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Abstract

This paper deals with optimal strategies to place replicas in tree networks, with the
double objective to minimize the total cost of the servers, and/or to optimize power con-
sumption. The client requests are known beforehand, and some servers are assumed to
pre-exist in the tree. Without power consumption constraints, the total cost is an arbi-
trary function of the number of existing servers that are reused, and of the number of new
servers. Whenever creating and operating a new server has higher cost than reusing an
existing one (which is a very natural assumption), cost optimal strategies have to trade-
off between reusing resources and load-balancing requests on new servers. We provide an
optimal dynamic programming algorithm that returns the optimal cost, thereby extending
known results without pre-existing servers. With power consumption constraints, we as-
sume that servers operate under a set of M different modes depending upon the number
of requests that they have to process. In practice M is a small number, typically 2 or 3,
depending upon the number of allowed voltages. Power consumption includes a static part,
proportional to the total number of servers, and a dynamic part, proportional to a constant
exponent of the server mode, which depends upon the model for power. The cost function
becomes a more complicated function that takes into account reuse and creation as before,
but also upgrading or downgrading an existing server from one mode to another. We show
that with an arbitrary number of modes, the power minimization problem is NP-complete,
even without cost constraint, and without static power. Still, we provide an optimal dy-
namic programming algorithm that returns the minimal power, given a threshold value on
the total cost; it has exponential complexity in the number of modes M , and its practical
usefulness is limited to small values of M . Still, experiments conducted with this algorithm
show that it can process large trees in reasonable time, despite its worst-case complexity.

Key words: Replica placement, tree networks, power consumption, update strategies,
complexity results, dynamic programming algorithms.
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1 Introduction

We revisit the well-known replica placement problem in tree networks [6, 19, 2], with two new
objectives: reusing pre-existing replicas, and enforcing an efficient power management. In a
nutshell, the replica placement problem is the following: we are given a tree-shaped network
where clients are periodically issuing requests to be satisfied by servers. The clients are known
(both their position in the tree and their number of requests), while the number and location
of the servers are to be determined. A client is a leaf node of the tree, and its requests can
be served by one internal node. Note that the distribution tree (clients and nodes) is fixed in
the approach. This key assumption is quite natural for a broad spectrum of applications, such
as electronic, ISP, or VOD service delivery (see [10, 6, 12] and additional references in [19]).
The root server has the original copy of the database but cannot serve all clients directly, so a
distribution tree is deployed to provide a hierarchical and distributed access to replicas of the
original data.

In the original problem, there is no replica before execution; when a node is equipped with
a replica, it can process a number of requests, up to its capacity limit. Nodes equipped with
a replica, also called servers, serve all the clients located in their subtree (so that the root, if
equipped with a replica, can serve any client). The rule of the game is to assign replicas to
nodes so that the total number of replicas is minimized. This problem is well-understood: it can
be solved in time O(N2) (dynamic programming algorithm of [6]), or even in time O(N logN)
(optimized greedy algorithm of [19]), where N is the number of nodes.

The first contribution of this paper is to tackle the replica placement problem when the tree
is equipped with pre-existing replicas before execution. This extension is a first step towards
dealing with dynamic replica management: if the number and location of client requests evolve
over time, the number and location of replicas must evolve accordingly, and one must decide how
to perform a configuration change (at what cost?) and when (how frequently reconfigurations
should occur?) A first approach to this complicated dynamic problem is provided in [18], where
replicas are either moved or created at “regular intervals”, whose duration is determined by
the arrival rate of client requests. The algorithms in [18] provide a heuristic solution to the
problem, but no complexity result is presented. Similarly, [5, 15, 16] tackle the problem of
placing replicas with server capacity constraint, where servers are re-allocated to new sites
when a performance metric degrades significantly. However, in these papers, the distribution
tree is not fixed, which renders all problems highly combinatorial, and which departs from our
fixed network assumption. In the present work, the aim is to assess the difficulty of a single
reconfiguration, and we provide an optimal polynomial algorithm to minimize the cost of such
a reconfiguration. The main difficulty here is to trade-off between two conflicting goals, namely
(i) reusing existing servers rather than creating new ones, and (ii) load-balancing the requests
equally among the servers.

Another contribution of this paper is to extend replica placement algorithms to cope with
power consumption constraints. Minimizing the total power consumed by the servers has re-
cently become a very important objective, both for economic and environmental reasons [13].
To help reduce power dissipation, multi-modal processors are used: each processor has a dis-
crete number of predefined speeds (or modes), which correspond to different voltages that the
processor can be subjected to. The power consumption is the sum of a static part (the cost for a
processor to be turned on) and a dynamic part. This dynamic part is a strictly convex function
of the processor speed, so that the execution of a given amount of work costs more power if a
processor runs in a higher mode [8]. More precisely, a processor operated at mode Wi dissipates
Wα
i watts, where α ∈ [2..3] is some constant specified by the model [9, 14, 3, 1, 4]. Faster modes

allow servers to handle more requests per time-units, while they also lead to a much higher
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(supra-linear) power consumption. An important result of this paper is that minimizing power
consumption is a NP-complete problem, independently of the incurred cost (in terms of new
and pre-existing servers) of the solution. In fact this result holds true even without pre-existing
replicas, and without static power: balancing server modes across the tree already is a hard
combinatorial problem.

The cost of the best power-efficient solution may indeed be prohibitive, which calls for a bi-
criteria approach: minimizing power consumption while enforcing a threshold cost that cannot
be exceeded. We investigate the case where there is only a fixed number of modes and show
that there are polynomial-time algorithms capable of optimizing power for a bounded cost, even
with pre-existing replicas, with static power and with a complex cost function. This result has
a great practical significance, because state-of-the-art processors can only be operated with a
restricted number of voltage levels, hence with a few modes [11, 8].

Finally, we run simulations to show the practical utility of our algorithms, despite their high
worst-case complexity. We illustrate the impact of taking pre-existing servers into account, and
how power can be saved thanks to the optimal bi-criteria algorithm.

