
Optimizing buffer sizes for pipeline workflow
scheduling with setup times

Anne Benoit1, Jean-Marc Nicod2, and Veronika Rehn-Sonigo2

1. LIP, École Normale Supérieure de Lyon, CNRS & INRIA, France
2. FEMTO-ST Institute, UFC/ENSMM, Besançon, France

Abstract—Mapping linear workflow applications onto a set of
homogeneous processors can be optimally solved in polynomial
time for the throughput objective with fewer processors than
stages. This result even holds true, when setup times occur in the
execution and homogeneous buffers are available for the storage
of intermediate results. In this kind of applications, several
computation stages are interconnected as a linear application
graph, and each stage holds a buffer of limited size where
intermediate results are stored and a processor setup time occurs
when passing from one stage to another. In this paper, we tackle
the problem where the buffer sizes are not given beforehand
and have to be fixed before the execution to maximize the
throughput within each processor. The goal of this work is to
minimize the cost induced by the setup times allocating buffers
with proportional sizes of each other. We present a closed formula
to compute the optimal buffer allocation in the case of non-
decreasing setup costs in the linear application. For the case of
unsorted setup times, we provide competitive heuristics that are
validated via extensive simulation.

I. INTRODUCTION AND RELATED WORK

Several real-life applications have a linear pipelined struc-
ture, where each data set must go through all application stages
in a sequential manner. For instance, in image processing
applications, a flow of images (data sets) enters the pipeline
and must go through several stages such as filters, encoders,
and so on [1], [2], [3]. Other examples of such applications
are stream-processing applications composed of processing
elements [4], or pipelined query operators with precedence
constraints [5].

Such applications have been widely studied in the last
years, and in particular, when a large-scale platform consisting
of many processors is available, one difficulty is to decide
how to efficiently decompose the application into intervals of
stages, and then map each interval of stages onto a distinct
processor, so that work can be parallelized and the throughput
of the application can be improved. The throughput is defined
as the number of data sets that can be processed per time
unit. In the case of a homogeneous platform, Subhlock and
Vondran [6], [7] propose an algorithm to find the optimal
interval mapping. The problem becomes NP-complete as soon
as communications or computations are heterogeneous [8].

However, in the previous studies, the cost of switching
between stages of the application on one processor (if it was
assigned more than one stage) is completely neglected: the first
data set goes sequentially through all stages assigned to this
processor, then the processor starts processing the second data
set, and so on. Therefore, once a data set has been processed

for a given stage, the processor must get ready to execute a
new stage (either on the same data set, or on the next data set).
The cost of switching between stages is called a setup time,
and these cannot be neglected in several applications covering
many domains, see the survey [9]. For instance, setup times
may appear when there is a need to swap resources, or to load
a different program in memory, e.g., to change the compiler
in use [10].

A traditional solution to reduce setup times consists in
using buffers between each stage, so that several data sets can
be processed consecutively on the same stage before moving
to the next stage. It was already proved that if the setup time
depends both on the previous stage and on the next stage,
then the problem is NP-complete [11]. They are considering
a different context of a flowshop application where each data
set takes a different execution time on each machine, but they
have a similar model with finite buffers and setup times. Other
scheduling problems with the same model have been studied,
as for instance in the context of the manufacturing of gas
insulated switchgears [12].

In our previous work [13], we have introduced the inner-
processor scheduling problem: consider a single processor that
is in charge of a linear chain of stages, and a set of buffers that
can hold in memory some data sets between two consecutive
stages. We have shown that in the general case, it is difficult
to decide in which order each data set and each stage should
be executed, so that the throughput is maximized. Note that
on a single processor, maximizing the throughput is done by
minimizing the sum of all setup times, which are slowing down
the whole application. However, if buffers are of proportional
size, i.e., the two buffers before and after each stage are always
multiple of each other in terms of number of data sets that they
can handle, then we proposed some optimal inner-scheduling
algorithms to decide in which order to execute stages (and data
sets).

