
Reliability and performance optimization of pipelined real-time systems

Anne Benoit, Fanny Dufossé, Alain Girault, and Yves Robert
ENS Lyon and INRIA Grenoble Rĥone-Alpes, France

{Firstname.Lastname}@inria.fr

Research Report LIP-2009-35

December 2009

Abstract:
We consider pipelined real-time systems, commonly found inassembly lines, consisting of a chain of tasks executing on
a distributed platform. Their processing is pipelined: each processor executes only one interval of consecutive tasks. We
are therefore interested in minimizing both the input-output latency and the period. For dependability reasons, we arealso
interested in maximizing the reliability of the system. We therefore assign several processors to each task, so as to increase
the reliability of the system. We assume that both processors and communication links are unreliable and subject to transient
failures, the arrival of which follows a constant parameterPoisson law. We also assume that the failures are statistically
independent events. We study several variants of this multiprocessor mapping problem with several hypotheses on the target
platform (homogeneous/heterogeneous speeds and/or failure rates). We provide NP-hardness complexity results, and optimal
mapping algorithms for polynomial problem instances.

Keywords:
Pipelined real-time systems, interval mapping, multi-criteria (reliability, latency, period) optimization, complexity results,
dynamic programming algorithm.

1



Reliability and performance optimization of pipelined real-time systems∗

Anne Benoit, Fanny Dufossé, Alain Girault, and Yves Robert
ENS Lyon and INRIA Grenoble Rhône-Alpes, France

{Firstname.Lastname}@inria.fr

Abstract

We consider pipelined real-time systems, commonly
found in assembly lines, consisting of a chain of tasks
executing on a distributed platform. Their processing is
pipelined: each processor executes only one interval of con-
secutive tasks. We are therefore interested in minimizing
both the input-output latency and the period. For depend-
ability reasons, we are also interested in maximizing the re-
liability of the system. We therefore assign several proces-
sors to each task, so as to increase the reliability of the sys-
tem. We assume that both processors and communication
links are unreliable and subject to transient failures, thear-
rival of which follows a constant parameter Poisson law.
We also assume that the failures are statistically indepen-
dent events. We study several variants of this multiproces-
sor mapping problem with several hypotheses on the target
platform (homogeneous/heterogeneous speeds and/or fail-
ure rates). We provide NP-hardness complexity results,
and optimal mapping algorithms for polynomial problem
instances.

Keywords: Pipelined real-time systems, interval map-
ping, multi-criteria (reliability, latency, period) optimiza-
tion, complexity results, dynamic programming algorithm.

1 Introduction

Pipelined real-time systemsare commonly found in as-
sembly lines and are subject to strictdependabilityandreal-
time constraints. They consist of a chain of tasks executing
on a distributed platform. Each task is a block of code with a
known amount of work to be processed. The role of the first
task of the chain is to acquire some data set from the envi-
ronment (thanks to sensor drivers), to process it, and finally
to transmit its result to the second task. Each subsequent
task receives its input data from its immediately preceding
task, processes it, and transmits its result to its immediately
successor task, except the last task that transmits it to the
environment (thanks to actuator drivers).

Tasks are assigned to processors of the platform using
an interval mapping, which groups consecutive tasks of the

∗Anne Benoit and Yves Robert are with the Institut Universitaire de
France. This work was supported in part by the ANR StochaGridproject
and by a Marie-Curie International Outgoing Fellowship within the 7th

European Community Framework Programme.

linear chain and assigns them to the same processor. Inter-
val mappings are more general than one-to-one mappings,
which establish a unique correspondence between tasks and
processors; they are very useful for reducing communica-
tion overheads, not to mention the many situations where
there are more tasks than processors and where interval
mappings are mandatory. The key performance-oriented
metrics to determine the best interval mapping are thepe-
riod and thelatency. The period is the time interval re-
quired between the beginning of the execution of two con-
secutive data sets. Equivalently, the inverse of the period
is the throughput that measures the aggregate rate of pro-
cessing of data. The latency is the time elapsed between the
beginning and the end of the execution of a given data set,
hence it measures the response time of the system to process
the data set entirely. Minimizing the latency isantagonis-
tic to minimizing the period, and tradeoffs should be found
between these criteria.

Besides real-time constraints, expressed as an upper
bound on the period and/or the latency, pipelined real-time
systems must also satisfy crucialdependability constraints,
which are expressed as a lower bound on thereliability of
the mapping. Increasing the reliability is achieved by repli-
cating the intervals on several processors. Increasing the
replication level is therefore good for the reliability, but bad
for the period and latency. We thus have three antagonistic
criteria, the reliability, the period, and the latency.

We evaluate the reliability of a single task mapped onto
a processor according to the classical model of Shatz and
Wang [21], where each hardware component (processor or
communication link) is fail-silent and is characterized bya
constant failure rate per time unitλ: the reliability of a task
of durationd is thereforee−λd. For an interval of several
tasks mapped onto a single processor, we just have to sum
up the task durations, hence obtaininge−λD, whereD is the
sum of the task durations. For a mapping with replication,
we compute the reliability by building theReliability Block
Diagram (RBD) corresponding to this mapping. Here we
face the delicate issue that computing the reliability is ex-
ponential in the size of the mapping (or equivalently the size
of the RBD). To solve this issue, we insertrouting opera-
tions in the mapping to guarantee that the RBD is by con-
struction serial-parallel, therefore allowing us to compute
its reliability in linear time.

2



We first present the models in Section 2, and then discuss
related work in Section 3. The core of our contribution is
presented in Sections 4, 5, and 6. Finally, we conclude in
Section 7.

2 Framework

In this section, we detail the application model, the plat-
form model, the failure model, and the replication model.
We end with the formal definition of the mono- or multi-
criteria multiprocessor mapping problem.

