogeneous case Het).
For instance, MinPeriod-Hom is the problem of minimizing the period on homogeneous
platforms while MinLatency-Het is the problem of minimizing the latency on heteroge-
neous platforms.

3 Related work

The main reference for this work is a recent paper by Srivastava, Munagala and
Burge [14]. In fact, we utilize the very same application framework and execution model
as those of [14]. Therefore, we refer the reader to [14], and to the many references therein,
for the motivations of this study. In a word, applications include all domains where clients
need to query multiple web services simultaneously, in a transparent and integrated fash-
ion. The only difference with [14] is that we consider different-speed servers in addition
to identical servers. Because web servers are very likely to be heterogeneous, this ex-
tension appears to be very natural and important. We aim at assessing the additional
difficulty introduced by server heterogeneity, from both a theoretical perspective (deriving
new complexity results) and a practical perspective (designing efficient heuristics).

Srivastava, Munagala and Burge [14] study the MinPeriod-Hom problem. For in-
dependent services, they characterize the structure of an optimal plan: a linear chain
composed of the services whose selectivity does not exceed 1, arranged per non decreasing
costs, followed by a fork including all services whose selectivity is larger than 1. Our
first question was to assess the impact of introducing different-speed servers: what is the
complexity of MinPeriod-Het? We show that this problem is indeed NP-hard.

The authors of [14] also consider services with dependencies. They propose an optimal
polynomial algorithm for the problem, which is based on an integer linear formulation of
the problem. The fact that this latter problem can be solved in polynomial time, due to
the particular nature of the constraints, is shown in [12]. With dependence constraints,
the problem MinLatency-Hom is shown NP-hard in [12]. They even prove that Min-
Latency-Hom with dependencies is as hard to approximate as the densest k-subgraph
problem. We show in this paper that MinLatency-Hom has polynomial complexity
when services are independent, and that MinLatency-Het with independent services is
NP-hard.

so on.
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Paper [13] studies the same model of filters in a different context: the authors consider
a fixed chain of m servers of increasing speeds. Between two successive servers, there is
a network link with a certain transmission cost. The model consists in partitioning the
set of filters into m subsets, where each subset corresponds to the services that will be
processed on one of the m servers. The authors aim at finding a mapping which optimizes
the latency. They present a polynomial time algorithm for this problem. The problem is
NP-hard when filters are correlated, which means that the selectivity of a filter depends of
its ancestors. A 4-approximation is presented. The model is extended to a tree of servers:
data is acquired at the leaves of the tree; for each internal node of the tree, a process
makes the join with a certain cost and a certain selectivity depending upon its in-degree.
A polynomial algorithm is presented in this case.

We point out that both [14] and [12] restrict to one-to-one mappings, but [13] uses
other mapping rules. If we allow that several services can be mapped onto the same server,
then it is easy to see that both MinPeriod-Hom and MinLatency-Hom become NP-
hard. Indeed, in both cases, there is a direct reduction from the 2-Partition problem [9]:
we create an instance of our problem in which the service costs are the numbers in the
instance of 2-Partition and all selectivities are equal to 1, with two processors. We then
ask whether there exists a plan whose period, or latency, is equal to half the sum of the
numbers in the instance of 2-Partition.

In [1], the authors consider a set of jobs characterized by a certain success probability
and a reward. The resulting problem is similar to our problem, but they maximize the
reward while we minimize the cost. They present a polynomial algorithm in the case of
a single server, and they prove that the problem becomes NP-complete when considering
2 servers.

Several papers aim at mapping applications whose dependence graph is a linear pipeline:
see [15, 16] for homogeneous platforms, and [3] for heterogeneous platforms. These pa-
pers use more general mapping rules than ours, but they do not deal with filters (in other
words, all services have selectivity 1).

Many authors consider the problem of mapping communicating tasks onto heteroge-
neous platforms (which corresponds to a different type of scheduling problems, but with
the same target platforms as in this paper). In [17], Taura and Chien consider applica-
tions composed of several copies of the same task graph, expressed as a DAG (directed
acyclic graph). These copies are to be executed in pipeline fashion. Taura and Chien also
restrict to mapping all instances of a given task type onto the same server. Their problem
is shown NP-complete, and they provide an iterative heuristic to determine a good map-
ping. At each step, the heuristic refines the current clustering of the DAG. Beaumont et
al [2] consider the same problem as Taura and Chien, i.e. with a general DAG, but they
allow a given task type to be mapped onto several servers, each executing a fraction of the
total number of tasks. The problem remains NP-complete, but becomes polynomial for
special classes of DAGs, such as series-parallel graphs. For such graphs, it is possible to
determine the optimal mapping owing to an approach based upon a linear programming
formulation. The drawback with the approach of [2] is that the optimal throughput can
only be achieved through very long periods, so that the simplicity and regularity of the
schedule are lost, while the latency is severely increased.

Another important series of papers comes from the DataCutter project [7]. One goal of
this project is to schedule multiple data analysis operations onto clusters and grids, decide
where to place and/or replicate various components [4, 5, 11]. A typical application is a
chain of consecutive filtering operations, to be executed on a very large data set. The task
graphs targeted by DataCutter are more general than linear pipelines or forks, but still
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more regular than arbitrary DAGs, which makes it possible to design efficient heuristics
to solve the previous placement and replication optimization problems.

Finally, we point out that two recent papers [18, 19] target workflows structured as
arbitrary DAGs and consider bi-criteria optimization problems on homogeneous platforms.

4 Period

In this section, we show that problem MinPeriod-Het is NP-complete. We provide
a formulation in terms of an integer linear program, whose solution (on small problem
instances) will be used to assess the absolute performance of the polynomial heuristics
that we derive in Section 7.

4.1 General structure of optimal solutions

The following property was presented in [14] for homogeneous platforms. We extend
it to different-speed servers:

Proposition 1. Let C1, ..., Cn, S1, ..., Sn be an instance of the problem MinPeriod-Het.
We suppose σ1, σ2, ..., σp < 1 and σp+1, ..., σn ≥ 1. Then the optimal period is obtained
with a plan as in Figure 3.