The rest of the paper is organized as follows. Section 2 is devoted to a detailed presentation
of the target optimization problems, and provides a summary of new complexity results. The
next two sections are devoted to the proofs of these results: Section 3 deals with computing the
optimal cost of a solution, with pre-existing replicas in the tree, while Section 4 addresses all
power-oriented problems. Then we report the simulation results in Section 5. Finally, we state
some concluding remarks and future working directions in Section 6.

2 Framework

This section is devoted to a precise statement of the problem. We start with the general problem
without power consumption constraints, and next we introduce the power consumption model.
Then we state the objective functions (with or without power), and the associated optimization
problems. Finally we give a summary of all complexity results that we provide in the paper.

2.1 Replica servers

We consider a distribution tree whose nodes are partitioned into a set of clients C, and a set of
N nodes, N . The clients are leaf nodes of the tree, while N is the set of internal nodes. Each
client i ∈ C (leaf of the tree) is sending ri requests per time unit to a database object. Internal
nodes equipped with a replica (also called servers) will process all requests from clients in their
subtree. An internal node j ∈ N may have already been provided with a replica, and we let
E ⊆ N be the set of pre-existing servers. Servers in E will be either reused or deleted in the
solution. Note that it would be easy to allow client-server nodes which play both the rule of
a client and of an internal node (possibly a server), by dividing such a node into two distinct
nodes in the tree.

Without power consumption constraints, the problem is to find a solution, i.e., a set of
servers capable of handling all requests, that minimizes some cost function. We formally define
a valid solution before detailing its cost. We start with some notations. Let r be the root of
the tree. If j ∈ N , then childrenj ⊆ N ∪C is the set of children of node j, and subtreej ⊆ N ∪C
is the subtree rooted in j, excluding j. A solution is a set R ⊆ N of servers. Each client i is
assigned a single server serveri ∈ R that is responsible for processing all its ri requests, and this
server is restricted to be the first ancestor of i (i.e., the first node in the unique path that leads
from i up to the root r) equipped with a server (hence the name closest for the request service
policy). Such a server must exist in R for each client. In addition, all servers are identical and
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have a limited capacity, i.e., they can process a maximum number W of requests. Let reqj be
the number of requests processed by j ∈ R. The capacity constraint writes

∀j ∈ R, reqj =
∑

i∈C | j=serveri

ri ≤W. (1)

Now for the cost function, because all servers are identical, the cost of operating a server
can be normalized to 1. When introducing a new server, there is an additional cost create, so
that running a new server costs 1 + create while reusing a server in E only costs 1. There is also
a deletion cost delete associated to deleting each server in E that is not reused in the solution.
Let E = |E| be the number of pre-existing servers. Let R = |R| be the total number of servers
in the solution, and e = |R ∩ E| be the number of reused servers. Altogether, the cost is

cost(R) = R+ (R− e)× create + (E − e)× delete. (2)

This cost function is quite general. Because of the create and delete costs, priority is always
given to reusing pre-existing servers. If create+2×delete < 1, priority is given to minimizing the
total number of servers R: indeed, if this condition holds, it is always advantageous to replace
two pre-existing servers by a new one (if capacities permit).

2.2 With power consumption modes

With power consumption constraints, we assume that servers may operate under a set M =
{W1, . . . ,WM} of different speeds, or modes, depending upon the number of requests that they
have to process per time unit. Here modes are indexed according to increasing values, and
WM = W , the maximal capacity. If a server j ∈ R processes reqj requests, with Wi−1 < reqj ≤
Wi, then it is operated at mode Wi, and we let mode(j) = i. The power consumption of a server
j ∈ R obeys the classical model

P(j) = P(static) +Wα
mode(j).

Here, P(static) is the static power consumption (constant part), while Wα
mode(j) is the dynamic

part that depends upon the operated mode. Finally, α ∈ [2..3] is a rational constant that
depends upon the model for power [9, 14, 3, 1, 4]. The total power consumption P(R) of the
solution is the sum of the power consumption of all server nodes:

P(R) =
∑
j∈R
P(j) = R× P(static) +

∑
j∈R

Wα
mode(j). (3)

Intuitively, this equation calls for balancing two conflicting terms: static power is minimized
with few servers, while dynamic power is minimized with many servers operated in the slowest
mode.

With different power modes, it is natural to refine the cost function, and to include a cost
for changing the mode of a pre-existing server (upgrading it to a higher mode, or downgrading
it to a lower mode). In the most detailed model, we would introduce:
• createi, the cost for creating a new server operated at mode Wi;
• changedi,i′ , the cost for changing the mode of a pre-existing server from Wi to Wi′ ; and
• deletei, the cost for deleting a pre-existing server operated at mode Wi.
Note that it is reasonable to let changedi,i = 0 (no change); values of changedi,i′ with

i < i′ correspond to upgrade costs, while values with i′ < i correspond to downgrade costs. In
accordance with these new cost parameters, given a solution R, we count the number of servers
as follows:
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• ni, the number of new servers operated at mode Wi;
• ei,i′ , the number of reused pre-existing servers whose operation modes have changed from
Wi to Wi′ ; and
• ki, the number of pre-existing server operated at mode Wi that have not been reused.
The cost of the solution R with a total of R =

∑M
i=1 ni +

∑M
i=1

∑M
i′=1 ei,i′ servers becomes:

cost(R) = R+
M∑
i=1

createi × ni +
M∑
i=1

deletei × ki +
M∑
i=1

M∑
i′=1

changedi,i′ × ei,i′ . (4)

Of course, this complicated cost function can be simplified to make the model more tractable;
for instance all creation costs createi can be set identical, all deletion costs deletei can be set
identical, all upgrade and downgrade values changedi,i′ can be set identical, and the latter can
even be neglected.

