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Abstract

In this paper, we study the problem of optimizing the
throughput for micro-factories subject to failures. The
challenge consists in mapping several tasks onto a set of
machines. One originality of the approach is the failure
model for such applications, in which tasks are subject
to failures rather than machines. If there is exactly one
task per machine in the mapping, then we prove that the
optimal solution can be computed in polynomial time.
However, the problem becomes NP-hard if several tasks
can be assigned to the same machine. Several polyno-
mial time heuristics are presented for the most realistic
specialized setting, in which tasks of a same type can
be mapped onto a same machine. Experimental results
show that the best heuristics obtain a good throughput,
far from the throughput obtained with a random map-
ping. Moreover, we obtain a throughput close to the op-
timal solution in the particular cases on which the opti-
mal throughput can be computed.

1 Introduction

It is usual to say that distributed systems are a good
support for fault-tolerance but that their correct manage-
ment needs to take faults into account. Standard dis-
tributed systems mainly focus on processor dependent
faults. Its means that the common assumption used to
model fault tolerance in distributed systems is to assume
that faults are generated by the execution platform and
thus that the fault model used must be linked to the pro-
cessor or to the resource that performs a task. In this
case, a stochastic fault model defining the fault proba-
bility is usually attached to the processor. This model
fits distributed computing environments such as parallel

platforms where failures come from the processors or
the nodes of the platform.

If we look however at a more general definition of a
distributed system, we can state that this model does not
always fit. In some distributed platforms the fault model
may be attached to the task rather than to the processor
or node. For example, in production systems, a task may
be complex to perform due to some hard manipulation
and that impacts its success ratio. If the same robot is
able to perform different tasks, it will generate less faults
on simple tasks than on difficult ones.

In this paper we are interested in studying the impact
of a fault model linked to task. The application context
is more a production system than a distributed comput-
ing system. Our specific use case is a micro-factory but
the results presented in this paper are more generally ap-
plicable to distributed production systems or distributed
systems where the fault probability is attached to tasks
rather than resources.

Micro-factories are production units designed to pro-
duce pieces composed of micro-metric elements [8]. To-
day’s micro-factories are composed of micro-robots able
to carry out basic operations through elementary actua-
tors as piezo-electric beams (e.g. for gripping), stick-slip
systems, etc. As these robots are usually teleoperated by
a human operator, only simple tasks can be done. To per-
form more complex operations and to improve their effi-
ciency, micro-factories need to be automated and robots
grouped in cells. Then cells will be put together and they
will cooperate to produce complex assembled pieces, as
we do it for macroscopic productions. Due to the pieces,
actuators and cells size, it is however impossible for hu-
man operators to directly interfere with the physical sys-
tem. So it needs a highly automated command and the
complexity of this command makes it mandatory to de-
velop a distributed system to support this control. So,
the cell group results in a distributed system that is very
similar to a distributed computing platform. Note that
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the physical constraints that act on the components and
on the environment are different compared to the macro
world. As these constraints are not easily controlled, it
is difficult to guarantee the command, leading to a poor
reliability and to the need to take faults into account as
in computing systems.

The main issue for fault tolerant systems [6] is to
overcome the failure of a node, a machine or a proces-
sor. To deal with those faulty machines the most com-
mon method in distributed systems is to replicate [1] the
data. Those models assume that the failure is attached to
a machine. Indeed when a replicated task is executed
on several machines, the probability to get one prod-
uct as a result is highly increased. Once all the repli-
cated jobs are done, a vote algorithm [7] is often used
to decide which result is the right one. In real time
systems, another model called Window-Constrained [9]
model can be used. In this model one considers that, for
y messages, only x (x ≤ y) of them will reach their
destination. The y value is called the Window. The
looses are not considered as a failure but as a guarantee:
for a given network a Window-Constrained Schedul-
ing [10] can guarantee that no more than x messages
will be lost for every y sent messages. In this paper,
the Window-Constrained based failure model is adapted
to a distributed system, the micro-factory. So the issue
is to guarantee the output of a given number of prod-
ucts. With failures attached to tasks, we can compute the
number of products needed as input of the system and
guarantee the output for the desired number of products.