Figure 3: General structure

We point out that only the structure of the plan is specified by Proposition 1. There
remains to find the optimal ordering of services C1 to Cp in the chain (this corresponds to
the permutation λ in Figure 3), and to find the optimal assignment of services to servers.

Proof. In this proof, we denote the cost of a service Ci assigned to a server Su in a plan
G as:

costi(G) =
ci
su

∏
(Cj∈Ancesti(G)

σj

Let G be an optimal plan for this instance. We will not change the allocation of
services to servers. Hence, in the following, Ci denotes the pair (Ci, Su), with Su the
server assigned to Ci in G. Let i, j ≤ p (recall that p is the largest index of services whose
selectivity is smaller than 1). Suppose that Ci is not a ancestor of Cj and that Cj is
not a ancestor of Ci. Let Ancestk(G) be the ancestors of Ck in G for all services k and
A′k(G) = Ancestk(G) ∩ {C1, ..., Cp}.

Informally, the idea is to add the arc (Ci, Cj) to G and to update the list of ancestors
of each node (in particular, removing all nodes whose selectivity is greater than or equal
to 1). Specifically, we construct the graph G′ such that:

• for every k ≤ p such that Ci /∈ Ancestk(G) and Cj /∈ Ancestk(G), Ancestk(G′) =
A′k(G)
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• for every k ≤ p such that Ci ∈ Ancestk(G) or Cj ∈ Ancestk(G), Ancestk(G′) =
A′k(G) ∪A′i(G) ∪A′j(G)

• Ancesti(G′) = A′i(G)

• Ancestj(G′) = A′j(G) ∪A′i(G) ∪ {Ci}

• for every k > p, Ancestk(G′) = {C1, ..., Cp}

In G′, Ci is a predecessor of Cj and for all p < k ≤ n, Ck has no successor. Also,
because Ci and Cj were not linked by a precedence relation in G, G′ is always a DAG (no
cycle). In addition, for every node Ck of G, we have:

Ancestk(G′) ⊃ A′k(G) = Ancestk(G) ∩ {C1, ..., Cp}

This property implies:

costk(G′) = ck
su
×
∏
Cl∈Ancestk(G′)

σl
= ck

su
×
∏
Cl∈A′k(G) σl

≤ ck
su
×
∏
Cl∈Ancestk(G) σl

≤ costk(G)

Hence, P(G′) ≤ P(G) (recall that P(G) denotes the period of G). Because G was
optimal, P(G′) = P(G), and G′ is optimal too. By induction we construct a plan with
the structure of Figure 3.

4.2 NP-completeness of MinPeriod-Het

Theorem 1. MinPeriod-Het is NP-complete.

Proof. Consider the decision problem associated to MinPeriod-Het: given an instance
of the problem with n services and p ≥ n servers, and a bound K, is there a plan whose
period does not exceed K? This problem obviously is in NP: given a bound and a mapping,
it is easy to compute the period, and to check that it is valid, in polynomial time.

To establish the completeness, we use a reduction from RN3DM, a special instance
of Numerical 3-Dimensional Matching that has been proved to be strongly NP-Complete
by Yu [20, 21]. Consider the following general instance I1 of RN3DM: given an integer
vector A = (A[1], . . . , A[n]) of size n, does there exist two permutations λ1 and λ2 of
{1, 2, . . . , n} such that

∀1 ≤ i ≤ n, λ1(i) + λ2(i) = A[i] (1)

We can suppose that
∑n

i=1A[i] = n(n + 1), otherwise we know that the instance has no
solution. Then we point out that Equation 1 is equivalent to

∀1 ≤ i ≤ n, λ1(i) + λ2(i) ≥ A[i]
⇐⇒ ∀1 ≤ i ≤ n,

(
1
2

)λ1(i)−1 × 2A[i]

2λ2(i) ≤ 2
(2)

We build the following instance I2 of MinPeriod-Het with n services and p = n
servers such that:

• ci = 2A[i]

• σi = 1/2
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• si = 2i

• K = 2

The size of instance I1 is O(n log(n)), because each A[i] is bounded by 2n. In fact, because
RN3DM is NP-complete in the strong sense, we could encode I1 in unary, with a size
O(n2), this does not change the analysis.

We encode the instance of I1 with a total size O(n2), because the ci and si have size
at most O(2n), hence can be encoded with O(n) bits each, and there are O(n) of them.
The size of I2 is polynomial in the size of I1.

Now we show that I1 has a solution if and only if I2 has a solution. Assume first that
I1 has a solution. Then we build a plan which is a linear chain. Service Ci is at position
λ1(i), hence is filtered λ1(i) − 1 times by previous services, and it is processed by server
Sλ2(i), matching the cost in Equation 2.

Reciprocally, if we have a solution to I2, then its plan is a linear chain (or we can
transform it into such a chain, according to Proposition 1). Let λ1(i) be the position of
service Ci in the chain, and let λ2(i) be the index of its server. Equation 2 is satisfied
for all i, hence Equation 1 is also satisfied for all i: we have found a solution to I1. This
completes the proof.

4.3 Particular instances

In this section, we study three particular instances of MinPeriod.

Mapping services of selectivity greater than one Let I be an instance of Min-
Period-Het such that all services have a selectivity greater than 1. We want to know if
there exists a plan with a period less than K. For every service Ci, we choose the slowest
available server of speed greater than K/ci. This greedy algorithm is easily seen to be
optimal.

The same algorithm holds in the general case, for mapping the subset of services of
selectivity greater than 1. We make an hypothesis about the longest ratio cost/speed of
those services, and we allocate the slowest possible servers according to this hypothesis.
We can then deal with other services. There is a polynomial number of values for the
longest ratio cost/speed for services of selectivity greater than 1, i.e., the ratio cost/speed
for every service and server.

Case of homogeneous servers The problem MinPeriod-Hom can be solved in poly-
nomial time: see the algorithm in [14]. The structure of the solution is described in
Section 4.1, and the optimal placement of the services of selectivity less than one is done
by increasing order of costs.