2.3 Objective functions

Without power consumption constraints, the objective is to minimize the cost, as defined by
Equation (2). We distinguish two optimization problems, either with pre-existing replicas in
the tree or without:
• MinCost-NoPre, the classical cost optimization problem [6] without pre-existing repli-

cas. Indeed, in that case, Equation (2) reduces to finding a solution with the minimal
number of servers.
• MinCost-WithPre, the cost optimization problem with pre-existing replicas.
With power consumption constraints, the first optimization problem is MinPower, which

stands for minimizing power consumption, independently of the incurred cost. But the cost
of the best power-efficient solution may indeed be prohibitive, which calls for a bi-criteria ap-
proach: MinPower-BoundedCost is the problem to minimize power consumption while en-
forcing a threshold cost that cannot be exceeded. This bi-criteria problem can be declined
in two versions, without pre-existing replicas (MinPower-BoundedCost-NoPre) and with
pre-existing replicas (MinPower-BoundedCost-WithPre).

2.4 Summary of results

In this paper, we prove the following complexity results for a tree with N nodes:

Theorem 1 MinCost-WithPre can be solved in polynomial time with a dynamic program-
ming algorithm whose worst case complexity is O(N5).

Theorem 2 MinPower is NP-complete.

Theorem 3 With a constant numberM of modes, both versions of MinPower-BoundedCost
can be solved in polynomial time with a dynamic programming algorithm. The complexity of
this algorithm is O(N2M+1) for MinPower-BoundedCost-NoPre and O(N2M2+2M+1) for
MinPower-BoundedCost-WithPre.

Note that MinPower remains NP-complete without pre-existing replicas, and without
static power: the proof of Theorem 2 (see Section 4.2) shows that balancing server modes
across the tree already is a hard combinatorial problem. On the contrary, with a fixed num-
ber of modes, there are polynomial-time algorithms capable of optimizing power for a bounded
cost, even with pre-existing replicas, with static power and with a complex cost function. These
algorithms can be viewed as pseudo-polynomial solutions to the MinPower-BoundedCost
problems.
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3 Complexity results: update strategies

In this section, we focus on the MinCost-WithPre problem: we need to update the set of
replicas in a tree, given a set of pre-existing servers, so as to minimize the cost function.

In Section 3.1, we show on an illustrative example that the strategies need to trade-off
between reusing resources and load-balancing requests on new servers: the greedy algorithm
proposed in [19] for the MinCost-NoPre problem is no longer optimal. We provide in Sec-
tion 3.2 a dynamic programming algorithm which returns the optimal solution in polynomial
time, and we prove its correctness. The analysis of the execution time is given in Section 3.3.

3.1 Running example

We consider the example of Figure 1. There is one pre-existing replica in the tree at node B,
and we need to decide whether to reuse it or not. For taking decisions locally at node A, the
trade-off is the following:

• either we keep server B, and there are 7 requests going up in the tree from node A;

• either we remove server B and place a new server at node C, hence having only 4 requests
going up in the tree from node A;

• either we keep the replica at node B and add one at node A or C, thereby having no
traversing request any more.

The choice cannot be made locally, since it depends upon the remainder of the tree: if the root r
has two client requests, then it was better to keep the pre-existing server B. However, if it has
four requests, two new servers are needed to satisfy all requests, and one can then remove server
B which becomes useless (i.e., keep one server at node C and one server at node r).

From this example, it seems very difficult to design a greedy strategy to minimize the
solution cost, while accounting for pre-existing replicas. We propose in the next section a
dynamic programming algorithm which solves the MinCost-WithPre problem.

3.2 Dynamic programming algorithm

Let W be the total number of requests that a server can handle, and ri the number of requests
issued by client i ∈ C.

At each node j ∈ N , we fill a table of maximum size (E+ 1)× (N −E+ 1) which indicates,
for exactly 0 ≤ e ≤ E existing servers and 0 ≤ n ≤ N − E new servers in the subtree rooted
in j (excluding j), the solution which leads to the minimum number of requests that have not

Figure 1: Example: reusing pre-existing replicas.
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been processed in the subtree. This solution for (e, n) values at node j is characterized by
the minimum number of requests that is obtained, minrj(e,n), and by the number of requests

processed at each node j′ ∈ subtreej , req
j
(e,n)(j

′). Note that each entry of the table has a

maximum size O(N) (in particular, this size is reached at the root of the tree). The req
variables ensure that it is possible to reconstruct the solution once the traversal of the tree is
complete.

The call init(r) (see Algorithm 1), where r is the root of the tree, performs the initialization:
tables are initialized to default values (no solution). We set minrj(e,n) = W + 1 to indicate

that there is no solution, since in any valid solution, minrj(e,n) ≤W .

The main algorithm (see Algorithm 2) fills the tables while performing a bottom-up traver-
sal of the tree, and the solution can be found within the table of the root node (see Algo-
rithm 4, p. 11). Initially, we fill the table for nodes j which have only client nodes: minrj(0,0) =∑
i∈childrenj∩C ri, and minrj(k,l) = W + 1 for k > 0 or l > 0. There are no nodes in the subtree

of j, thus no req variables to set. The variable client(j) keeps track of the number of requests
directly issued by a client at node j. Also, recall that the decision whether to place a replica at
node j or not is not accounted for in the table of j, but when processing the parent of node j.

Then, for a node j ∈ N , we perform the same initialization, before processing children nodes
one by one. The processing of child i of node j is done through the call to the merge(j, i)
procedure (see Algorithm 3), and it is informally described below.

First, we copy the current table of node j into a temporary one, with values tminr and
treq. Note that the table is initially almost empty, but this copy is required since we process
children one after the other, and when we call merge(j, i) for the kth children node, the table
of j already contains information from the merge with the previous k − 1 children nodes.

Then, for 0 ≤ e ≤ E and 0 ≤ n ≤ N − E, we need to compute the new minrj(e,n), and to

update the reqj(e,n) values. We try all combinations with e′ existing replicas and n′ new replicas

in the temporary table (i.e., information about children already processed), e − e′ existing
replicas and n− n′ new replicas in the subtree of child i. We furthermore try solutions with a
replica placed at node i, and we account for it in the value of e if i ∈ E (i.e., for a given value e′,
we place only e − e′ − 1 replica in the subtree of i, plus one on i); otherwise we account for it
in the value of n. Each time we find a solution which is better than the one previously in the
table (in terms of minr), we copy the values of req from the temporary table and the table of i,
in order to retain all the information about the current best solution.