2.1 Application model

An application is achainof n tasksC = (τi)1≤i≤n. Each
task τi is a block of code that receives its input from its
predecessorτi−1, computes a known amount of work, and
produces an output data set of a known size. Therefore,
each taskτi is represented by the pair(wi, oi), wherewi

is the amount of work andoi is the output data size. By
convention,on = 0 becauseτn emits its result directly to
the environment through actuator drivers. Specifying the
size of the input data set required by a task is not necessary
since, by definition of a chain, it is equal to the size of the
output data set of its immediately preceding task. Figure 1
shows an example of a chain composed ofn tasks.

τ1
o1 o2

τ2 τn
on−1

Figure 1. Example of a chain of n tasks.

Executingτi on a processor of speeds takeswi/s units
of time. Transmitting the result ofτi on a link of bandwidth
b takesoi/b units of time. Knowing the valueswi andoi
is not a critical assumption since worst-case execution time
(WCET) analysis has been applied with success to real-life
processors actually used in embedded systems. In partic-
ular, it has been applied to the most critical existing em-
bedded system, namely the Airbus A380 avionics software
running on the Motorola MPC755 processor [9, 22].

2.2 Platform model

The target platform consists ofp processors connected
by point-to-point communication links. We noteP the set
of processors:P = (Pu)1≤u≤p. We assume that commu-
nication links arehomogeneous: this means that all links
have the same bandwidthb. On the contrary, each pro-
cessorPu may have a different speedsu. Such platforms
correspond to networks of workstations with plain TCP/IP
interconnects or other LANs.

In order to derive a realistic communication model, we
assume that the number of outgoing point-to-point connec-
tions of each processor is limited toK. A given processor
is thus capable of simultaneously sending messages to (and
receiving messages from)K other processors. Indeed, there
is no physical device capable of sending, say,100 messages
to 100 distinct processors, at the same speed as if it was
a single message. The output bandwidth of the sender’s
network card would be a limiting factor. Our assumption
of bounded multi-port communications [14] is reasonable
for a large range of platforms, from large-scale clusters to
multi-core System-on-Chips (SoCs).

In addition, we assume that communications areover-
lappedwith computations, that is, a processor can compute
the current instance of taskτi and, in parallel, send to an-
other processor the result of the previous instance ofτi.
This model is consistent with current processor architec-
tures where a SoC can include a processor and several com-
munication co-processors.

2.3 Interval mapping

The chain of tasks is executed repeatedly in apipelined
mannerto achieve a better throughput. As a consequence,
mapping the chain on the platform involves dividing the
chain intom intervals of consecutive tasks, and assign-
ing each processor to a unique interval. This technique is
known asinterval mapping. Figure 2 shows an example of
a division of a chain of tasks intom intervals.

21 5 76 13 3534 42

I1 I2
o5 o13

Im
o33

Figure 2. A chain of tasks divided into m in-
tervals.

In a mapping without replication, each interval is as-
signed to a single processor, while in a mapping with
replication, each interval is assigned to several processors.
Replication is crucial to increase the reliability of the sys-
tem [10]. If the number of processors is greater than the
number of tasks, then each interval can be of size one (that
is, one task per interval), but this is rarely the case for real-
life systems. Also, having many small intervals is likely
to decrease the period but will also increase the communi-
cation costs and hence decrease the total reliability: thusa
trade-off is to be found.

For each1 ≤ j ≤ m, the intervalIj is the set of consec-
utive tasks between indicesfj and lj . Moreover,f1 = 1,
∀2 ≤ j ≤ m, fj = lj−1 + 1, andlm = n. The amount

3



of work processed byIj is thereforeWj =
∑

τi∈Ij
wi =

∑lj
i=fj

wi. The size of the output data set produced by in-
tervalIj is that of its last task, that is,olj .

2.4 Failure model

Both processors and communication links can fail, and
they arefail-silent. Classically, we adopt the failure model
of Shatz and Wang [21]: failures aretransientand the max-
imal duration of a failure is such that it affects only the cur-
rent operation executing onto the faulty processor, and not
the subsequent operations (same for communication links);
this is the “hot” failure model. Besides, the occurrence of
failures on a processor (same for a communication link) fol-
lows a Poisson law with a constant parameterλ, called its
failure rate per time unit. Modern fail-silent hardware com-
ponents can have a failure rate around10−6 per hour.

Since communication links are homogeneous, we note
λℓ their identical failure rate per time unit. Concerning the
processors, we noteλu the failure rate per time unit of the
processorPu, for eachPu in P .

Moreover, failure occurrences arestatistically indepen-
dent events. Note that transient failures are the most com-
mon failures in modern embedded systems, all the more
when processor voltage is lowered to reduce the energy con-
sumption, because even very low energy particles are likely
to create a critical charge leading to a transient failure [25].

Thereliability of a system measures its continuity of ser-
vice. It is defined as the probability that it functions cor-
rectly during a given time interval [2]. According to our
model, the reliability of the processorP (resp. the commu-
nication linkL) during the durationd is r = e−λd, where
λ is the failure rate per time unit ofP or L. Conversely,
theprobability of failureof the processorP (resp. the com-
munication linkL) during the durationd is f = 1 − r =
1 − e−λd. Hence, the reliability of the taskτi on proces-
sorPu is:

ru,i = e−λu wi / su (1)

Accordingly, the reliability of the intervalI mapped on the
processorPu is:

ru,I = e−λu Wj / su =
∏

τi∈I

ru,i (2)

Equations (1) and (2) show that platform heterogeneity
may come from two factors: (i) processors having differ-
ent speeds, and (ii) processors having different failure rates.
We say that the platform ishomogeneousif processors have
same speeds and same failure rates (hence the reliability and
the execution time of an interval no longer depends on the
processor it is assigned to) and we say that the platform is
heterogeneousotherwise.