The paper is organized as follows. Section 2 gives
the characteristics and a more formal presentation of the
context of micro-factories and the failure model. Sec-
tion 3 presents the optimization problems tackled in the
paper. The complexity study and results are given in
Section 4. Heuristics to solve the problem are proposed
in Section 5 and simulation results for these heuristics
are given and commented in Section 6. Finally, we con-
clude in Section 7.

2 Framework

We outline in this section the characteristics of the
applicative framework and target platform. Finally, we
describe and motivate the failure model that we use in
this work.

2.1 Applicative framework

We consider a set N of n tasks: N =
{T1, T2, . . . , Tn}. Each task Ti (1 ≤ i ≤ n) is applied

successively on a set of products, numbered from 1 to B.
We wish to produce Bo products as an output, and the
total number of products B being processed may depend
on the allocation (B ≥ Bo, losses due to failure as ex-
plained later in Section 2.3). Note that all products are
identical. When the context is not ambiguous, we may
also design task Ti by i for clarity, as for instance in the
figures.

A type is associated to each task as the same opera-
tion may be applied several times to the same product.
Thus, we have a set T of p task types with n ≥ p and a
function t : [1..n]→ T which returns the type of a task:
t(i) is the type of task Ti, for 1 ≤ i ≤ n.

The application is a directed acyclic graph (DAG) in
which the vertices are tasks, and edges represent depen-
dencies between tasks. An example of application with
n = 5 tasks is represented on Figure 1. In the top branch
of the DAG, we need to finish the processing of task T1

on one product before proceeding to task T2. The join to
task T4 corresponds to the merge of two products, which
produces a new unit of product. Typically one product
from each predecessor in the graph is required to pro-
cess with the joining task. We do not consider forks,
and rather restrict to in-trees. Indeed, micro-factories
assemble objects (joins), but a task cannot split a micro-
component: these are physical objects that cannot be
replicated to be processed by more than one task.

1 2

3

4 5

Figure 1: Example of application.

2.2 Target platform

The platform consists in a set M of m machines:
M = {M1, M2, . . . ,Mm}. All machines can be in-
terconnected: the platform graph is a complete graph. A
machine handles some of the tasks at a given speed: ma-
chine Mu can perform the task Ti onto one product in a
time wi,u. We also consider that tasks of the same type
have the same execution time on a given machine, since
they correspond to the same action to be performed on
the products. Thus, we have:
∀i, i′ ∈ [1, n],∀u ∈ [1, m], t(i) = t(i′)⇒ wi,u = wi′,u

We neglect the communication time required to trans-
fer a product from one machine to another. If a commu-
nication may not be negligible, we can always model it
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as a particular task with a dedicated machine (the ma-
chine responsible of the transfer of the product).

We are interested in producing the desired number of
products rather than producing a particular instance of a
product. So we consider that products are not identified:
two products, on which the same sequence of tasks has
been done, are exactly similar and we can use one or the
other indifferently for further operations.

2.3 Failure model

An additional characteristic of our framework is that
tasks are subject to failure. It may happen that a prod-
uct is lost or damaged while a task is being executed on
this product. For instance electrostatic strength may be
accumulated on the actuator, and thus the piece will be
pushed away rather than caught. Indeed, we work at a
scale such that these electrostatic strengths are stronger
than gravity.

Due to our application setting, we deal only with tran-
sient failures, as defined in [4]. The tasks are failing for
some of the products, but we do not consider a perma-
nent failure of the machine responsible of the task, as
this would lead to a failure for all the remaining prod-
ucts to be processed and the unability to finish them.

One classical technique used to deal with failures is
replication [1]. However, while replication is very useful
for hardware failures of machines, we cannot use it in
our framework since the products are not a data such
as a numerical image that we need to process, but it is
a physical object. Thus, the only solution consists in
processing more products than needed, so that at the end,
the required number of finished products are output.

The failure rate of task Ti is characterized by the per-
centage of failure for this task. More precisely, the fail-
ure is denoted fi =

ai

bi
, where ai is the number of prod-

ucts that fail each time bi products have been processed.
ri = bi − ai is the number of successful products, and
bi is also called period of task Ti.

This failure model is very close to the Window-
Constrained model [9], in which an application might
tolerate a losses every b products.

We enforce that two tasks of similar type are likely to
fail at the same rate with the following equation:
∀i, i′ ∈ [1, n] t(i) = t(i′) ⇒ fi = fi′ .