In this paper, we go one step further and we tackle the
difficult problem of deciding how to allocate memory to buffers
so that the throughput can be maximized. Indeed, with a fixed
size memory, the naive approach is to split memory between
buffers so that each buffer can hold the same number of data
sets. However, this approach is unduly restrictive in the case
of heterogeneous setup times: one would like to favor large
buffers surrounding a costly stage so that less corresponding
setup times are paid. One difficulty is that we will gain setup
costs only if both of these surrounding buffers are large, hence
using more memory. To keep the problem tractable, we focus
on sequence-independent setup times, where the setup time

only depends on the next stage to which the processor will
reconfigure.

The paper is organized as follows. We first detail the
framework in Section II. Then we illustrate our reasoning
through a simpler case study with only two different setup
costs in Section III. The core of the study is in Section IV. We
first prove how to find the optimal ratios between consecutive
buffers, in the case of non-decreasing setup costs. Then we
introduce several heuristics for the general case, building
upon the ratios obtained before. One difficulty is to round
the non-integer ratios into integer values without exceeding
the total memory capacity (or leaving too much memory
unused), and also to decide when it is worth having two large
buffers surrounding a stage with a costly setup time. Extensive
simulations are provided in Section V, demonstrating the
efficiency of the heuristics that carefully choose the buffer
sizes, compared to the naive solution with same-size buffers.
Finally, we conclude and give future research directions in
Section VI.

II. FRAMEWORK

The application is a linear workflow application, or
pipeline. It continuously processes a huge amount of consecu-
tive data sets. Formally, a pipeline is expressed as a set S of n
stages: S = {S1, . . . , Sn}. Each data set is fed into the pipeline
and traverses the pipeline from one stage to another until the
entire pipeline is passed. A stage Si receives a task of size
δi from the previous stage, treats the data set, which takes a
number of wi computations, and outputs data of size δi+1. The
output data of stage Si is the input data of the next stage Si+1.
Note that δ1 and δn+1 are respectively the size of the input
and output data of the application.

To switch from the execution from a stage Si to a stage Sj ,
the processor has to be reconfigured for the next execution.
This induces a setup time, denoted as sti for stage Si (1 ≤
i ≤ n). Typically, the setup time only depends on the next
stage Si to which the processor will reconfigure.

If setup times can be neglected, the easiest way to proceed
is to deal with the first data set, processing it through stages S1

to Sn, and then continue with the next data set. This implies
a reconfiguration cost for each stage and each data set.

Rather, in order to avoid too many setup times, intermediate
results can be stored in buffers. Therefore, each stage Si (1 ≤
i ≤ n) has an input buffer Bi that can store a number bi of
data sets. The output buffer for stage Si is Bi+1 (hence a total
of n+1 buffers). The number of consecutive computations of a
same stage that can be done is bounded by the input buffer and
output buffer capacities: the processor is able to process data
sets for a stage Si as long as Bi is not empty, and Bi+1 is not
full, and it is bounded by min(bi, bi+1) consecutive executions.
The sizes of these buffers are limited by the total memory
size M ; the memory constraint writes:

n+1∑
i=1

δi × bi ≤M. (1)

It was shown in [13] that deciding in which order to execute
stages is a difficult problem, even with constant setup times. If

all the data sizes (the δi’s) are equal, then it seems natural to
have same-size buffers, and to process, say, b data sets through
the first stage, then the same data sets through the second
stage, and so on, and then start over with the next b data
sets. However, if buffers are of different sizes, it is extremely
difficult to figure out the best way of scheduling the stage
execution, unless the buffers are of proportional sizes, i.e., for
1 ≤ i ≤ n, either bi/bi+1 or bi+1/bi is integer. In this case,
we can design a scheduling of stages such that the cost is:

C =

n∑
i=1

sti
min(bi, bi+1)

. (2)

Indeed, each data set is going through all stages, but it
may pay a setup cost only for some of the stages. In average,
because stage Si can be executed min(bi, bi+1) times without
paying a setup cost, the cost incurred by a data set in stage Si
is sti

min(bi,bi+1)
, hence the result.

Note that minimizing the cost C is equivalent to maximiz-
ing the application throughput, defined as the inverse of the
period

∑n
i=1

wi

s + C, where s is the processor speed (hence
it takes a time wi

s to compute one data set for stage Si).

Finally, the goal is to minimize C, given the memory
constraint stated in Equation (1).

We start with a simpler case study with only two different
setup costs in Section III, before moving to the general
problem in Section IV.