2.5 Replication model

We usespatial redundancyto increase the reliability of
a system: in other words, we replicate the intervals on sev-
eral processors. Figure 3 shows an example of mapping by
interval with spatial redundancy: the intervalI1 is mapped
on the processors{P1, P2, P3}, the intervalI2 is mapped
on the processors{P4, P5}, and so on until the interval
Im mapped on the processors{Pt−1, Pt}. Concerning the
communications, the data-dependencyol1 is mapped on the
point-to-point links{L14, L15, L24, L25, L34, L35}, and so
on.

Pp−1

I1
ol1 ol2

I2 Im
olm−1

P1

P2

P3

P4

P5 Pp

Figure 3. An example of interval mapping.

To increase the reliability,eachprocessor of a given in-
terval communicates witheachprocessor of the next inter-
val. Specifically, for any1 ≤ j ≤ m − 1, all the proces-
sors executing intervalIj send their result to all processors
executing the next intervalIj+1. Because of the bounded
numberK of possible communications (see Section 2.2),
the maximum number of replicas per interval is also limited
toK.

2.6 Multiprocessor mapping problem

We study several variants of the multiprocessor interval
mapping problem. The inputs of the problem are a chain of
n tasksC = (τi)1≤i≤n, a hardware platform ofp processors
P = (Pu)1≤u≤p, and a boundK on the maximal number
of replications for each interval of tasks. The output is an
interval mapping ofC ontoP , that is, a distribution ofC into
m intervals and an assignment of each interval to at mostK
processors ofP , such that each processor executes only one
interval. Each variant of the mapping problem optimizes a
different set of criteria among the following ones:

• the reliability,

• the expected input-output latency,

• the worst-case input-output latency,

• the expected period,

• the worst-case period.

4



Our contribution is multifold. In Section 4, we show how
to compute the different objectives (reliability, expected and
worst-case latency, and expected and worst-case period) for
a given multiprocessor mapping. Then, for homogeneous
platforms, we prove that:

1. computing a mono-criterion mapping that optimizes
the reliability ispolynomial(Section 5.1);

2. optimizing both the reliability and the period remains
polynomial(Section 5.2);

3. the problem of optimizing both the reliability and the
latency isNP-complete(Section 5.3).

For heterogeneous platforms, we prove that optimizing the
reliability only is NP-complete, and hence all the multi-
criteria mapping problems that include the reliability in
their criteria are alsoNP-complete(Section 6). Finally, we
state some concluding remarks in Section 7.

3 Related work

Several papers have dealt with workflow applications
whose dependence graph is a linear chain. The pioneering
papers [23, 24] investigate bi-criteria (period, latency)op-
timization of such workflows on homogeneous platforms.
An extension of these results to heterogeneous platforms is
provided in [5, 6].

All the previous papers deal with fully reliable platforms.
In our previous work [4], we have studied the (reliability,
latency) mapping problem with fail-silent processors. The
model in [4] is quite different, and much more crude, than
the one of this paper: each processor has an absolute proba-
bility of failing, independent of task durations, and the faults
are unrecoverable. To the best of our knowledge, we are not
aware of other published work on optimizing linear chain
workflows for reliability. However, many papers deal with
a single directed acyclic graph (DAG) instead of a pipelined
workflow, be it a fully general DAG [8], a linear chain [20],
or even independent tasks [15, 20]. The closest of the latter
papers is [20]: it contains a short section on linear chains,
with mono-criterion dynamic programming algorithm for
optimizing the reliability which is similar to Algorithm 1
(see Section 5.1).

Finally, the specific problem of bi-criteria (length, reli-
ability) multiprocessor scheduling has also been addressed
in [7, 1, 13, 19, 11, 12] for general DAGs of operations, but
except [1, 11, 12], these papers do not replicate the opera-
tions and have thus a very limited impact on the reliability.
Moreover, none consider chains of tasks and interval map-
pings, and therefore they attempt to minimize the length
of the mapping without distinguishing between the period
and the latency (the latter one being similar to the schedule
length).

4 Evaluation of a given mapping

In this section, we detail the computation of the different
objectives (reliability, expected and worst-case latency, and
expected and worst-case period) for a given mapping. We
compute the reliability of a mapping by building itsrelia-
bility block diagram(RBD) [18, 3]. Formally, a RBD is an
acyclic oriented graph(N,E), where each node ofN is a
block representing an element of the system, and each arc
of E is a causality linkbetween two blocks. Two particu-
lar connection points are itssourceS and itsdestinationD.
An RBD is operationalif and only if there exists at least
one operational path fromS to D. A path is operational if
and only if all the blocks in this path are operational. The
probability that a block be operational is its reliability.By
construction, the probability that a RBD is operational is
equal to the reliability of the system that it represents.

In our case, the system is the multiprocessor interval
mapping, possibly partial, of the application on the plat-
form. A mapping ispartial if not all intervals have been
mapped yet, but of course those intervals that are mapped
are such that all their predecessors are also mapped. Each
block represents an intervalIj placed onto a processorPu

or a data-dependencyolj between the two intervalsIj and
Ij+1 placed onto a communication link. The reliability of a
block is therefore computed according to Equation (2).

Computing the reliability in this way assumes that the
occurrences of the failures are statistically independent
events (see Section 2.4). Without this hypothesis, the fact
that some blocks belong to several paths fromS toD makes
the computation of the reliability very complex. Concern-
ing hardware faults, this hypothesis is reasonable, but this
would not be the case for software faults [17].