Case of equal selectivities This sub-problem is NP-complete. The proof is the same
than for MinPeriod-Het: in the instance I2 used in the demonstration, the selectivities
of all services are equal (to 1/2).

4.4 Integer linear program

We present here a linear program to compute the optimal solution of MinPeriod-Het.
Let n be the number of services. First, we need to define a few variables:
• For each service Ci and each server Su, ti,u is a boolean variable equal to 1 if service
Ci is assigned to server Su (and 0 otherwise).

9



• For each pair of services Ci and Cj , si,j is a boolean variable equal to 1 if service Ci
is an ancestor of Cj (and 0 otherwise).
• M is the logarithm of the optimal period.

We list below the constraints that need to be enforced. First, there are constraints for
the matching between services and servers and for the plan:
• Each service is mapped on exactly one server:

∀i,
∑
u

ti,u = 1

• Each server executes exactly one service:

∀u,
∑
i

ti,u = 1

• The property ”is ancestor of” is transitive: if Ci, Cj , Ck are three services such that
si,j = 1 and sj,k = 1, then si,k = 1. We write this constraint as:

∀i, j, k, si,j + sj,k − 1 ≤ si,k

• The precedence graph is acyclic:

∀i, si,i = 0

• There remains to express the logarithm of the period of each service and to constrain
it by M :

∀i, log ci −
∑
u

ti,u log su +
∑
k

sk,i log σk ≤M

In this formula,
∑

u ti,u log su accounts for the speed of the server which processes Ci,
and

∑
k sk,i log σk adds selectivities of all predecessors of Ci.

Finally, the objective function is to minimize the period M . We have O(n2) variables,
and O(n3) constraints. All variables are boolean, except M , the logarithm of the period.
This integer linear program has been implemented with CPLEX [6], and the code is
available in [8].

5 Latency

In this section, we study the problems MinLatency-Hom and MinLatency-Het.
We reduce the structure of optimal plans for these problems to a certain class of graphs.
We present a polynomial algorithm for the problem MinLatency-Hom and we show the
NP-completeness of MinLatency-Het. For this latter problem we provide a formulation
in terms of an integer linear program, and some complexity results for particular instances.

5.1 General structure of optimal solutions

Definition 1. Given a plan G and a vertex v = (Ci, Su) of G,

• v is a leaf if it has no successor in G;

• di(G) is the maximum length (number of links) in a path from v to a leaf.
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If v is a leaf, then di(G) = 0.

Proposition 2. Let C1, ..., Cn, S1, ..., Sn be an instance of MinLatency. Then, the
optimal latency can be obtained with a plan G such that, for any couple of nodes of G
v1 = (Ci1 , Su1) and v2 = (Ci2 , Su2),

1. If di1(G) = di2(G), then v1 and v2 have the same predecessors and the same succes-
sors in G.

2. If di1(G) > di2(G) and σi2 ≤ 1, then ci1/su1 < ci2/su2.

3. All nodes with a service of selectivity σi > 1 are leaves (di(G) = 0).

Proof. Let G be an optimal plan for this instance. We will not change the allocation of
services to servers, so we can design vertices of the graph as Ci only, instead of (Ci, Su).
We want to produce a graph G′ which verifies Proposition 2.
Property 1. In order to prove Property 1 of the proposition, we recursively transform
the graph G, starting from the leaves, so that at each level every nodes have the same
predecessors and successors.

For every vertex Ci of G, we recall that di(G) is the maximum length of a path from
Ci to a leaf in G. Let Ai = {Cj | dj(G) = i}. A0 is the set of the leaves of G. We denote
by Gi the subgraph A0 ∪ ...∪Ai. Notice that these subgraphs may change at each step of
the transformation, and they are always computed with the current graph G.
• Step 0. Let ci = maxCj∈A0 cj . Let G′ be the plan obtained from G by changing the

predecessors of every service in A0 such that the predecessors of a service of A0 in G′ are
exactly the predecessors of Ci in G. Let Bi be the set of predecessors of Ci in G and let
Cj ∈ Bi be the predecessor of Ci of maximal completion time. The completion time of a
service C` of G−A0 does not change: t`(G′) = t`(G). And we have for each service Ck in
A0:

tk(G′) = tj(G′) +
(∏

C`∈Bi σ`

)
× ck

≤ tj(G′) +
(∏

C`∈Bi σ`

)
× ci

≤ ti(G′) = ti(G)

Therefore, ∀Ck ∈ A0, tk(G′) ≤ ti(G). Since for Ck /∈ A0, tk(G′) ≤ tk(G), and since G was
optimal for the latency, we deduce that G′ is also optimal for the latency. This completes
the first step of the modification of the plan G.
• Step i. Let i be the largest integer such that Gi verifies Property 1. If Gi = G,

we are done since the whole graph verifies the property. Let Ci′ be a node such that
ti′(Gi) = maxk tk(Gi). Notice that these finish times are computed in the subgraph Gi,
and thus they do not account for the previous selectivities in the whole graph G. Let Cj be
an entry node of Gi (no predecessors in Gi) in a path realizing the maximum time ti′(Gi),
and let C` be the predecessor in G of Cj of maximal finish time t`(G). Then G′ is the
plan obtained from G in changing the predecessors of every service of Ai such that the
predecessors of a service of Ai in G′ are the predecessors of Cj in G. For Ck ∈ G \Gi, we
have tk(G′) = tk(G). Let Ck be a node of Gi. We have:

tk(G′) = t`(G′) +
(∏

Cm∈Ancestj(G′)
σm

)
× tk(Gi)

≤ t`(G) +
(∏

Cm∈Ancestj(G) σm

)
× ti′(Gi)

≤ L(G)

and L(G) is optimal. So, L(G′) = L(G).

11



• Termination of the algorithm. Let Ck be a node of G. If Ck is a predecessor of Cj
in G or if Ck ∈ Gi, then dk(G′) = dk(G). Otherwise, every path from Ck to a leaf in G
has been removed in G′, so dk(G′) < dk(G). This proves that

∑
j dj(G) ≥

∑
j dj(G

′).
- If, at the end of step i,

∑
j dj(G) =

∑
j dj(G

′), then Gi+1 verifies Property 1, and we
can go to step i+ 1.