Since we advocate the computation of more products
than needed, we explain in the following how to com-
pute the number B of products that should be processed
in order to get Bo products as an output, and we illus-
trate it on the example of Figure 2. For instance task

f1 = 1
5 f2 = 1

6 f3 = 1
8 f4 = 2

9

x1 1 2 3 4
x4x3x2 Bo

Figure 2: Example of a linear chain application with fail-
ure.

T2 has one failure every 6 products that are being pro-
cessed by this task. Given these failure rates, the number
of products that should be given as an input to task Ti in
order to have Bo products out of the system is denoted
xi. Thus, B = max1≤i≤n xi.

The computation of xi is done backward: if we know
the number of products that should be output by task Ti

and its failure rate, we can compute the number of input
products that should be given to this task to guarantee
this output. As we work only with linear chain and in-
trees, each task has an unique outgoing edge, thus the
number of products to be output by Ti is xi+1 (or Bo for
T4 in the example).

To determine xi, we need to sum both the number
of products which will be successfully processed (i.e.,
xi+1), and the number of products which fail during the
processing phase. Thus we must compute the number of
periods of the task Ti, which is an integer number be-
ing greater than the number of output products divided
by the number of successful products computed each pe-

riod:
⌈

xi+1

ri

⌉
. In the worst case, failures occur for the

first ai products of the period, thus the number of prod-

ucts to be computed and which will fail is ai×
⌈

xi+1

ri

⌉
.

Finally we can deduce the total number of products
that should be computed:

xi = xi+1 + ai ×
⌈

xi+1

ri

⌉
(1)

As an extension of this formula, we can also deduce
the completion time Lxi+1,i needed to exit xi+1 prod-
ucts out of task Ti, once it has been assigned to a ma-
chine, Mu. The completion time Lxi+1,i is the maxi-
mum between the time needed to compute xi products
on task Ti (i.e., xi × wi,u) and the sum of the time to
output xi product out of the task Ti−1 (i.e., Lxi,i−1) and
the completion time of the last product on task Ti (i.e.,
wi,u).

Lxi+1,i = max (Lxi,i−1 + wi,u, xi × wi,u) (2)
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3 Optimization problems

Now that the framework has been clarified, we for-
malize in this section the various optimization problems
that we wish to solve. Our goal is to assign tasks to ma-
chines so as to optimize some key performance criteria.
The solution to a problem is thus an allocation function
a : [1..n] → [1..m] which returns for each task the ma-
chine on which it is executed. Thus, if a(i) = u, task Ti

is executed on machine Mu, and the processing of one
product for this task takes a time wi,u.

We first discuss the objective criteria that we want to
optimize. Then we introduce the different rules of the
game that can be used in the definition of the allocation
function a. Finally, Section 3.3 gives a summary of all
problem variants, combining framework characteristics
and rules of the game. The complexity of these various
problems is discussed in Section 4.

3.1 Objective function

In our framework, several objective functions could
be optimized. For instance, one may want to produce
a mapping of the tasks on the machines as reliable as
possible, i.e., minimize the total number of products to
input in the system, B. Rather, we consider that prod-
ucts are cheap, and we focus on a performance criteria,
the throughput. The goal is to maximize the number of
products processed per time unit, making abstraction of
the initialization and clean-up phases. This objective is
important when a large number of products must be pro-
duced.

Rather than maximizing the throughput of the appli-
cation, we rather deal with the period, which is the in-
verse of the throughput. First we need to introduce the
fractional number x̃i, which is the average number of
products required to output one product out of the sys-
tem for task Ti. Similarly to the computation of the xi

performed in Section 2.3, we can compute the x̃i re-
cursively for any application DAG, setting the number
of final products Bo = 1. Indeed, if task Ti needs to
output Bi products, then x̃i = bi

ri
× Bi (the fraction

represents the number of products needed per success-
ful product). Starting from the nodes with no successor
(and thus Bi = Bo = 1), we can then compute x̃i for
all i. Note that x̃i ≤ xi for Bo = 1 since xi is an upper
integer part which accounts for the worst case failures.

The computation of x̃i and xi for the example of
Figure 2 is illustrated in Table 1. For instance, x̃4 =
9/(9− 2) = 9/7 ' 1.3.

We are now ready to define the period of a machine:
it is the time needed by a machine to execute all the tasks

Table 1: Values of xi and x̃i for the example of Figure 2,
with Bo = 1.