The main drawback of the approach is that the computa-
tion of the reliability is, in general, exponential in the size
of the RBD. When the schedule is without replication, the
RBD is serial (i.e., there is a single path fromS to D) so
the computation of the reliability is linear in the size of the
RBD. But when the schedule is with replications, the RBD
has no particular form, so the computation of the reliability
is exponential in the size of the RBD. The reason is that pro-
cessors are heterogeneous: the completion dates of a given
interval on its assigned processors are different, so the re-
ception dates by the processors of the next interval are dif-
ferent. This is true even when the application is a chain of
intervals rather than a general graph. See Figure 4 for an
illustration, where the RBD corresponding to the mapping
has no specific form.

One solution to compute the reliability of the mapping of
Figure 4 involves enumerating all theminimal cut setsof its
RBD [16]. A cut setin a RBD is a set of blocksC such that
there is no path fromS to D if we remove all the blocks
of C from the RBD. A cutC is minimal if, whatever the

5



block that is removed from it, the resulting set is not a cut
anymore. It follows that the reliability of a minimal cut set
is the reliability of all its blocks put in parallel. The reliabil-
ity of the mapping can then be approximated by the reliabil-
ity of the alternative RBD composed of all the minimal cut
sets put in sequence. Because this RBD isserial-parallel,
this computation is linear in the number of minimal cut sets.
The problem is that, in general, the number of minimal cuts
is exponential in the size of the mapping.

I1/P1

I1/P2

S

I2/P3

I2/P4

D

ol1/L13

ol1/L14

ol1/L24

ol1/L23

I1

ol1
I2

P1

P2

P3

P4

Figure 4. A mapping of two intervals on four
processors and its unspecified RBD.

For this reason, we follow the approach of [11] and
we insertrouting operationsbetween the intervals to make
sure that the RBD representing a mapping is alwaysserial-
parallel, therefore making tractable the computation of the
reliability. This is illustrated in Figure 5, where a routing
operationR has been mapped on processorP5 and the RBD
corresponding to the mapping is serial-parallel; as a conse-
quence, the reliability of this mapping can be computed in
a linear time w.r.t. the number of intervals.

DR/P5

I1/P1

I1/P2

S

I2/P3

I2/P4ol1/L25

ol1/L15

ol1/L54

ol1/L53

Figure 5. The serial-parallel RBD obtained
from the same mapping as in Figure 4 but
with an additional routing operation R.

Routing operations can be mapped onanyprocessor. For
instance, in the mapping of Figure 5,R could have been
mapped onP1 instead ofP5, therefore avoiding the need
for the communication(ol1/L15). Also, routing operations
are assumed to be executed in0 time units [11], hence for
any processorPu, the reliability of the block(R/Pu) is 1.

As we have advocated, inserting routing operations
yields the huge advantage of making the reliability compu-
tation linear in time. This comes at a cost in the execution
time of the system because of the increased number of com-
munications. However, it has been shown in [11] that the
overhead incurred by the routing operations is reasonable
(only+3.88% on average).

For an intervalI of weightW mapped on the subset of
processorsPI , let ec be its expected time of computation,
and letwc be its WCET (by the slowest processor ofPI ).
Assume that the processors inPI are ordered according to
their speed, from the fastestP1 to the slowestPt: that is,
∀1 ≤ u < t, we havesu ≥ su+1. Then, the expected and
worst-case execution times ofI onPI are:

ec(I,PI) = W×

∑t
u=1

(

1
su

ru,I
∏u−1

v=1 (1− rv,I)
)

1−
∏t

u=1(1− ru,I)
(3)

wc(I,PI) =
W

st
(4)

Equation (3) sums up, for eachPu, the case where the first
u− 1 fastest processors fail, and theu-th one is successful.
Then, for a mapping(I1,P1), . . . , (Im,Pm), the expected
latencyEL and the expected periodEP are:

EL =
m
∑

i=1

ec(Ii,Pi) + oi (5)

EP = max{ max
1≤i≤m

{oi}, max
1≤i≤m

(ec(Ii,Pi)} (6)

The worst-case latencyWL and the worst-case period
WP are defined similarly, but with the worst-case cost of
intervals (Equation (4)) instead of the expected cost (Equa-
tion (3)):

WL =

m
∑

i=1

wc(Ii,Pi) + oi (7)

WP = max{ max
1≤i≤m

{oi} max
1≤i≤m

(wc(Ii,Pi)} (8)

Finally, thanks to the routing operations, the reliability
of the mapping(I1,P1), . . . , (Im,Pm) is:

r =
t
∏

i=1

(

1−
∏

Pu∈Pi

(1−rcomm,i−1×ru,Ii×rcomm,i)

)

(9)

Equation (9) above is computed according to the generic
form of the RBD of Figure 5. To account for the fact that

6



the first intervalI1 has no incoming communication, we just
seto0 = 0, hencercomm,0 = 1. The same occurs for the
outgoing communication of the last intervalIm. Finally,
routing operations do not appear in Equation (9) since their
reliability is always equal to1.

5 Complexity results for homogeneous plat-
forms

In this section, we provide optimal polynomial algo-
rithms for the mono-criterion reliability optimization prob-
lem, and then for the bi-criteria (reliability, period) opti-
mization problem. Finally, we prove the NP-completeness
of the bi-criteria (reliability, latency) optimization problem.
Note that on homogeneous platforms, the expected latency
and worst-case latency are the same. This also holds true
for the expected period and worst-case period.

5.1 Reliability optimization

We present a mono-criterion polynomial-time algorithm
that maximizes the reliability of a given chain of tasks on
a given homogeneous platform. Algorithm 1 is a dynamic
programming algorithm. It is a simplified version of Al-
gorithm 2 for bi-criteria (reliability, period) optimization,
which we present in the next section.