Algorithm 1: Initialization procedure.

1 procedure init (node j ∈ N )
2 begin

/* Initializing the tables. */

3 for 0 ≤ e ≤ E do
4 for 0 ≤ n ≤ N − E do

/* No solution. */

5 minrj(e,n) = W + 1;

/* Recursive call. */

6 for i ∈ childrenj ∩N do
7 init(i);

8 end
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Algorithm 2: Main procedure.

1 procedure main (node j ∈ N )
2 begin

/* Init. client children. */

3 client(j) = 0;
4 for i ∈ childrenj ∩ C do
5 client(j) = client(j) + ri;

6 minrj(0,0) = client(j);

7 if minrj(0,0) > W then exit(no solution);

/* Processing child nodes. */

8 for i ∈ childrenj ∩N do
9 main(i); /* Recursive call. */

10 merge(j, i);

11 end

The key of the algorithm resides in the fact that during this merging process, the optimal
solution will always be one which lets the minimum of requests pass through the subtree (see
Lemma 1).

The solution to the replica placement problem with pre-existing servers MinCost-WithPre
is computed through a call to replica-update (see Algorithm 4), which returns a set of replicaR
minimizing the cost: we scan all solutions in order to return a valid one of minimum cost.

To prove that the algorithm returns an optimal solution, we show in Lemma 1 that the
solutions that are discarded while filling the tables, never lead to a better solution than the one
that is finally returned.

Lemma 1 Consider a subtree rooted at node j ∈ N . If an optimal solution uses e pre-existing
servers and places n new servers in this subtree, then there exists an optimal solution of same
cost, for which the placement of these servers minimizes the number of requests traversing j.

Proof. Let Ropt be the set of replicas in the optimal solution with (e, n) servers (i.e.,
e pre-existing and n new in subtreej). We denote by rmin the minimum number of requests
that must traverse j in a solution using (e, n) servers, and by Rloc the corresponding (local)
placement of replicas in subtreej .

If Ropt is such that more than rmin requests are traversing node j, we can build a new
global solution which is similar to Ropt, except for the subtree rooted in j for which we use the
placement of Rloc. The cost of the new solution is identical to the cost of Ropt, therefore it
is an optimal solution. It is still a valid solution, since Rloc is a valid solution and there are
less requests than before to handle in the remaining of the tree (only rmin requests traversing
node j).

This proves that there exists an optimal solution which minimizes the number of requests
traversing each node, given a number of pre-existing and new servers.

The algorithm computes all local optimal solutions for all values (e, n). During the merge
procedure, we try all possible numbers of pre-existing and new servers in each subtree, and we
minimize the number of traversing requests, thus finding an optimal local solution. Thanks to
Lemma 1, we know that there is a global optimal solution which builds upon these local optimal
solutions.
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Algorithm 3: Processing a child node.

1 procedure merge(j, i)
2 begin

/* Duplicate table at node j, and clean up. */

3 for 0 ≤ e ≤ E do
4 for 0 ≤ n ≤ N − E do

5 tminr(e,n) = minrj(e,n);

6 minrj(e,n) = W + 1; /* No solution in the merged table. */

7 for j′ ∈ subtreej ∩N do treq(e,n)(j
′) = reqj(e,n)(j

′);

/* Try all solutions with e existing replicas and n new replicas. */

8 for 0 ≤ e ≤ E do for 0 ≤ n ≤ N − E do
9 for 0 ≤ e′ ≤ e do for 0 ≤ n′ ≤ n do

10 if tminr(e′,n′) ≤W then

/* e′ existing and n′ new on children already processed, e− e′
existing and n− n′ new in the subtree of i, no replica on i.
*/

11 if minri(e−e′,n−n′) + tminr(e′,n′) ≤ min(W,minrj(e,n)) then

/* Better solution than existing one for (e, n). */

12 minrj(e,n) = minri(e−e′,n−n′) + tminr(e′,n′);

13 for j′ ∈ subtreej ∩N do

14 if j′ ∈ subtreei then reqj(e,n)(j
′) = reqi(e−e′,n−n′)(j

′);

15 else reqj(e,n)(j
′) = treq(e′,n′)(j

′);

/* e′ existing and n′ new on children already processed,

replica on i. */

16 if (i ∈ E) and (e′ < e) then
/* e− e′ − 1 existing and n− n′ new in the subtree of i. */

17 if tminr(e′,n′) ≤ minr
j
(e,n) then

/* Better solution than existing one for (e, n). */

18 minrj(e,n) = tminr(e′,n′);

19 for j′ ∈ subtreej ∩N do

20 if j′ ∈ subtreei then reqj(e,n)(j
′) = reqi(e−e′−1,n−n′)(j

′);

21 else reqj(e,n)(j
′) = treq(e′,n′)(j

′);

22 reqj(e,n)(i) = minri(e−e′−1,n−n′);

23 else if (i /∈ E) and (n′ < n) then
/* e− e′ existing and n− n′ − 1 new in the subtree of i. */

24 if tminr(e′,n′) ≤ minr
j
(e,n) then

/* Better solution than existing one for (e, n). */

25 minrj(e,n) = tminr(e′,n′);

26 for j′ ∈ subtreej ∩N do

27 if j′ ∈ subtreei then reqj(e,n)(j
′) = reqi(e−e′,n−n′−1)(j

′);

28 else reqj(e,n)(j
′) = treq(e′,n′)(j

′);

29 reqj(e,n)(i) = minri(e−e′,n−n′−1);

30 end

10



Algorithm 4: Replica placement algorithm with pre-existing servers (MinCost-
WithPre problem).