- However, if
∑

j dj(G) >
∑

j dj(G
′), some leaves may appear since we have removed

successors of some nodes in the graph. In this case, we start again at step 0.
The algorithm will end because at each step, either the value

∑
j dj(G) decreases

strictly, or it is equal but i increases. It finishes either if there are only leaves left in the
graph at a step with i = 0, or when we have already transformed all levels of the graph
and Gi = G.

Property 2. Let G be an optimal graph for latency verifying Property 1. Suppose
that there exists a pair (Ci, Su) and (Cj , Sv) such that di(G) > dj(G), σJ ≤ 1, and
ci/su > cj/sv. Let G′ be the graph obtained by removing all the edges beginning and
ending by (Cj , Sv) and by choosing as predecessors of (Cj , Sv) the predecessors of (Ci, Su)
in G and as successors of Cj the successors of Ci in G. Since σj ≤ 1, the cost of successors
can only decrease. The other edges do not change. L(G′) ≤ L(G) and G is optimal, so
G′ is optimal and Property 1 of Proposition 2 is verified. We can continue this operation
until Property 2 is verified.

Property 3. The last property just states that all nodes of selectivity greater than 1
are leaves. In fact, if such a node Ci is not a leaf in G, we remove all edges from Ci to
its successors in the new graph G′, thus only potentially decreasing the finish time of its
successor nodes. Indeed, a successor will be able to start earlier and it will have less data
to process.

Corollary 1. Let C1, ..., Cn, S1, ..., Sn be an instance of MinLatency-Het and G an
optimal plan for latency on this instance. We can compute in polynomial time a graph G′

that respects properties of Proposition 2.

Proof. In the proof of Proposition 2, we have seen a method to transform a graph in a
graph that respects properties of Proposition 2. In this method, we execute many steps
of transformation. One step can be computed in time O(n2) and there is at most O(n3)
steps of tranformation.

5.2 Polynomial algorithm on homogeneous platforms

In this section, we describe an optimal algorithm for MinLatency-Hom.

Data: n services with selectivities σ1, ..., σp ≤ 1, σp+1, ..., σn > 1, and ordered costs
c1 ≤ · · · ≤ cp

Result: a plan G optimizing the latency
G is the graph reduced to node C1;1

for i = 2 to n do2

for j = 0 to i− 1 do3

Compute the completion time tj of Ci in G with predecessors C1, ..., Cj ;4

end5

Choose j such that tj = mink{tk};6

Add the node Ci and the edges C1 → Ci, . . . , Cj → Ci to G;7

end8

Algorithm 1: Optimal algorithm for latency on homogeneous platforms.
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Lemma 1. Algorithm 1 verifies the following properties:

• t1(G) ≤ t2(G) ≤ · · · ≤ tp(G)

• ∀i ≤ n, ti(G) is optimal

Proof. Let C1, ..., Cn be an instance of MinLatency-Hom with c1 ≤ · · · ≤ cp, σ1, ..., σp ≤
1 and σp+1, ..., σn > 1. Let G be the graph produced by Algorithm 1 on this instance. We
prove by induction on i that every ti(G) is optimal and that t1(G) ≤ t2(G) ≤ · · · ≤ tp(G).

C1 has no predecessors in G, so t1(G) = c1. Suppose that there exists G′ such that
t1(G′) < t1(G). If C1 has no predecessor in G′, then t1(G′) = c1 = t1(G). Otherwise, let
Ci be a predecessor of C1 such that Ci has no predecessors. t1(G′) > ci ≥ c1. In both
cases, we obtain a contradiction with the hypothesis t1(G′) < t1(G). So t1(G) is optimal.

Suppose that for a fixed i ≤ p, t1(G) ≤ t2(G) ≤ · · · ≤ ti−1(G) and ∀j < i, tj(G)
is optimal. Suppose that there exists G′ such that ti(G′) < ti(G) and ti(G′) is optimal.
Let Ck be the predecessor of Ci of greatest cost in G′. If ck < ci, then by hypothesis,
ti(G′) = ti(G). Otherwise, if we choose for Ci the same predecessors than for Ck, we
strictly reduce ti(G′). Suppose that ck > ci. Let Cj be a predecessor of Ci in G′ such that
cj > ci and for all Cl ∈ Ancestj(G′), cl < ci. Let Cm the predecessor of Cj of maximal
cost. We have

ti(G′) ≥ tj(G′)
≥ maxC`∈Ancestj(G′) t`(G

′) +
(∏

C`∈Ancestj(G′)
σl

)
cj

≥ maxC`∈Ancestj(G′) t`(G) +
(∏

C`∈Ancestj(G′)
σl

)
cj

≥ max`≤m t`(G) +
(∏

`≤m σ`

)
cj

≥ max`≤m t`(G) +
(∏

`≤m σ`

)
ci

≥ ti(G)

However, ti(G′) is optimal. So, we obtain a contradiction. ti(G) is optimal.
Suppose that for a fixed i > p, ∀j < i, tj(G) is optimal and t1(G) ≤ t2(G) ≤ · · · ≤

tp(G). For all k > p, we have

maxj≤k tj(G) +
∏
j≤k σj ∗ ci = maxkj=p tj(G) +

∏k
j=1 σj ∗ ci

≥ tp(G) +
∏
j≤k σj ∗ ci

> tp(G) +
∏
j≤p σj ∗ ci

This relation proves that in G, the service i has no predecessor of selectivity strictly
greater than 1. Suppose that there exists G′ such that ti(G′) < ti(G) and ti(G′) is optimal.
Let Ck be the predecessor of Ci in G′ of greatest cost. Ancesti(G′) ∈ {1, k}. We obtain

ti(G′) = tk(G′) +
(∏

Cj∈Ancestti(G′)
σj

)
ci

≥ tk(G′) +
(∏

j≤k σj

)
ci

≥ ti(G)

So, we obtain a contradiction. ti(G) is optimal.
For i ≤ p, suppose that ti(G) < ti−1(G). Then, Ci−1 is not a predecessor of Ci in G.