Data: a numberp of fully homogeneous processors of
failure rateλ, a listA of n tasks of sizeswi, and
a maximal numberK of replications

Result: a reliabilityr
for k = 1 to min{K, p} do1

F (1, k) = 1− (1− rcomm,0×r1×rcomm,1)
k;2

end3

F (0, 0) = 1;4

for i = 1 to n do5

F (i, 0) = 0;6

end7

for i = 2 to n do8

for k = i to p do9

F (i, k) =10

max1≤j<i,1≤q≤min{K,k}

{

F (j, k−q)×
(

1−
(

1−rcomm,j−1×
∏

j≤l≤i rl×rcomm,i

)q)}

;

end11

end12

r = max1≤q≤p F (n, q);13

Algorithm 1: Optimal algorithm for reliability optimiza-
tion on fully homogeneous platforms.

Theorem 1. Algorithm 1 computes in timeO(n2p2) the op-
timal mapping for reliability optimization on fully homoge-
neous platforms.

Proof. In this algorithm,F (i, k) is the optimal reliability
when mapping the firsti tasks onk processors, and it is
computed iteratively with the dynamic programming pro-
cedure.

5.2 Reliability/period optimization

We now present a bi-criteria (reliability, period)
polynomial-time algorithm that optimizes the reliabilityof
a mapping given a bound on the period. Recall that, for
homogeneous platforms, the worst-case period and the ex-
pected period are the same.

Data: a numberp of fully homogeneous processors of
failure rateλ, a listA of n tasks of sizeswi, a
maximal numberK of replications, and an
upper-boundP on the period

Result: a reliabilityr
for k = 1 to min{K, p} do1

if max{o0, w1, o1} ≤ P then2

F (1, k) =
(

1−(1−rcomm,0×r1×rcomm,1)
k
)

;3

else4

F (1, k) = 0;5

end6

end7

for i = 1 to n do8

F (i, 0) = 0;9

end10

for i=2 to n do11

for k=i to p do12

F (i, k) =13

max1≤j<i,1≤q≤min{K,k}

{

F (j, k−q)×
(

1−
(

1−rcomm,j×
∏

j<l≤i rl×rcomm,i

)q)

∣

∣

∣
max{oj ,

∑i
v=j+1 wv, oi} ≤ P

}

;

end14

end15

r = max1≤q≤p F (n, q);16

Algorithm 2: Optimal algorithm for reliability optimiza-
tion on fully homogeneous platforms, when a bound on
the period is given.

Theorem 2. Algorithm 2 computes in timeO(n2p2) the op-
timal mapping for reliability optimization on fully homoge-
neous platforms, when a bound on the period is given.

Proof. In this algorithm,F (i, k) is the optimal reliability of
a mapping ofp processors on thei first tasks. The dynamic
programming procedure of Algorithm 1 has been modified
to account for the period bound.

7



Finally, we observe that the converse problem, namely
optimizing the period when a bound on the reliability is en-
forced, is polynomial too (use a binary search on the period
and repeatedly execute Algorithm 2 until the optimal value
is found).

5.3 Reliability/latency optimization

We now prove the NP-completeness of the bi-criteria (re-
liability, latency) optimization problem on homogeneous
platforms. As for the period, there is no difference be-
tween the worst-case latency and the expected latency on
such platforms.

Theorem 3. The problem of optimizing the reliability on
homogeneous platforms, with a bound on the latency, is NP-
complete.

Proof. Consider the associated decision problem: given an
homogeneous platform, a chain of tasks, a boundK on the
number of replications, a reliabilityr and a latencyL, does
there exist a mapping of reliability at leastr and latency
not exceedingL? This problem is obviously in NP: given
a mapping, it is easy to compute its reliability and latency,
and to check that it is valid in polynomial time.

To establish the completeness, we use a reduction from
2-PARTITION: given a setA of n numbersa1, . . . , an, does
there exist a subsetA′ ⊂ A such that

∑

a∈A′ a =
∑

a/∈A′ a.
Let T = 1

2

∑

a∈A a. Let amin = min1≤i≤n{ai} and
amax = max1≤i≤n{ai}. We build the following instance
of our problem with3n + 1 tasks and6n identical proces-
sors:

• K = 2 andλ = 10−810−na−3n
max;

• s = b = 1 (unit processor speed and link bandwidth);

• B = 1
2amin

(

n
4 + na2max + T + 2

)

;

• ∀1 ≤ i ≤ n, w3i−2 = B, w3i−1 = 1
2 andw3i = ai;

• w3n+1 = B;

• ∀1 ≤ i ≤ n, ri = e−λwi andrcomm,i = 1;

• ∀1 ≤ i ≤ n, o3i−2 = 0, o3i−1 = ai ando3i = 0;

• L = (n+ 1)B + n
2 + 3T ;

• it follows that the reliability of the mapping isr =
(1 − (1 − e−λB)2)n+1

×(1 − λ2(n4 +
∑

1≤i≤n a
2
i +

T )− λ4
×22n(amax + 1)n).

The size of instanceI2 is polynomial in the size ofI1. We
now show thatI1 has a solution if and only ifI2 has a so-
lution. Suppose first thatI1 has a solutionA′. Then we
propose the following solution forI2:

• all intervals are replicated2 times;

• any task of sizeB make up an interval;

• for all 1 ≤ i ≤ n, if ai ∈ A′, thenT3i−1 andT3i are
assigned to two different intervals, else they constitute
one single interval.

This yields the following costs for the latency:

• the sum of computation costs does not depend of the
mapping:(n+ 1)B + n

2 + 2T ;

• for eachai ∈ A′, we add a communication costai.

We thus obtain a latencyL = (n + 1)B + n
2 + 3T . Con-

cerning the reliability, it is the product of the reliability of
all intervals:

• the reliability of intervals of sizeB is (1−(1−e−λB)2);

• for each ai ∈ A′, the product of the reliability
of the two intervals for tasksT3i−1 and T3i−1 is
(1−(1−e−

λ
2 )2)(1−(1−e−λai)2), which is greater

than(1− λ2

4 )(1−λ2a2i );

• for eachai /∈ A′, the reliability of the interval for
tasksT3i−1 andT3i−1 is (1−(1−e−λ(ai+

1
2
))2), which

is greater than1−λ2(ai+
1
2 )

2.