Task number 1 2 3 4
xi 7 5 4 3
x̃i ' 2.2 ' 1.8 ' 1.5 ' 1.3

allocated onto this machine in order to produce one final
product out of the system. Formally, we have

period(Mu) =
∑

a(i)=u

x̃iwi,u (3)

The period of machine Mu is the sum, for each task
allocated to that machine, of the average number of
products (x̃i) needed to output one product, multiplied
by the speed (wi,u) of that task onto that machine. The
slowest machine will slow down the whole application,
thus we aim at minimizing the largest machine period.
The machines realizing this maximum are called criti-
cal machines. If Mc is a critical machine, then
period = period(Mc) = maxMu∈M period(Mu).
Note that minimizing the period is similar to maximiz-
ing the throughput.

3.2 Rules of the game

In this section, we classify several variants of the op-
timization problem that has been introduced. For one-
to-one mappings, we enforce that a single task must be
mapped onto each machine. Then we consider the case
of specialized machines: several tasks of the same type
can be mapped onto the same machine; such mappings
are called specialized mappings. Finally, general map-
pings have no constraints: any task (no matter the type)
can be mapped on any machine.

3.2.1 One-to-one mappings

In this first class of problems, a single task is mapped
on each machine. This rule of the game is enforced with
the following constraint, meaning that a machine cannot
compute two different tasks:

∀1 ≤ i, i′ ≤ n i 6= i′ ⇒ a(i) 6= a(i′)

On Figure 3, we have an application graph (a) that
must be mapped on a platform graph (b). The result is
shown in (c) where we can see that one machine can
handle only one task. Thus this mapping is quiet restric-
tive because we must have at least as many machines as
tasks.
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(c)
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(a) (b)
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M1 M1M4

M3M3 M2

M4

Figure 3: One-to-one mapping.
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1

2
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M1 M4

M3 M3

Figure 4: Specialized mapping, with t(1)=t(3)=t(5)=1 and t(2)=t(4)=2.

3.2.2 Specialized mappings

We have dedicated machines that can realize only one
type of tasks. But task types are not dedicated to ma-
chines, so two machines may compute different tasks of
the same type.

For instance, let us consider five tasks
T1, T2, T3, T4, T5 with the following types:
t(1) = t(3) = t(5) = 1 and t(2) = t(4) = 2
(see Figure 4). If the machine M3 computes task T1,
it could also execute T3 and T5 but not T2 and T4. As
types are not dedicated to machines, T5 could also be
assigned to another machine, for instance M1.

The following constraint expresses the fact that a ma-
chine cannot compute two tasks of different types:

∀1 ≤ i, i′ ≤ n t(i) 6= t(i′)⇒ a(i) 6= a(i′)

3.2.3 General mappings

A machine can compute any task regardless of its type,
thus there are no constraints. Such a mapping is illus-
trated on the example of Figure 5. The problem with
this kind of mappings is the reconfiguration cost, since a
single machine must perform several types of operations
(tasks).

3.3 Problem classification

We summarize in this section the optimization prob-
lems which arises from our application. The two impor-
tant parameters of a problem are

• the rules of the game (one-to-one or specialized or
general mapping);

• and the degree of heterogeneity of machines
and tasks: the time to compute one product of
task Ti on machine Mu may be identical for each
task/machine (w), depend only on the task (wi) or
the machine (wu), or be fully general (wiu).

4 Complexity results

Complexity results are classified depending on the
mapping rules. We start with one-to-one mappings, then
we focus on specialized and general ones. Finally, we
compare one-to-one mappings with general and special-
ized ones.
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Figure 5: General mapping, with t(1)=t(3)=1, t(2)=t(4)=2 and t(5) = 3.

4.1 Complexity of one-to-one mappings

Theorem 1. Given an application and a set of ma-
chines, finding the one-to-one mapping which maximizes
the throughput can be done in polynomial time.

Proof. We can compute the average number of products
x̃i needed to output one product out of task Ti, as ex-
plained in Section 3.1. Since the mapping is required to
be one-to-one, we create a bipartite graph with one node
per task on one side, one node per machine on the other
side. The cost of an edge from task Ti to machine Mu

is then set to x̃iwi,u, which corresponds to the period
of machine Mu if task Ti is assigned to this machine.
Since the period of the mapping is the maximum of the
periods of each machine, the problem is equivalent to
a maximum weight matching in bipartite graphs, which
can be found in polynomial time, for instance using the
Hungarian method [2, 5].