We construct G′′ such that all edges are the same as in G except those oriented to Ci−1:
predecessors of Ci−1 will be the same as predecessors of Ci. We obtain

ti−1(G′′) = maxk≤j tk(G) +
∏
k≤j σkci−1 by construction of node Ci−1

≤ maxk≤j tk(G) +
∏
k≤j σkci = ti(G)

13



However, ti−1(G) is optimal, and so ti−1(G) ≤ ti−1(G′′) ≤ ti(G), which leads to a contra-
diction. Therefore we have t1(G) ≤ t2(G) ≤ · · · ≤ tp(G).

Theorem 2. Algorithm 1 computes the optimal plan for latency.

Proof. The latency of the output planG is the completion time of Ci such that ∀Cj ti(G) ≥
tj(G). So, for all plan G′, L(G′) ≥ ti(G′) ≥ ti(G) = L(G). So, L(G) is the optimal la-
tency.

Algorithm 1 computes the optimal latency in O(n2).

5.3 NP-completeness of MinLatency-Het

Lemma 2. Let C1, ..., Cn, S1, ..., Sn be an instance of MinLatency-Het such that for
all i, ci and si are integer power of 2 and σi ≤ 1

2 . Then the optimal latency is obtained
with a plan G such that

1. Proposition 2 is verified;

2. for all nodes (Ci1 , Su1) and (Ci2 , Su2) with di1(G) = di2(G), we have ci1
su1

= ci2
su2

.

Proof. Let G be a plan verifying Proposition 2. Suppose that there exists a distance to
leaves d such that the nodes at this distance do not respect Property 2 of Lemma 2. Let
A be the set of nodes (Ci, Su) of maximal ratio ci

su
= c with di(G) = d and A′ be the set

of other nodes at distance d. Let c′ be the maximal ratio cj
sv

of nodes (Cj , Sv) ∈ A′. Since
c′ < c and c, c′ are integer power of 2, we have c′ ≤ c

2 .
We construct the plan G′ such that:

• For all node (Ci, Su) /∈ A, Ancesti(G′) = Ancesti(G)

• For all node (Ci, Su) ∈ A, Ancesti(G′) = Ancesti(G) ∪A′

The completion time of nodes of A′ and of nodes of distance strictly greater than d in
G does not change. Let Td be the completion time of the service (Ck, Sv) at distance d+ 1
of maximal ratio ck

sv
. Let (Ci, Su) be a pair of A. Let σ =

∑
Cj∈Ancesti(G) σj .

Ti(G′) = Td + σ × c′ + σ × (
∑

Cj∈A′ σj)× c
≤ Td + σ × c

2 + σ × 1
2 × c

≤ Td + σ × c
≤ Ti(G)

This proves that the completion time of the services of A does not increase between
G and G′. The completion time of services of distance smaller than d does not increase
because their sets of predecessors do not change. G is a graph corresponding to Proposi-
tion 2, that means it obtains the optimal latency and the latency of G′ is smaller or equal
to the latency of G. We can conclude that G′ is optimal for latency.

We obtain by this transformation an optimal plan G′ for latency with strictly less pairs
of nodes that does not correspond to the property of Lemma 2 than in G. In addition, G′

respect properties of Proposition 2. By induction, we can obtain a graph as described in
Lemma 2.

Theorem 3. MinLatency-Het is NP-complete.
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Proof. Consider the decision problem associated to MinLatency-Het: given an instance
of the problem with n services and p ≥ n servers, and a bound K, is there a plan whose
latency does not exceed K? This problem obviously is in NP: given a bound and a
mapping, it is easy to compute the latency, and to check that it is valid, in polynomial
time.

To establish the completness, we use a reduction from RN3DM. Consider the following
general instance I1 of RN3DM: given an integer vector A = (A[1], . . . , A[n]) of size n,
does there exist two permutations λ1 and λ2 of {1, 2, . . . , n} such that

∀1 ≤ i ≤ n, λ1(i) + λ2(i) = A[i] (3)

We can suppose that
∑n

i=1A[i] = n(n + 1). We build the following instance I2 of Min-
Latency-Het such that:

• ci = 2A[i]×n+(i−1)

• σi =
(

1
2

)n
• si = 2n×(i+1)

• K = 2n − 1

The size of instance I1 is O(nlog(n)), because each A[i] is bounded by 2n. The new
instance I2 has size O(n × (n2)), since all parameters are encoded in binary. The size of
I2 is thus polynomial in the size of I1.

Now we show that I1 has a solution if and only if I2 has a solution.
Suppose first that I1 has a solution λ1, λ2. We place the services and the servers on a

chain with service Ci on server Sλ1(i) in position λ2(i) on the chain. We obtain the latency

L(G) =
∑

i
ci

sλ1(i)
∗
(

1
2n

)λ2(i)−1

=
∑

i 2A[i]×n+(i−1)−n×(λ1(i)+1)−n×(λ2(i)−1)

=
∑

i 2(A[i]−λ1(i)−λ2(i))×n+(i−1)

=
∑n

i=1 2i−1

= 2n − 1

This proves that if I1 has a solution then I2 has a solution.
Suppose now that I2 has a solution. Let G be an optimal plan that respects properties

of Lemma 2. Let (Ci1 , Su1), (Ci2 , Su2) be two distinct nodes of G. Let a1 and a2 be two
integers such that ci1

su1
= 2a1 and ci2

su2
= 2a2 . The rest of the Euclidean division of a1 by

n is equal to i1 − 1, and the rest of the Euclidean division of a2 by n is equal to i2 − 1.
Since both nodes are distinct, i1 6= i2 and we can conclude that ci1

su1
6= ci2

su2
. The ratios

cost/speed are all different and G verifies properties of Lemma 2. As a result, G is a linear
chain.