We thus obtain, for the product of all these reliabilities,

r′ = (1− (1− e−λB)2)n ×
∏

ai∈A′(1− (1− e−
λ
2 )2)(1 − (1− e−λai)2) ×

∏

a−i/∈A′

(

1−
(

1− e−λ(ai+
1
2 )
)2
)

≥ (1− (1− e−λB)2)n ×
∏

ai∈A′(1− λ2

4 )(1− λ2a2i ) ×
∏

a−i/∈A′(1− λ2(ai +
1
2 )

2)

≥ (1− (1− e−λB)2)n ×
(

1−λ2
(

n
4 +
∑

1≤i≤n a2i+T
)

−λ422n(amax+1)n
)

Suppose now thatI2 has a solution. The exponent in the
reliability bound implies that any interval is replicated at
least2 times, and the bound on replication is2. This means
that all intervals are replicated exactly2 times. Suppose
that one of the tasks of sizeB is computed together with
another task in the same interval. This yields the bound on
reliability:

r′ < (1 − (1− e−λB)2)n(1− (1− e−λ(B+amin))2)

< (1 − (1− e−λB)2)n+1
×

1−λ2(B+amin)
2

1−λ2B2(1−λB
2

)2

< (1 − (1− e−λB)2)n+1(1− λ2(B + amin)
2)

(1 + λ2B2(1− λB
2 )2 + 2λ4B4(1− λB

2 )4)

< (1 − (1− e−λB)2)n+1
×(1− 2λ2Bamin + 7λ4B4)

< r

8



This means that any task of sizeB makes up an interval.
LetA′ be the set of valuesi such thatT3i−1 andT3i are not
in the same interval. We obtain the following formulas:

• For the reliability:

r ≤ (1 − (1− e−λB)2)n ×
∏

ai∈A′(1 − (1− e−
λ
2 )2)(1− (1 − e−λai)2) ×

∏

ai /∈A′

(

1−
(

1− e−λ(ai+
1
2 )
)2
)

≤ (1 − (1− e−λB)2)n ×
∏

ai∈A′(1 − λ2

4 (1 − λ
4 )

2)(1 − λ2a2i (1− λai)
2

×
∏

ai /∈A′(1 − (λ2 + λ2

4 + λ2ai)(1 −
λ
2 (ai +

1
2 ))

2)

≤ 1− λ2(n4 +
∑

1≤i≤n a2i +
∑

ai /∈A′ ai) + λ310na3nmax

• For the latency:

(n+1)B+
n

2
+
∑

ai∈A′

ai+2T ≤ (n+1)B+
n

2
+3T

This means
∑

ai /∈A′ ai ≤ T and
∑

ai∈A′ ai ≤ T . Hence,
A′ is a solution forI1. This concludes the proof.

We conclude that, on homogeneous platforms, the bi-
criteria (reliability, period) problem is polynomial, while
the bi-criteria problem (reliability, latency) is NP-complete.
As a consequence, the tri-criteria (reliability, period, la-
tency) problem is NP-complete too.

It is striking, and somewhat unexpected, that the bi-
criteria (reliability, period) problem is easier than the (reli-
ability, latency) one. The intuition for this difference isthe
following: when the period bound is given, we know once
and for all which processors are fast enough to be enrolled
for a given interval. Therefore, the mapping choices are lo-
cal. On the contrary, the computation of the latency remains
global, and its final value, including communication costs,
depends upon the choices that will be made further on.

6 Complexity results for heterogeneous plat-
forms

In this section, we prove the NP-completeness of the re-
liability optimization problem on heterogeneous platforms.

Theorem 4. The problem of optimizing the reliability on
heterogeneous platforms is NP-complete.

Proof. Consider the associated decision problem: given a
heterogeneous platform, a chain of tasks, a bound on the
numberK of replications, and a reliabilityr, does there
exist a mapping of reliability at leastr? This problem
is obviously in NP: given a reliability and a mapping, it

is easy to compute the reliability and to check that it is
valid in polynomial time. To establish the completeness, we
use a reduction from 3-PARTITION. Consider the follow-
ing general instanceI1 of 3-PARTITION: given3n num-
bersa1, . . . , a3n and a numberT such that

∑

1≤j≤3n aj =
nT , does there existn independent subsetsB1, . . . , Bn of
{a1, . . . , a3n} such that for all1 ≤ i ≤ n,

∑

aj∈Bi
aj = T?

Let amin = min1≤i≤3n i{ai}.

We build the following instanceI2 with n tasks and
p = 3n processors:

• λ = 10−8

nT 2 ;

• K = 3;

• γ = 1 + 1
2(T−1) ;

• ∀1 ≤ i ≤ n,wi = 1/n (all tasks have cost1/n);

• ru,i = e−λu
wi
su ;

• rcomm,i = 1;

• ∀1 ≤ u ≤ 3n, λu = λ ∗ γau andsu = 1;

• it follows that the reliability of the mapping isr =
(

1− λ3γT
)n

.

The size ofI2 is polynomial in the size ofI1. We show that
I1 has a solution if and only ifI2 has a solution.

Suppose first thatI1 has a solutionB1, . . . , Bn. We pro-
pose the following solution forI2:

• we have one interval per task;

• the i-th task is replicated three times and allocated to
the set of processors{Pu|u ∈ Bi}.

We obtain a reliability for taski which is equal to

(1−
∏

(1 − e−λγai
)) ≥ 1−

∏

(λγai) ≥ 1− λ3γT ,

hence a global reliabilityr ≥ (1− λ3γT )n.