4.2 Complexity of specialized and gen-
eral mappings

Theorem 2. Finding the optimal specialized or gen-
eral mapping is NP-hard, even with constant processing
costs w.

Proof. We consider the following decision problems:
given a period K, is there a general/specialized map-
ping whose period does not exceed K? The problem
is obviously in NP: given a period and a mapping, it
is easy to check in polynomial time whether it is valid
or not. The NP-completeness is obtained by reduction
from 2-PARTITION [3]. Let I1 be an instance of 2-
PARTITION: given a set {a1, ..., an} of n integers, does
it exist a subset I such that

∑
i∈I ai = 1

2

∑
1≤j≤n aj?

We construct the instance I2 with n tasks ordered as a
linear chain, 2 machines, and w = 1. All tasks are of the

same type, thus there is no difference between general
and specialized mappings, and both problems are tack-
led simultaneously. We assume that a1 ≥ a2 ≥ ... ≥ an

(the sort can be done in polynomial time), and then we
fix:
• fn = an−1

an
; ∀1 ≤ i ≤ n− 1, fi = ai−ai+1

ai
;

• K = 1
2

∑
1≤j≤n aj ;

First we prove by induction that x̃i = ai for 1 ≤ i ≤ n.
For i = n, we have x̃n = 1× bn/rn = an. For 1 ≤ i ≤
n − 1, if x̃j = aj for j > i, then x̃i = x̃i+1 × bi/ri =
ai+1 × ai/ai+1 = ai.

The size of I2 is polynomial in the size of I1. Sup-
pose that I1 has a solution I . We construct the allocation
function a such that: ∀i, a(i) = 1 ⇐⇒ i ∈ I . Since
w = 1 and x̃i = ai for all i, the period of the mapping is
thus P = max{

∑
i∈I ai,

∑
i/∈I ai}, that means P = K

and I2 has a solution.
Suppose now that I2 has a solution. Let I =

{ai|a(i) = 1}. By hypothesis, we have
∑

i∈I ai ≤ K
and

∑
i/∈I ai = 2K −

∑
i∈I ai ≤ K. We can conclude

that
∑

i∈I ai = 1
2

∑
1≤j≤n aj . Then, I1 has a solution.

This concludes the proof.

4.3 Comparison of mapping rules

In this section, we compare the three mapping strate-
gies, namely one-to-one, specialized and general map-
pings. The first thing that we want to point out is that
one-to-one mappings are a particular case of special-
ized mappings, which are themselves a particular case of
general mapping. Thus, an optimal one-to-one mapping
cannot be better than an optimal specialized mapping,
which itself cannot be better than a general mapping.

Why not restrict to general mappings? The problem
of these general mappings is that they are not realis-
tic, because if a machine is processing tasks of differ-
ent types, one needs to reconfigure the machine between
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operations, and this cost is unaffordable in most micro-
factories. Thus, in the following, an emphasis is given
to one-to-one and specialized mappings.

Since the optimal one-to-one mapping can be found
in polynomial time (see Theorem 1), why not restrict
to such mappings? The problem arises when m ≤ n,
i.e., there are many tasks and not so many machines. In
such cases, it is mandatory to execute several tasks on
the same machine. When there are enough machines
(m ≥ n), one-to-one allocations are a good way to
tackle the problem (see the following theorem), but they
can be arbitrarily worse than a specialized allocation in
the general case.

Theorem 3. If m ≥ n, and for problems with wi

(wi,u = wi for 1 ≤ u ≤ m), there is an optimal special-
ized or general mapping which performs a one-to-one
allocation of tasks onto machines. In other words, one-
to-one mappings are dominant in this case.

Proof. The proof is simply done by an exchange argu-
ment. Suppose that there is an optimal mapping which is
not a one-to-one mapping. For instance, tasks Ti and Tj

are mapped onto the same machine, Mu. Since m ≥ n,
there is at least one free machine, say Mv , and the period
can be decreased from x̃iwi+x̃jwj to max(x̃iwi, x̃jwj)
if task Tj is assigned to Mv instead of Mu. This con-
cludes the proof.