Let λ1, λ2 be two permutations such that for all i, the service Ci is in position λ2(i)
on the server Sλ1(i). We want to achieve a latency strictly smaller than 2n, and thus for
every node (Ci, Sλ1(i)),

2A[i]×n+(i−1)−n×(λ1(i)+1)−n×(λ2(i)−1) < 2n

⇐⇒ 2(A[i]−λ1(i)−λ2(i))×n+(i−1) < 2n

⇐⇒ A[i]− λ1(i)− λ2(i) ≤ 0

This proves that λ1, λ2 is a valid solution of I1. Thus, I1 has a solution if and only if I2
has a solution, which concludes the proof.
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5.4 Particular instances

In this section, we study four particular instances of MinLatency-Het.

MinLatency on a chain Let C1, ..., Cn, S1, ..., Sn be an instance of MinLatency-Het.
The problem studied here is to compute the optimal latency when we impose that the plan
is a linear chain. This problem is NP-complete.

Indeed, consider the decision problems associated to this problem: given an instance
of the problem with n services and n servers, and a bound K, is there a matching whose
latency does not exceed K? This problem obviously is in NP: given a bound and a
mapping, it is easy to compute the latency, and to check that it is valid, in polynomial
time.

To establish the completeness, we use the same problem as for the completeness of
MinPeriod-Het: RN3DM. Consider the following general instance I1 of RN3DM:
given an integer vector A = (A[1], . . . , A[n]) of size n, does there exist two permutations
λ1 and λ2 of {1, 2, . . . , n} such that

∀1 ≤ i ≤ n, λ1(i) + λ2(i) = A[i] (4)

We build the following instance I2 of MinLatency-Het on a chain with n services
and n servers such that ci = 2A[i], σi = 1/2, si = 2i and K = 2n. The proof is based on
the fact that for all u1, u2, . . . , un, we have

2u1 + 2u2 + · · ·+ 2un

n
≥ 2

u1+u2+···+un
n (5)

because of the convexity of the power function, and with equality if and only if all the ui
are equal. Now we show that I1 has a solution if and only if I2 has a solution. Let λ1, λ2

be a solution of I1. We assign service Ci on server Sλ1(i) at position λ2(i). We obtain a
computing time of 2 for every service and a latency of 2n. This is a solution of I2.

Reciprocally, if we have a solution to I2 λ1, λ2, we have∑
i

2A[i]−λ1(i)−λ2(i)+1 = 2n

That is the lower bound of the latency on this instance, according to the equation (5).
That means that we have ∀i, A[i]− λ1(i)− λ2(i) = 0. So, λ1, λ2 is a solution of I1. This
completes the proof of NP-completeness.

Services of same cost Let C1, ..., Cn, S1, ..., Sn be an instance of MinLatency-Het
with for all i, ci = c. We suppose σ1 ≤ · · · ≤ σn and s1 ≥ · · · ≥ sn. We prove that
an optimal plan is obtained with the mapping (C1, S1), ..., (Cn, Sn). Let G be the graph
produced by Algorithm 1 with this mapping. Let r be a permutation of {1, ..., n}, and
G′ a plan with the mapping (Cr(1), S1), ..., (Cr(n), Sn). Let G′′ the graph obtained by
Algorithm 1 with the latter mapping.

We prove by induction on i that

• ∀i, tr(i)(G′) ≥ tr(i)(G) and

• tr(1)(G) = tr(1)(G′).
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Indeed, suppose that for all j < i, tr(j)(G′) ≥ tr(j)(G).

tr(i)(G′) ≥ tr(i)(G′′)
≥ maxk<r(i){tk(G′′) +

∏
k<r(i) σkcr(i)}

≥ maxk<r(i){tk(G) +
∏
k<r(i) σkcr(i)}

≥ tr(i)(G)

When the optimal plan is a star Let C1, ..., Cn+1, S1, ..., Sn+1 be an instance of
MinLatency-Het such that σ1, ..., σn < 1, σn+1 ≥ 1. We assume that c1, ..., cn are close
enough so that the optimal plan is like in Figure 4.

Figure 4: When the optimal plan is a star graph.

We have to allocate servers to services and to choose the predecessors of Cn+1 in order
to obtain a latency L ≤ K for a certain K (in an outer procedure, we will perform a
binary search to derive the optimal value of K). We suppose that we know the server
S allocated to Cn+1 and its combined selectivity in an optimal graph. Let c′ = cn+1/s,
K ′ = max(Ci,Sj)∈V ′ ci/sj where V ′ the set of predecessors of Cn+1 and Σ = (K −K ′)/c′.
We associate to this problem a bipartite weighted graph G = (A,B, V ) with:

• A is the set of services

• B is the set of servers

• (Ci, Sj) ∈ V if ci/sj ≤ K

• If ci/sj ≤ K ′, then w(Ci, Sj) = − ln(σi), and otherwise w(Ci, Sj) = 0.

We can compute in polynomial time a perfect matching of maximal weight in this graph.
If the associated weight is greater than ln Σ, then the associated allocation and plan has
a latency L ≤ K. We can execute this algorithm on all servers that could be allocated to
Cn+1 and on the value of ci/sj for all couples (Ci, Sj). So this case is polynomial.

When the optimal plan is a bipartite graph Let C1, ..., Cn, S1, ..., Sn be an instance
of MinLatency-Het. We suppose in this case that we have n services with σ1, ..., σp < 1
and σp+1, ..., σn ≥ 1. We assume that c1, ..., cn are close enough so that the optimal plan
is like in Figure 5.

In this case, we make an hypothesis on c′ = maxp<i≤n ci/sθ(j), with θ the permutation
corresponding to the allocation of servers. Then we allocate each service Cp+i to the
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Figure 5: When the optimal plan is a bipartite graph.

slowest server S possible such that cp+i/s ≤ c′. We can now use the same algorithm as
for star graphs with the remaining servers and services. We apply this algorithm on each
value cp+i/si for c′. Again, this case is polynomial.