Suppose now thatI2 has a solution. We first show that
the optimal mapping consists ofn intervals, one per task,
each replicated three times. Suppose that we know the
number of intervals in the optimal mapping. There are at
mostn intervals, and we have enough processors to dupli-
cate all of them three times, and this increases the relia-
bility. We conclude that all intervals will be replicated three
times. Suppose now that one of this intervals containst > 1
tasks. There are enough processors to split this interval into
t single-task intervals, each replicated3 times. Letr1 be the

9



reliability of the original interval witht tasks, andrt the re-
liability of the same tasks assigned tot intervals replicated
3 times. By hypothesis of optimality, we have:

r1 ≥ rt
⇒ e−λγt ≥ 1− (1− e−λγT

)t

⇒ λγt− 1
2 (λγt)

2 ≤ (λγT )t becauseλγT ≤ 1

⇒ λγ2− 1
2 (λγ2)

2 ≤ (λγ2)2 becauseγT−1 ≤ 2

⇒ λγ2 ≤ 3
2 (λγ2)

2

⇒ λγ2 ≥ 2
3

⇒ 4λ ≥ 2
3

However,λ ≤ 10−8, which contradicts the hypothesis. This
means that, in the optimal solution, any task constitutes an
interval.

Let, for all i, Bi = {aj, Ti mapped onPj}. We obtain
the following reliability:

r =
∏

1≤i≤n

(1−
∏

aj∈Bi

(1− e−λγai
)) ≥ (1− λ3γT )n.

Suppose that, for a valuei,
∑

aj∈Bi
aj 6= T . Then,

r ≤
∏

1≤i≤n(1 −
∏

aj∈Bi
(λγai − 1

2 (λγ
ai)2))

≤
∏

1≤i≤n(1 − λ3γ
∑

aj∈Bi
aj
∏

aj∈Bi
(1− 1

2λγ
ai))

≤
∏

1≤i≤n(1 − λ3γ
∑

aj∈Bi
aj (1− λ

2

∑

aj∈Bi
γaj ))

≤
∏

1≤i≤n(1 − λ3γ
∑

aj∈Bi
aj (1− 3λ

2 γT ))

≤
∏

1≤i≤n(1 − λ3γ
∑

aj∈Bi
aj + 3λ4

2 γ
T+

∑
aj∈Bi

aj )

≤
∏

1≤i≤n(1 − λ3γ
∑

aj∈Bi
aj )(1 +

3λ4

2
γ
T+

∑
aj∈Bi

aj

1−λ3γ

∑
aj∈Bi

aj
)

≤
∏

1≤i≤n(1 − λ3γ
∑

aj∈Bi
aj )(1 +

3λ4

2
γ4T

1−λ3γ3T )

≤ (1 +
3λ4

2
γ4T

1−λ3γ3T )
n
×
∏

1≤i≤n(1− λ3γ
∑

aj∈Bi
aj )

By hypothesis, we have
∑

aj∈Bi
aj 6= T for a valuei. Then

by convexity,

∏

1≤i≤n

(1− λ3γ
∑

aj∈Bi
aj ) ≤

(1− λ3γT )n−2
×(1− λ3γT−1)×(1− λ3γT+1)

By hypothesis, we have:

(1 − λ3γT )n ≤ r

≤ (1 +
3λ4

2
γ4T

1−λ3γ3T )
n(1 − λ3γT )n−2

(1 − λ3γT−1)(1 − λ3γT+1)

⇒ (1 − λ3γT )2 ≤ (1 +
3λ4

2
γ4T

1−λ3γ3T )
n

(1 − λ3γT−1)(1 − λ3γT+1)

≤ (1 +
3λ4

2
γ4T

1−λ3γ3T )
n

(

(1 − λ3γT )2 − λ3γT−1(γ − 1)2
)

⇒ (1 − λ3γT )2 ≥

(

(1 +
3λ4

2
γ4T

1−λ3γ3T )
n − 1

)−1

(1 +
3λ4

2
γ4T

1−λ3γ3T )
nλ3γT−1(γ − 1)2

≥
1+ 3λ4

4
nγ4T

3λ4

4
nγ4T

λ3γT−1(γ − 1)2

≥
1+ 3λ4

4
nγ4T

3λnγ3T+1(T−1)2

However,3λnγ3T+1(T − 1)2 ≤ 1 and1 + 3λ4

4 nγ4T ≥ 1.
This contradicts the hypothesis. Then, if{B1, . . . , Bn} cor-
responds to a solution ofI2, we have

∑

aj∈Bi
aj = T for

1 ≤ i ≤ n. This shows thatB1, . . . , Bn is a solution forI1,
which concludes the proof.

Because mono-criterion reliability optimization is al-
ready NP-complete, all multi-criteria problems with period
or latency or both, are also NP-complete on heterogeneous
platforms.

7 Conclusion

We have addressed problems related to the mapping of
linear chain workflows on homogeneous and heterogeneous
distributed platforms. The main goal was to optimize the
reliability of the mapping through task replication, while
enforcing bounds on performance-oriented criteria (period
and latency). We have been able to derive a comprehensive
set of NP-hardness complexity results, together with opti-
mal algorithms for polynomial instances. Altogether, these
results provide a solid theoretical foundation for the study of
multi-criteria mappings of linear chain workflows. Another
contribution of this paper is the introduction of a realistic
communication model that nicely accounts for the inherent
physical limitations on the communication capabilities of
state-of-the-art processors.

Communication failures have been incorporated in the
model through routing operations, which guarantee that
evaluating the system reliability remains computationally
tractable. An interesting research direction would be to in-
vestigate whether it is feasible to remove this routing proce-
dure, and accurately approximate the reliability of general
(non serial-parallel) systems.

10



Another direction for future work involves the design
of efficient heuristics for even more difficult problems that
would mix performance-related criteria (period, latency)
with several other objectives, such as reliability, resource
cost, and power consumption.