Note that this is not true if the completion time also
depends on the processor. For instance, consider a prob-
lem with wu (wi,u = wu for 1 ≤ i ≤ n) in which
there is one machine with w1 = 1 and a second one
with w2 = K, where K is arbitrary large. If the applica-
tion consists in two tasks of same type with no failures,
then the optimal throughput can be obtained by map-
ping both tasks onto machine 1, resulting in a period
of 1 + 1 = 2, while a one-to-one mapping must use
machine 2 and thus its period cannot be better than K,
which can be arbitrarily greater than 2.

5 Heuristics

As explained in Section 4.3, general mappings are not
realistic in the context of micro-factories, because of the
unaffordable reconfiguration costs. When the number m
of machines is greater than the number p of task types,
it is always possible to find a specialized mapping, since
each machine is able to process all the tasks of a same
type. The key point is thus to find m (or less) groups of
tasks of the same type to be assigned to the m machines
of the platform. The best solution may be a one-to-one

mapping (cases in which such mappings are optimal, see
Theorem 3).

As shown before, finding the optimal specialized
mapping is NP-hard (see Theorem 2). Thus, we present
in the following five heuristics that returns a mapping,
by grouping tasks of same type onto machines.
H1: Random heuristic — The m groups are made by

using a random assignment function. We randomly
choose p tasks, such that t(i) 6= t(j) for all chosen
tasks Ti and Tj , and we randomly assign them to p
machines of the platform. Then we can randomly
assign the rest of the tasks Ti either on a machine
which is free or already specialized to the same task
type t(i).

H2: Task group heuristic — p groups are made by as-
signing all the tasks of the same type to the same
group. While the number of groups is less than m,
the number of machines, the group which consists
in the larger number of tasks is divided into two
groups to balance the workload. Then, an assign-
ment of groups to machines is performed using the
one-to-one mapping algorithm.

H3: Binary search heuristic 1 — This heuristic per-
forms a binary search on the period, and aims at
finding a correct mapping with the smallest period
as possible. The minimum value used in the binary
search is 0, and the maximum value is the worst
time required to perform sequentially all the tasks
on a machine. Then we look for a greedy assign-
ment that optimizes the use of the potential of every
resource and respects the target period. We begin
by checking the type that asks the larger number of
processing tasks. The heuristic stops when a given
precision has been reached.

H4: Binary search heuristic 2 — This heuristic is based
on the same idea as the previous one. Now we sort
the machines with their wi,u in ascending order and
once again, we check the task types in the same
order as before.

H5: Binary search heuristic 3 — This heuristic is the
same as H4 except the fact that the machine are
sorted by their heterogeneity level in descending
order when considering the assignment phase.

The next section presents experimental results that
compare these heuristics.
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6 Experiments

In this section, we compare together the 5 heuris-
tics that give sub-optimal solutions to the specialized
mapping problem with wi,u. The performance of each
heuristic is measured by its period in ms (see Sec-
tion 3.1).

Recall that m is the number of machines, p the num-
ber of types, and n the number of tasks. Each point in
the figures is an average value of 50 simulations where
the wi,u are randomly chosen between 100 and 1000 ms,
for 1 ≤ i ≤ n and 1 ≤ u ≤ m. Similarly, failure
rates fi (1 ≤ i ≤ n) are randomly chosen between 0.5
and 2 % (i.e., 1/200 and 1/50). To analyze the impact of
the platform heterogeneity ratio, the same experiments
have been run with a smaller duration interval (100 to
200 ms) in order to simulate less heterogeneous plat-
forms; however results are very similar, except the scale
(see Figures 9, 10, 11, 21, 22 and 23).

In the first set of experiments, m and p are fixed, and
we plot the period for each heuristic as a function of
the number of tasks n. Figures 12, 13 and 14 show that
the random heuristic H1 returns very large periods, com-
pared to the 4 other heuristics. This remains true for all
experiments: H1 shows very poor performance. Thus
H1 is removed from the curves for readability.

Figures 7, 8, 16, 17, 20 and 28 show that the perfor-
mance of H2 is very similar to that of H4 and H5 when
the difference between the number of machines and the
number of types is small. Indeed, H2 tries to use all
the machines and thus it splits the groups until it has as
many groups as machines. For instance, in the experi-
ment of Figure 17, the way the groups are split does not
influence the performance so much because only 2 extra
groups will be created (20 machines for 18 types). H3
is clearly the best heuristic in such a case. On the con-
trary, when the number of machines m is much greater
than the number of types p, the performance of H2 de-
creases, as we can see in Figures 6, 15, 18, 19, 24, 25,
26 and 27, In these experiments, H3 is always returning
the best period; H4 is sometimes having a result close to
that of H3, and H5 is always slightly less good.