5.5 Integer linear program

We present here a linear program to compute the optimal solution of MinLatency-
Het. We denote by C the set of services and by S the set of servers. First, we need to
define a few variables:
• For each service Ci, for each server Su, and for any subset of services e, z(i, u, e) is

a boolean variable equal to 1 if and only if the service Ci is associated to the server
Su and its set of predecessors is e ⊂ C.
• For each service Ci, the rational variable t(i) is the completion time of Ci.
• The rational variable M is the optimal latency.
We list below the constraints that need to be enforced:
• For every server, there is exactly one service with exactly one set of predecessors:

∀u ∈ S,
∑
i∈C

∑
e⊂C

z(i, u, e) = 1

• Every service has exactly one set of predecessors and is mapped on exactly one
server:

∀i ∈ C,
∑
u∈S

∑
e⊂C

z(i, u, e) = 1

• The property ”is ancestor of” is transitive:

∀i, i′ ∈ C,∀u, u′ ∈ S,∀e, e′ ⊂ C, e * e′, i ∈ e′, z(i, u, e) + z(i′, u′, e′) ≤ 1

• The graph of precedence is acyclic:

∀u ∈ S, ∀e ⊂ C, ∀i ∈ e, z(i, u, e) = 0

• There remains to express the latency of each server and to constrain it by M . First
for the case where Ci has some predecessors we write:

∀i ∈ C,∀e ⊂ C, ∀k ∈ e, t(i) ≥
∑
u∈S

z(i, u, e)

 ci
su
∗
∏
Cj∈e

σj + t(k)
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But the subset of predecessors can be empty:

∀i ∈ C, t(i) ≥
∑
u

z(i, u, e)
ci
su
∗
∏
Cj∈e

σj

Then we bound the value of t(i):

∀i ∈ C, t(i) ≤M

Finally, the objective function is to minimize the latency M .
We have O(n2 ∗ 2n) variables, and O(n4 ∗ 22n) constraints. All variables are boolean,

except the latency M , and the completion times t(i) which are rational. We see that
the size of this program is exponential, and it cannot be used in practice, even for small
instances.

6 Bi-criteria problem

We only study the bi-criteria optimization problem in the homogeneous case, and we
present a polynomial time algorithm for this problem. In the heterogeneous case, the
bi-criteria problem is NP-complete since MinPeriod-Het and MinLatency-Het are
NP-complete.

Data: n services with selectivities σ1, ..., σp ≤ 1, σp+1, ..., σn > 1, ordered costs
c1 ≤ · · · ≤ cp, and a maximum throughput K

Result: a plan G optimizing the latency with a throughput less than K
G is the graph reduced to node C1;1

for i = 2 to n do2

for j = 0 to i− 1 do3

Compute the completion time tj of Ci in G with predecessors C1, ..., Cj ;4

end5

Let S = {k|ci
∏

0≤k<i σk ≤ K};6

Choose j such that tj = mink∈S{tk};7

Add the node ci and the edges C1 → Ci, . . . , Cj → Ci to G;8

end9

Algorithm 2: Optimal algorithm for latency with a fixed throughput.

Proposition 3. Algorithm 2 computes the optimal latency for a bounded period.

Proof. The proof is similar to that of Algorithm 1. We restrain the choice of services that
can be assigned: we can only consider those whose cost, taking the combined selectivity
of their predecessors into account, is small enough to obtain a computation time smaller
than or equal to K. If there is no choice for a service, then it will be impossible to assign
the next services either, and there is no solution.

7 Heuristics

We know that MinPeriod-Het and MinLatency-Het are both NP-complete, but we
only propose polynomial heuristics for MinPeriod-Het: in the experiments of Section 8,
the absolute performance of these heuristics will be assessed through a comparison with
the (optimal) solution returned by the integer linear program of Section 4.4. We do
not produce heuristics nor experiments for MinLatency-Het, because the integer linear
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program of Section 5.5 is unusable (with O(2n) variables) and it is untractable for the
CPLEX optimization software.

Recall that n is the number of services. The following heuristics are working for
instances C1, ..., Cn, S1, ..., Sn such that the selectivity of each service is smaller than or
equal to 1. The code for all heuristics, implemented in C, is available on the web [8].

Notice that services with selectivity greater than 1 can always be assigned optimally.
The idea is to set a bound K for the period, and to assign the slowest possible server to
the latter services, in decreasing order of their cost. Then we run the heuristics to assign
the services whose selectivity is smaller than 1 (and decrease or increase K according to
the result). We can bound the number of iterations in the binary search to be polynomial.
Intuitively, the proof goes as follows: we encode all parameters as rational numbers of the
form αr

βr
, and we bound the number of possible values for the period as a multiple of the

least commun multiple of all the integers αr and βr. The logarithm of this latter number
is polynomial in the problem size, hence the number of iterations of the binary search
is polynomial too2. Finally, we point out that in practice we expect only a very small
number of iterations to be necessary to reach a reasonable precision.

sigma-inc In this first heuristic, we place services on a chain in increasing order of σ.
Then, we compute for each service, its cost weighted by the product of the selec-
tivities of its predecessors, and we associate the fastest server to the service with
maximum weighted cost, and so on. This heuristic is optimal when all the service
costs are equal.

In the next three heuristics, we first allocate servers to services according to some
rules. Then, we have for each service its cost weighted by the inverse of the speed of its
associated server, and the problem is similar to the homogeneous case. Indeed, we just
need to decide how to arrange services. However, we know that this problem can be solved
easily in the homogeneous case, since all selectivities are smaller than or equal to 1: we
place services on a linear chain, sorted by increasing order of (weighted) costs, regardless
of their selectivities.

short service/fast server We associate the service with smallest cost to the server with
fastest speed. The idea of this heuristic is to process first services as fast as possible
so that their selectivities will help reduce the expected larger cost/speed ratio of the
following ones.

long service/fast server We associate the service with largest cost to the server with
fastest speed. This heuristic is the opposite of the previous one. It is optimal if
all the selectivities are equal to 1. We foresee that it will also give good results for
selectivities close to 1.

opt-homo This heuristic is in part randomized. We randomly associate services to
servers, and then we use the same procedure (assigning by increasing order of
weighted cost) to create a linear chain of services.

greedy min This heuristic simply consists of successively running the previous four
heuristics on the problem instance, and returning as a result the best of the four
solutions.

random This last heuristic is fully random: we randomly associate services and servers,
and we randomly place these pairs on a linear chain.