References

[1] I. Assayad, A. Girault, and H. Kalla. A bi-criteria scheduling
heuristics for distributed embedded systems under reliability
and real-time constraints. InInt. Conf. on Dependable Sys-
tems and Networks, DSN’04, pages 347–356, Firenze, Italy,
June 2004. IEEE.

[2] A. Avizienis, J.-C. Laprie, B. Randell, and C. Landwehr.Ba-
sic concepts and taxonomy of dependable and secure com-
puting. IEEE Trans. Dependable Secure Comput., 1(1):11–
33, Jan. 2004.

[3] H. Balaban. Some effects of redundancy on system reliabil-
ity. In National Symposium on Reliability and Quality Con-
trol, pages 385–402, Washington (DC), USA, Jan. 1960.

[4] A. Benoit, V. Rehn-Sonigo, and Y. Robert. Optimizing la-
tency and reliability of pipeline workflow applications. In
HCW’08, the 17th Heterogeneity in Computing Workshop.
IEEE Computer Society Press, 2008.

[5] A. Benoit and Y. Robert. Mapping pipeline skeletons onto
heterogeneous platforms.J. Parallel Distributed Computing,
68(6):790–808, 2008.

[6] A. Benoit and Y. Robert. Complexity results for through-
put and latency optimization of replicated and data-
parallel workflows. Algorithmica, to appear. Avail-
able on-line at http://www.springerlink.com/
content/100117/.

[7] A. Dogan and F.Özgüner. Matching and scheduling algo-
rithms for minimizing execution time and failure probabil-
ity of applications in heterogeneous computing.IEEE Trans.
Parallel and Distributed Systems, 13(3):308–323, Mar. 2002.

[8] J. Dongarra, E. Jeannot, E. Saule, and Z. Shi. Bi-objective
scheduling algorithms for optimizing makespan and reliabil-
ity on heterogeneous systems. InACM Symposium on Par-
allel Algorithms and Architectures (SPAA), pages 280–288.
ACM Press, 2007.

[9] C. Ferdinand, R. Heckmann, M. Langenbach, F. Martin,
M. Schmidt, H. Theiling, S. Thesing, and R. Wilhelm. Reli-
able and precise WCET determination for a real-life proces-
sor. InInt. Workshop on Embedded Software, EMSOFT’01,
volume 2211 ofLNCS. Springer-Verlag, 2001.

[10] F. Gärtner. Fundamentals of fault-tolerant distributed com-
puting in asynchronous environments.ACM Computing Sur-
veys, 31(1):1–26, Mar. 1999.

[11] A. Girault and H. Kalla. A novel bicriteria scheduling
heuristics providing a guaranteed global system failure rate.
IEEE Trans. Dependable Secure Comput., 6(4):241–254,
Dec. 2009.

[12] A. Girault, E. Saule, and D. Trystram. Reliability versus
performance for critical applications.J. of Parallel and Dis-
tributed Computing, 69(3):326–336, Mar. 2009.

[13] M. Hakem and F. Butelle. A bi-objective algorithm for
scheduling parallel applications on heterogeneous systems
subject to failures. InRencontres Francophones du Par-
allélisme, RENPAR’06, Perpignan, France, Oct. 2006.

[14] B. Hong and V. K. Prasanna. Adaptive allocation of inde-
pendent tasks to maximize throughput.IEEE Trans. Parallel
Distributed Systems, 18(10):1420–1435, 2007.

[15] E. Jeannot, E. Saule, and D. Trystram. Bi-objective ap-
proximation scheme for makespan and reliability optimiza-
tion on uniform parallel machines. InEuro-Par, volume
5168 ofLecture Notes in Computer Science, pages 877–886.
Springer, 2008.

[16] P. Jensen and M. Bellmore. An algorithm to determine the
reliability of a complex system. IEEE Trans. Reliability,
18:169–174, Nov. 1969.

[17] J. Knight and N. Leveson. An experimental evaluation ofthe
assumption of independence in multi-version programming.
IEEE Trans. Software Engin., 12(1):96–109, 1986.

[18] D. Lloyd and M. Lipow.Reliability: Management, Methods,
and Mathematics, chapter 9. Prentice-Hall, 1962.

[19] P. Pop, K. Poulsen, and V. Izosimov. Scheduling and volt-
age scaling for energy/reliability trade-offs in fault-tolerant
time-triggered embedded systems. InInternational Confer-
ence on Hardware-Software Codesign and System Synthesis,
CODES+ISSS’07, Salzburg, Austria, Oct. 2007. ACM.

[20] E. Saule and D. Trystram. Analyzing scheduling with tran-
sient failures.Information Processing Letters, 109(11):539–
542, 2009.

[21] S. Shatz and J.-P. Wang. Models and algorithms for
reliability-oriented task-allocation in redundant distributed-
computer systems.IEEE Trans. Reliability, 38(1):16–26,
Apr. 1989.

[22] J. Souyris, E. Pavec, G. Himbert, V. Jégu, G. Borios, and
R. Heckmann. Computing the worst case execution time of
an avionics program by abstract interpretation. InInterna-
tional Workshop on Worst-case Execution Time, WCET’05,
pages 21–24, Mallorca, Spain, July 2005.

[23] J. Subhlok and G. Vondran. Optimal mapping of sequences
of data parallel tasks. InPPoPP’95, pages 134–143. ACM
Press, 1995.

[24] J. Subhlok and G. Vondran. Optimal latency-throughput
tradeoffs for data parallel pipelines. InSPAA’96, pages 62–
71. ACM Press, 1996.

[25] D. Zhu, R. Melhem, and D. Mossé. The effects of energy
management on reliability in real-time embedded systems.
In International Conference on Computer Aided Design, IC-
CAD’04, pages 35–40, San Jose (CA), USA, Nov. 2004.

11