1 algorithm replica-update
2 begin
3 init(r);
4 main(r);

/* Initially, no best solution. */

5 cmin = N × (1 + create + delete);
6 minEN = (−1,−1);

/* Scanning root table: compute all costs for (e, n). */

7 for 0 ≤ e ≤ E do
8 for 0 ≤ n ≤ N − E do
9 reqr(e,n)(r) = minrr(e,n);

10 cost = N × (1 + create + delete);
11 if minrr(e,n) = 0 then

12 cost = (e+ n) + n× create + (E − e)× delete ;
13 else if minrr(e,n) ≤W and r ∈ E then

14 cost = (e+ n+ 1) + n× create + (E − e− 1)× delete ;
15 else if minrr(e,n) ≤W and r ∈ N \ E then

16 cost = (e+ n+ 1) + (n+ 1)× create + (E − e)× delete ;

/* Check if this solution is better than previous best. */

17 if cost < cmin then
18 cmin = cost; minEN = (e, n);

/* Reconstruct solution: R is the set of replicas. */

19 if minEN = (−1,−1) then exit(no solution);
20 else
21 R = ∅;
22 for j ∈ N do
23 if reqrminEN (j) > 0 then R = R∪ {j};
24 return(R);

25 end

11



3.3 Execution time of the algorithm

Recall that N is the total number of nodes, and E is the number of pre-existing nodes.
The call to init(r) makes a traversal of the tree, and at each node, the table of sizeO((E+1)×

(N−E+1)) is initialized. The total cost for this call is therefore in O(N×(N−E+1)×(E+1)).
For the main procedure, the processing of a node with only client children is done in constant

time O(1). The processing of each non-client child consists in a call to the merge procedure,
and there is only one such per node of the tree, and therefore N calls to this procedure during
the whole execution.

The initialization of the merging procedure takes a time O((N−E+1)× (E+1)). Then, we
try all solutions with e ≤ E existing replicas, and n ≤ N−E new replicas. Given e and n, there
are no more than O((N −E + 1)× (E + 1)) possible solutions (0 ≤ e′ ≤ e ≤ E existing replicas
and 0 ≤ n′ ≤ n ≤ N − E new replicas on the children already processed, with or without a
replica on the child currently being processed). Finally, the total number of iterations in the
loop is bounded by O((N − E + 1)2 × (E + 1)2). The most consuming operation in the loop
is to copy the req variables, which is done in O(N). However, this copy can be done outside
the loop: we keep track of the best solution for each couple (e, n), and update the req variables
in another loop over (e, n). It is done by decreasing values of e and n, since the update for
(e, n) requires the non-updated values with (e′, n′) such that e′ ≤ e and n′ ≤ n. The total cost
with this optimization (see [17] for the implementation) is therefore the number of iterations,
i.e., O((N − E + 1)2 × (E + 1)2).

Then, scanning the table at the root is done in O((N −E+1)× (E+1)), and reconstructing
the solution takes a single tree traversal, i.e., it is in O(N). Finally, the complexity of the
dynamic closest replica placement algorithm is in O(N × (N − E + 1)2 × (E + 1)2), which
corresponds to the N calls to the merging procedure. The algorithm is therefore of polynomial
complexity, at most O(N5) for a tree with N nodes. This concludes the proof of Theorem 1.

4 Complexity results with power

In this section, we tackle the MinPower and MinPower-BoundedCost problems. First in
Section 4.1, we use an example to show why minimizing the number of requests traversing the
root of a subtree is no longer optimal, and we illustrate the difficulty to take local decisions
even when restricting to the simpler mono-criterion MinPower problem. Then in Section 4.2,
we prove the NP-completeness of the latter problem with an arbitrary number of modes (Theo-
rem 2). However, we propose a pseudo-polynomial algorithm to solve the problem in Section 4.3.
This algorithm turns out to be polynomial when the number of modes is constant, hence usable
in a realistic setting with two or three modes (Theorem 3).

4.1 Running example

Consider the example of Figure 2. There are two modes, W1 = 7 and W2 = 10, and we focus
on the power minimization problem. For simplicity, we assume that the power consumption of
a node running at mode Wi is 10 +W 2

i , for i = 1, 2 (10 is the static power, and we set α = 2).
We consider the subtree rooted in A. Several decisions can be taken locally:

• place a server at node A, running at mode W2, hence minimizing the number of traversing
requests. Another solution without traversing requests is to have two servers, one at
node B and one at node C, both running at mode W1, but this would lead to a higher
power consumption, since 20 + 2× 72 > 10 + 102;

12



Figure 2: Example: minimizing power consumption.

• place a server running at mode W1 at node C, thus having 3 requests going through
node A.

The choice cannot be made greedily, since it depends upon the rest of the tree: if the root r
has four client requests, then it is better to let some requests through (one server at node C),
since it optimizes power consumption. However, if it has ten requests, it is necessary to have
no request going through A, otherwise node r is not able to process all its requests.

From this example, it seems very hard to design a greedy strategy to minimize the power con-
sumption. Similarly, if we would like to reuse the algorithm of Section 3 to solve the MinPower-
BoundedCost-WithPre bi-criteria problem, we would need to account for modes. Indeed,
the best solution of subtree A with one server is no longer always the one which minimizes the
number of requests (in this case, placing one server on node A), since it can be better for power
consumption to let three requests traverse node A and balance the load upper in the tree.

We prove in the next section the NP-completeness of the problem, when the number of
modes is arbitrary. However, we can adapt the dynamic programming algorithm, which becomes
exponential in the number of modes, but hence remains polynomial for a constant number of
modes (see Section 4.3).

4.2 NP-completeness of MinPower

In this section, we prove Theorem 2, i.e., the NP-completeness of the MinPower problem, even
with no static power, when there is an arbitrary number of modes.

Proof. [Proof of Theorem 2] We consider the associated decision problem: given a total
power consumption P, is there a solution which does not consume more than P?

First, the problem is clearly in NP: given a solution, i.e., a set of servers, and the mode of
each server, it is easy to check in polynomial time that no capacity constraint is exceeded, and
that the power consumption meets the bound.