2The interested reader will find a fully detailed proof for a very similar mapping problem in [10].
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8 Experiments

Several experiments have been conducted for MinPeriod-Het in order to assess the
performance of the heuristics described in Section 7.

We have generated a set of random applications and platforms with n = 1 to 100
services and servers. For each value of n, we have randomly generated 300 instances
of applications and platforms with similar parameters. Each value of the period in the
following plots is an average of 300 results.

We report five main sets of experiments. For each of them, we vary some key param-
eters to assess the impact of these parameters on the performance of the heuristics. In
the first experiment, the service costs and server speeds were randomly chosen as integers
between 1 and 100. The selectivities were randomly generated between σ = 0.01 to 1.
In the second and third experiments, the parameters are the same except for the selec-
tivities: in the second experiment, selectivities are randomly chosen between σ = 0.01 to
0.5 (smaller values), while in the third one they are chosen between σ = 0.51 to 1 (larger
values). In the fourth and fifth experiments, the costs and selectivities are chosen as in
the first experiment, but the server speeds are randomly chosen between 1 and 5 for the
fourth experiment (large heterogeneity), and between 6 and 10 for the fifth experiment
(reduced heterogeneity).

For each experiment we report two sets of results. Figures on the left are for a small
number of services and include the optimal solution returned by the integer linear program
in addition to the heuristics. Figures on the right are for a large number of services and
only compare the heuristics. Indeed, the integer linear program requires a prohibitive
execution time, or even fails, as soon as we have 30 services and servers.
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Figure 6: Experiment 1: general experiment.

In the first experiment, we notice that the performance of two heuristics, sigma-inc
and long service/fast server , decreases with the size of n. The two curves are very similar,
and they tend towards a constant. These heuristics lead to good results for n small.
The heuristic short service/fast server obtains the best results for large n, but it is the
worst heuristic for small values of n. The heuristic opt-homo has correct results for small
values of n, and its average period is around twice the average period of the heuristic
short service/fast server for large values of n. In this experiment, the heuristic greedy-min
always is very close to the optimal.

In the second experiment, the performance of the heuristic short service/fast server
is better than in the first experiment for small values of n. It is the worst heuristic only
for n ≤ 3 while it was even the worst for n = 6 in the first experiment. The heuristic
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Figure 7: Experiment 2: with small selectivities.

greedy-min is relatively close to the optimal in this experiment. We might have expected
short service/fast server to obtain better performances here because selectivities are small,
but it turned out not to be the case.

 0

 1

 2

 3

 4

 5

 6

 7

 1  2  3  4  5  6  7  8  9  10

pe
rio

d

n

sigma-inc
short service/fast server
long service/fast server

opt-homo
greedy min

random
opt

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 0  10  20  30  40  50  60  70  80  90  100

pe
rio

d

n

sigma-inc
short service/fast server
long service/fast server

opt-homo
greedy min

random

Figure 8: Experiment 3: with big selectivities.

In the third experiment, we expect better results for long service/fast server and worse
results for short service/fast server , since selectivities are closer to 1. This is true for
small values of n, but the results for large values of n are similar as before. The heuristic
short service/fast server is the best when n > 20. Altogether, the combination of long
service/fast server and sigma-inc allows greedy-min to be very close to the optimal for all
the values of n tested.

The fourth experiment is very similar to the first one. We expect similar results with
a certain ratio between both experiments. The only difference is the number of cases of
equality between server speeds over the instances generated by the two experiments. In
practice, the curves of the fourth experiment tend more slowly to constants. The second
difference is the limit of the curves of the heuristics sigma-inc and long service/fast server .
The limit of sigma-inc is very high (around 12), but in this experiment, the limit of long
service/fast server is relatively good (around 2). For this experiment, the heuristics are
relatively far from the optimal.

We obtain very similar results in the last experiment: it is the only experiment in which
the performance of long service/fast server is similar to those of short service/fast server
and opt-homo. In this experiment, server speeds are close. It is then logical that the choice
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Figure 9: Experiment 4: with high heterogeneity.
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Figure 10: Experiment 5: with small heterogeneity.

of the mapping service/server has a small influence on the result. The heuristic sigma-inc
has very bad results in this experiment. The instances generated here are close to the
homogeneous case. However, the curves generated are somewhat far from the optimal

Figure 11 compares the computing times of the heuristics and of the linear program,
according to the size of n. As expected, it takes a long time to solve the linear program
(of exponential complexity), while all heuristics always take around 0.001 seconds. For
small values of n (n < 3), it can seem surprising that the linear program is faster than
the heuristics. This artefact can be explained for n = 1 by the fact that running the five
heuristics implies computing five times the same division (service cost divided by server
speed), while the linear program just performs a single addition in this case.

9 Conclusion

In this paper, we study the problem of one-to-one mappings of filters onto homogeneous
and heterogeneous platforms. We study the complexity of the problem for the optimiza-
tion of two different criteria, the latency and the period. We provide a polynomial time
algorithm for MinLatency-Hom and we prove the NP-completeness of MinPeriod-Het
and of MinLatency-Het. We also provide a polynomial time algorithm on homogeneous
platforms for optimizing the latency given a threshold period. We present many heuristics
and a linear program for the problem MinPeriod-Het.

As future work, we still need to design heuristics for MinLatency-Het and to find
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Figure 11: Computing times

a way to assess their performance (recall the integer linear program of Section 5.5 is
untractable). Also, the model used in this work could be extended to more realistic
settings by taking communication costs into account. A natural extension of this work
would be to choose a model for the communication costs, and to study the complexity
in the case of homogeneous platforms, since the problem without communications can
be solved in polynomial time. It would also be challenging to design polynomial time
heuristics which account for communications, and to perform some real experiments to
assess the performance of these heuristics.
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