In the last experiment (Figure 29), we fix m = n =
100, and we plot the period as a function of the number
of types p. Moreover, we randomly chose values wi,u

such that the duration of a task is machine-independent
(wi,u = wi,u′ for 1 ≤ u, u′ ≤ m). In this case, we know
that there is an optimal one-to-one mapping (see Theo-
rem 3) and we are able to compute it (see Theorem 1).
Thus we are able to assess the absolute performance of
the heuristics by computing the optimal period, obtained

with a one-to-one mapping (Hungarian algorithm). The
results show that H3 and H4 return a mapping whose
period is very close to the optimal, which is a very good
result. Indeed, we expect this behaviour to be similar in
a more heterogeneous context, thus assessing the perfor-
mance of our heuristics. H5 is always returning greater
period, thus showing that faster machines must be con-
sidered first to find a good mapping (recall that H5 sorts
machines in decreasing order of wi,u).

7 Conclusion

In this paper, we have investigated a throughput opti-
mization problem in the context of micro-factories sub-
ject to failures. The problem consists in assigning tasks
to machines, either performing a one-to-one mapping
(one task per machine), or a specialized mapping (sev-
eral tasks of the same type per machine), or a general
mapping. On the theoretical side, we proved that the op-
timal one-to-one mapping can be found in polynomial
time, while the problem becomes NP-hard for special-
ized and general mappings. Since general mappings are
not usable in practice because of reconfiguration costs,
we focused on specialized mappings and proposed sev-
eral polynomial heuristics to solve the problem. Exper-
imental results suggest that some heuristics return map-
pings with a throughput close to the optimal, and the
sophisticated heuristics return results much better than a
random mapping.

As future work, we plan to investigate other map-
ping rules, as for instance the mapping of one task onto
several machines. In such a case, different instances of
the task would be handled by different machines. This
would allow to obtain a better throughput when a task
is time consuming (bottleneck). Also, it would be in-
teresting to consider a failure model in which the fail-
ure rate is also machine-dependent (rates fi,u depending
on both the task Ti and the machine Mu on which the
task is mapped). Finally, other objective functions could
be considered, as for instance the total time required to
obtain a given number of products, or the average time
needed to output one product.
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Figure 6: m = 10, p = 2.
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Figure 7: m = 10, p = 5.
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Figure 8: m = 10, p = 8.
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Figure 9: m = 10, p = 2. 100 < wi,u < 200.
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Figure 10: m = 10, p = 5. 100 < wi,u < 200.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 5500

 20  30  40  50  60  70  80  90  100

p
er

io
d

 i
n

 m
s

number of tasks

H5
H4
H3
H2

Figure 11: m = 10, p = 8. 100 < wi,u < 200.
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Figure 12: m = 10, p = 5.
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Figure 13: m = 50, p = 25.
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Figure 14: m = 50, p = 45.
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Figure 15: m = 20, p = 5.
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Figure 16: m = 20, p = 10.
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Figure 17: m = 20, p = 18.
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Figure 18: m = 50, p = 5.
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Figure 19: m = 50, p = 25.
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Figure 20: m = 50, p = 45.
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Figure 21: m = 50, p = 5. 100 < wi,u < 200.
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Figure 22: m = 50, p = 25. 100 < wi,u < 200.

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 20000

 60  70  80  90  100  110  120  130  140  150

p
er

io
d

 i
n

 m
s

number of tasks

H5
H4
H3
H2

Figure 23: m = 50, p = 45. 100 < wi,u < 200.

12



 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 110  120  130  140  150  160  170  180  190  200

p
er

io
d

 i
n

 m
s

number of tasks

H5
H4
H3
H2

Figure 24: m = 100, p = 5.
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Figure 25: m = 100, p = 25.
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Figure 26: m = 100, p = 50.
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Figure 27: m = 100, p = 75.
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Figure 28: m = 100, p = 90.
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Figure 29: m = n = 100, with wi,u = wi,u′ .
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