To establish the completeness, we use a reduction from 2-Partition [7]. We consider an
instance I1 of 2-Partition: given n strictly positive integers a1, a2, . . . , an, does there exist a
subset I of {1, . . . , n} such that

∑
i∈I ai =

∑
i/∈I ai? Let S =

∑n
i=1 ai; we assume that S is even

(otherwise there is no solution).
We build an instance I2 of our problem where each server has n + 2 modes. We assume

that the ai are sorted in increasing order, i.e., a1 ≤ · · · ≤ an. The modes are then, in increasing
order:
• W1 = K;
• ∀1 ≤ i ≤ n, Wi+1 = K + ai ×X;
• Wn+2 = K + S ×X;

13



where the values of K and X will be determined later.
We furthermore set that there is no static power, and the power consumption for a server

running at capacity Wi is therefore Pi = Wα
i , where α is the rational exponent used in the

computation of the power (see Section 2), and 2 ≤ α ≤ 3. The idea is to have K large and
X small, so that we have an upper bound on the power consumed by a server running at
capacity Wi+1, for 1 ≤ i ≤ n:

Wα
i+1 = (K + ai ×X)α ≤ Kα + ai +

1

n
. (5)

To ensure that Equation (5) is satisfied, we set

X =
1

α×Kα−1
,

and then we have (K + ai ×X)α = Kα(1 + ai
αKα )α, with K > S and therefore ai

αKα < 1. We
set xi = ai

αKα , and we want to ensure that:

(1 + xi)
α ≤ 1 + α× xi +

1

n×Kα
. (6)

To do so, we study the function

f(x) = (1 + x)α − (1 + α× x)− 5x2,

and we show that f(x) ≤ 0 for x ≤ 1
2 (thanks to the term in −5x2).

We have f(0) = 0, and f ′(x) = α(1 + x)α−1 − α − 10x. We have f ′(0) = 0, and f ′′(x) =
α(α−1)(1+x)α−2−10. Since α ≤ 3, α(α−1)(1+x)α−2 ≤ 6(1+x), and for x ≤ 1

2 , f ′′(x) < 0. We
deduce that f ′(x) is non increasing for x ≤ 1

2 , and since f ′(0) = 0, f ′(x) is negative for x ≤ 1
2 .

Finally, f(x) is non increasing for x ≤ 1
2 , and since f(0) = 0, we have (1+x)α < (1+α×x)+5x2

for x ≤ 1
2 .

Equation (6) is therefore satisfied if 5x2i ≤ 1
n×Kα , i.e., Kα ≥ 5a2i×n

α2 . This condition is
satisfied for

K = n× S2,

and we then have xi <
1
2 , which ensures that the previous reasoning was correct. Finally, with

these values of K and X, Equation (5) is satisfied.
Then, the distribution tree is the following: the root node r has one client with K + S

2 ×X
requests, and n children A1, . . . , An. Each node Ai has a client with ai × X requests, and a
children node Bi which has K requests. Figure 3 illustrates the instance of the reduction.

Finally, we ask if we can find a placement of replicas with a maximum power consumption
of:

Pmax = (K + S ×X)α + n×Kα +
S

2
+
n− 1

n
.

Clearly, the size of I2 is polynomial in the size of I1, since K and X are of polynomial size.
We now show that I1 has a solution if and only if I2 does.

Let us assume first that I1 has a solution, I. The solution for I2 is then as follows: there
is one server at the root, running at capacity Wn+2. Then, for i ∈ I, we place a server at
node Ai running at capacity W1+i, while for i /∈ I, we place a server at node Bi running at
capacity W1. It is easy to check that all capacity constraints are satisfied for nodes Ai and Bi.
At the root of the tree, there are K + S

2 × X +
∑
i/∈I ai × X, which sums up to K + S × X.

The total power consumption is then P = (K + S × X)α +
∑
i∈I(K + ai × X)α +

∑
i/∈I K

α.
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Figure 3: Illustration of the NP-completeness proof.

Thanks to Equation (5), P ≤ (K + S × X)α +
∑
i∈I

(
Kα + ai + 1

n

)
+
∑
i/∈I K

α, and finally,

P ≤ (K + S × X)α + n × Kα +
∑
i∈I ai + n−1

n . Since I is a solution to 2-Partition, we have
P ≤ Pmax. Finally, I2 has a solution.

Suppose now that I2 has a solution. There is a server at the root node r, which runs at
mode Wn+2, since this is the only way to handle its K + S

2 × X requests. This server has a
power consumption of (K+S×X)α. Then, there cannot be more than n other servers. Indeed,
if there were n + 1 servers, running at the smallest mode W1, their power consumption would
be (n+ 1)Kα, which is strictly greater than n×Kα + S

2 + 1. Therefore, the power consumption
would exceed Pmax. So, there are at most n extra servers.

Consider that there exists i ∈ {1, . . . , n} such that there is no server, neither on Ai nor on
Bi. Then, the number of requests at node r is at least 2K; however, 2K > Wn+2, so the server
cannot handle all these requests. Therefore, for each i ∈ {1, . . . , n}, there is exactly one server
either on Ai or on Bi. We define the set I as the indices for which there is a server at node Ai
in the solution. Now we show that I is a solution to I1, the original instance of 2-Partition.

First, if we sum up the requests at the root node, we have:

K +
S

2
×X +

∑
i/∈I

ai ×X ≤ K + S ×X.

Therefore,
∑
i/∈I ai ≤ S

2 .

Now, if we consider the power consumption of the solution, we have:

(K + S ×X)α +
∑
i∈I

(K + ai ×X)α +
∑
i/∈I

Kα ≤ Pmax.

Let us assume that
∑
i∈I ai >

S
2 . Since the ai are integers, we have

∑
i∈I ai ≥ S

2 +1. It is easy to
see that (K+ai×X)α > Kα+ai. Finally,

∑
i∈I(K+ai×X)α+

∑
i/∈I K

α ≥ n×Kα+
∑
i∈I ai ≥

n ×Kα + S
2 + 1. This implies that the total power consumption is greater than Pmax, which

leads to a contradiction, and therefore
∑
i∈I ai ≤ S

2 .

We conclude that
∑
i/∈I ai =

∑
i∈I ai = S

2 , and so the solution I is a 2-Partition for in-
stance I1. This concludes the proof.
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4.3 A pseudo-polynomial algorithm for MinPower-BoundedCost

In this section, we sketch how to adapt the algorithm of Section 3 to account for power con-
sumption. As illustrated in the example of Section 4.1, the current algorithm may lead to a
non-optimal solution for the power consumption if used only with the higher mode for servers.
Therefore, we refine it and compute, in each subtree, the optimal solution with, for 1 ≤ j, j′ ≤M ,
• exactly nj new servers running at mode Wj ;
• exactly ej,j′ pre-existing servers whose operation modes have changed from Wj to Wj′ .

Recall that we previously had only two parameters, n the number of new servers, and e the
number of pre-existing servers, thus leading to a total of (N −E + 1)2 × (E + 1)2 iterations for
the merge procedure (Lines 8-9 of Algorithm 3). Now, the number of iterations is (N − E +
1)2M × (E + 1)2M

2
, since we have 2×M loops of maximum size N −E + 1 over the nj and n′j ,

and 2×M2 loops of maximum size E + 1 over the ej,j′ and e′j,j′ .
The new algorithm is similar, except that during the merge procedure, we must consider the

type of the current node that we are processing (existing or not), and furthermore set it to all
possible modes. This is done at Lines 16 and 23 of Algorithm 3, when we try to add a server
at node i. We therefore add a loop of size M .

We do not formalize the new merge procedure, since its principle is similar to Algorithm 3,
except that we need to have larger tables at each node, and to iterate over all parameters. The
complexity of the N calls to this procedure is now in O(N ×M × (N −E+ 1)2M × (E+ 1)2M

2
).

Of course, we need also to update the init and main procedures to account for the increasing
number of parameters. Finally, we rewrite the equivalent of Algorithm 4 but according to the bi-
criteria objective function: first we compute all costs, accounting for the cost of changing modes,
and then we scan all solutions, and return one whose cost is not greater than the threshold, and
which minimizes the power consumption. The most time-consuming part of the algorithm is still
the call to the merge procedures, hence a complexity in O(N×M×(N−E+1)2M×(E+1)2M

2
).

With a constant number of capacities, this algorithm is polynomial, which proves Theorem 3.
For instance, with M = 2, the worst case complexity is O(N13). Without pre-existing servers,
this complexity is reduced to O(N5).

5 Simulations

In this section, we compare our algorithms with the algorithms of [19], which do not account
for pre-existing servers and for power consumption. First in Section 5.1, we focus on the impact
of pre-existing servers. Then we consider the power consumption minimization criterion in
Section 5.2.

Note that experiments have been run sequentially on an Intel Xeon 5250 processor, and
run sequentially. The source code of all algorithms and simulations is publicly available on the
Web [17].

5.1 Impact of pre-existing servers

In this set of experiments, we randomly build a set of distribution trees with N = 100 internal
nodes of maximum capacity W = 10. Each internal node has between 6 and 9 children, and
clients are distributed randomly throughout the tree: each internal node has a client with a
probability 0.5, and this client has between 1 and 6 requests.

In the first experiment, we draw 200 random trees without any existing replica in them.
Then we randomly add 0 ≤ E ≤ 100 pre-existing servers in each tree. Finally, we execute both
the greedy algorithm (GR) of [19], and the algorithm of Section 3 (DP) on each tree, and since
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both algorithms return a solution with the minimum number of replicas, the cost of the solution
is directly related to the number of pre-existing replicas that are reused. Figure 4 shows the
average number of pre-existing servers that are reused in each solution over the 200 trees, for
each value of the number E of pre-existing servers. When the tree has a very small (E ≈ 0) or
very large (E ≈ N) number of pre-existing replicas, both algorithms return the same solution.
Still, DP achieves an average reuse of 4.13 more servers than GR, and it can reuse up to 15 more
servers.

In a second experiment, we study the behavior of the algorithms in a dynamic setting, with
20 update steps. At each step, starting from the current solution, we update the number of
requests per client and recompute an optimal solution with both algorithms, starting from the
servers that were placed at the previous step. Initially, there are no pre-existing servers, and
at each step, both algorithms obtain a different solution. However, they always reach the same
total number of servers since they have the same requests; but after the first step, they may have
a different set of pre-existing servers. Similarly to Experiment 1, the simulation is conducted
on 200 distinct trees, and results are averaged over all trees. In Figure 5 (left), at each step, we
compare the number of existing replicas in the solutions found by the two algorithms, and hence
the cost of the solutions. We plot the cumulative number of servers that have been reused so far
(hence accounting for all previous steps). As expected, the DP algorithm makes a better reuse
of pre-existing replicas. Figure 5 (right) compares, at each step, the number of pre-existing
servers reused by DP and by GR. We count the average number of steps (over 20) at which each
value is reached. It occasionally happens that the greedy algorithm performs a better reuse,
because it is not starting from the same set of pre-existing servers, but overall this experiment
confirms the better reuse of the dynamic programming algorithm, even when the algorithms are
applied on successive steps.

Note however that taking pre-existing replicas into account has an impact on the execution
time of the algorithm: in these experiments, GR runs in less than one second per tree, while
DP takes around forty seconds per tree.

Also, we point out that the shape of the trees does not seem to modify the general behaviour:
the results with trees where each node has between 2 and 4 children are depicted in Figure 6
and Figure 7.
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Figure 4: Experiment 1: increasing number of pre-existing servers.
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Figure 5: Experiment 2: consecutive executions of the algorithms.
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Figure 6: Experiment 1 with high trees.
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Figure 7: Experiment 2 with high trees.
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5.2 With power consumption

To study the practical applicability of the bi-criteria algorithm (DP) for the MinPower-
BoundedCost problem (see Section 4.3), we have implemented it with two modes W1 = 5
and W2 = 10, and compared it with the algorithm in [19]; this algorithm does not account for
power minimization, but minimizes the value of the maximal capacity W when given a cost
bound. More precisely, in the experiment we try all values 5 ≤ W ≤ 10, and compute the
corresponding cost and power consumption. To be fair, when a server has 5 requests or less,
we operate it under the first mode W1. Given a bound on the cost, we keep the solution that
minimizes the power consumption. We call GR this version of the algorithm in [19] modified
for power as explained above.

We randomly build 100 trees with 50 nodes each, and we select 5 nodes as pre-existing
servers. Clients have between 1 and 5 requests, so that a solution with replicas in the first mode
can always be found. The cost function is such that, for any i, i′ ∈ {1, 2}, createi = 0.1, deletei =
0.01 and changedi,i′ = 0.001. The power consumed by a server in mode i is Pi = 1

10W
3
1 + W 3

i .
In Figure 8, we plot the inverse of the power of a solution, given a bound on the cost (the higher
the better). If the algorithm fails to find a solution for a tree, the value is 0, and we average the
inverse of the power over the 100 trees, for both algorithms. For intermediate cost values, our
algorithm is much better than the version of [19] in terms of power consumption: GR consumes
in average more than 30% more power than DP, when the cost bound is between 29 and 34.

Here again, it takes more time to obtain the optimal solution with DP than to run the
greedy algorithm several times: GR runs in around one second per tree, while DP takes around
five minutes per tree. Also, we have performed some more experiments with slightly different
parameters, and got only little differences.

First, we look at the power part of the DP algorithm, running on trees without pre-existing
replicas (see Figure 9). For low bound costs, the two curves are close, because DP finds a
solution if and only if GR finds a solution, and the dissipated power is high; there is no significant
difference for other costs.

Then, we run the experiment on high trees (each internal node has from 2 to 4 children).
Results are shown in Figure 10. The ratio between the dynamic programming algorithm and
the greedy one is better than the ratio on fat trees for intermediate costs: when the bound cost
is between 22 and 27, GR consumes in average more than 40% more power than DP, and 60%
between 23 and 25.

Finally, in Figure 11, we show the results for a cost function such that deleting and creating
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Figure 8: Experiment 3: Power minimization.
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Figure 9: Experiment 3 without pre-existing replica.
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costs are high (more precisely, for any i, i′ ∈ {1, 2}, createi = deletei = 1 and changedi,i′ = 0.1).
Compared to the initial costs, the ratio between DP and GR is greater for lowest cost bounds,
because GR finds less solutions than DP. Indeed, DP can find solutions with lower cost, taking
pre-existing replicas into account.

5.3 Running time of the algorithms

Recall that the theoretical complexity of GR is of order O(N logN) (without power and without
pre-existing servers), while DP is of order O(N5), both for the version with power (two modes)
but without pre-existing servers, and for the version without power but with pre-existing servers.
In practice, the run times of GR are always very small (a few milliseconds). For DP, we have
plotted its run time as a function of N , see Figure 12. Run time measurements show that the
experimental values have a shape in N5, which confirms the theoretical complexity. Moreover,
our DP algorithms run in less than N5 microseconds for reasonable values of N , which allows
the use of these algorithms in practical situations.

Indeed, without power, we are able to process trees with 500 nodes and 125 pre-existing
servers in 30 minutes; with power and no pre-existing server, we can process trees with 300 nodes
in one hour. The algorithm with power and pre-existing servers is the most time-consuming: it
takes around one hour to process a tree with 70 nodes and 10 pre-existing servers.
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6 Conclusion

In this paper, we have addressed the problem of updating the placement of replicas in a tree
network. We have provided an optimal dynamic programming algorithm whose cost is at most
O(N5), where N is the number of nodes in the tree. This complexity may seem high for very
large problem sizes, but our implementation of the algorithm is capable of managing trees with
up to 500 nodes in half an hour, which is reasonable for a large spectrum of applications (e.g.,
such as database updates during the night).

The optimal placement update algorithm is a first step towards dealing with dynamic replica
management. When client requests evolve over time, the placement of the replicas must be
updated at regular intervals, and the overall cost is a trade-off between two extreme strategies:
(i) “lazy” updates, where there is an update only when the current placement is no longer
valid; the update cost is minimized, but changes in request volume and location since the last
placement may well lead to poor resource usage; and (ii) systematic updates, where there is
an update every time-step; this leads to an optimized resource usage but encompasses a high
update cost. Clearly, the rates and amplitudes of the variations of the number of requests
issued by each client in the tree are very important to decide for a good update interval. Still,
establishing the cost of an update is a key result to guide such a decision. When un-frequent
updates are called for, or when resources have a high cost, the best solution is likely to use our
optimal but expensive algorithm. On the contrary, with frequent updates or low-cost servers,
we may prefer to resort to faster (but sub-optimal) update heuristics.

Our main contribution is to have provided the theoretical foundations for a single step
reconfiguration, whose complexity is important to guide the design of lower-cost heuristics.
Also, we have done a first attempt to take power consumption into account, in addition to usual
performance-related objectives. Power consumption has become a very important concern, both
for economic and environmental reasons, and it is important to account for it when designing
replica placement strategies.

Even though our optimal algorithms have a high worst-case complexity, we have successfully
implemented all of them, including the most time-consuming scheme capable of optimizing power
while enforcing a bounded cost that includes pre-existing servers. We were able to process trees
with a reasonable number of nodes.

As future work, we plan to design polynomial time heuristics with a lower complexity than
the optimal solution. The idea would be to perform some local optimizations to better load-
balance the number of requests per replica, with the goal of minimizing the power consumption.
These heuristics should be tuned for dedicated applications, and should (hopefully!) build
upon the fundamental results (complexity and algorithms) that we have provided in this paper.
Finally, it would be interesting to add more parameters in the model, such as the cost of routing,
or the introduction of quality of service constraints.
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