III. WITH TWO DIFFERENT SETUP COSTS

We first consider that only one task has a different setup
cost than the others, that is larger. For simplicity, we consider
identical data sizes in this section, i.e., δi = 1 for 1 ≤ i ≤
n+ 1.

If all tasks have identical setup time st except one (say
Si) with setup time ST > st, it is natural to have identical
buffer sizes, b, except for the input and output buffers of Si:
bi = bi+1 = B ≥ b. Therefore, less setup cost must be paid
for task Si. The cost can then be expressed as:

C =
st

b
× (n− 1) +

ST

B
.

There are two buffers of size B and n−1 buffers of size b,
and therefore the memory constraint writes (remember that
δi = 1):

M > (n− 1)b+ 2B. (3)

It was shown in [13] that an efficient schedule can be found
only if two consecutive buffers are multiples. Therefore, we
assume that B = α × b, where α is an integer (and α ≥ 1).
Note that α 6

⌊
M−(n−1)

2

⌋
, the largest value being possibly

achieved in the case b = 1.

Now we replace B by α×b in Equation (3) and we obtain:

b 6
M

(n− 1) + 2α
.

The goal is to find the value of α, and therefore the values
of b and B, so that the cost C is minimized. We first consider
that b can be rational, and then we will explain how to choose
integer values. Therefore, we set b = M

(n−1)+2α . The cost can
then be expressed as a function of α:

C(α) =
1

M

(
ST (n− 1 + 2α)

α
+ st(n− 1 + 2α)(n− 1)

)
,

and the derivative is

C ′(α) =
n− 1

M

(
2st− ST

α2

)
.

The function C ′(α) is decreasing for 1 ≤ α ≤
√

ST
2st =

αopt, and increasing for α ≥ αopt. If αopt >
⌊
M−(n−1)

2

⌋
, then

we let αopt =
⌊
M−(n−1)

2

⌋
.

Finally, we compute the optimal integer values of b and B
for α = bαoptc and α = dαopte, and we keep the choice of α
that minimizes the cost.

IV. OPTIMIZING THE BUFFER SIZES WITH DIFFERENT
SETUP COSTS

We are now back to the general problem with n different
setup costs. We first focus on the case where all setup costs
are non-decreasing. Therefore, the buffers get larger and larger
when we move towards the end of the pipeline. We aim at
keeping buffer sizes that are multiples two by two, so that
we can easily derive a scheduling algorithm that achieves the
minimum period, without additional cost (see [13]).

A. All setup costs are non-decreasing

With non-decreasing setup costs, we always have
min(bi, bi+1) = bi, and therefore the cost function of Equa-
tion (2) becomes

C =

n∑
i=1

sti
bi
,

with bi+1 ≥ bi. Because all bi’s should be multiple, we set
bi =

∏i
k=1 αk, for 1 ≤ i ≤ n + 1. We therefore have n + 1

unknowns αk, for 1 ≤ k ≤ n + 1, and bi = αibi−1, for
1 ≤ i ≤ n+ 1, assuming that b0 = 1.

For 1 ≤ i ≤ n, we express αi as a function of the αk’s,
with k > i. Then, we obtain an expression for αn+1, and we
can recursively derive all values of αi. All these values that
optimize the cost function C are rational, and we will round
them to integer values in a later step.

For the ease of notations, let P ba =
∏b
`=a α`, and P ba = 1

for a > b.

First, we obtain α1 thanks to the memory constraint:

α1 =
M

δ1 +
∑n+1
k=2 P

k
2 δk

. (4)

Next, we express the cost as a function of α2, replacing
α1 by its optimal value:

C(α2) =

n∑
k=1

stk
P k1

=
1

α1

(
st1 +

n∑
k=2

stk
P k2

)

=

(
δ1
M

+
α2

M

n+1∑
k=2

P k3 δk

)(
st1 +

1

α2

n∑
k=2

stk
P k3

)
.

This function is of the form aα2 + b
α2

+ c, and therefore

the minimum is achieved for α2 =
√

b
a , which gives us:

α2 =

√√√√ δ1
M

∑n
k=2

stk
Pk

3

st1
M

∑n+1
k=2 P

k
3 δk

=

√
δ1
st1

∑n
k=2 stkP

n
k+1

Pn3
∑n+1
k=2 P

k
3 δk

.

We prove recursively that

αi =

√
δi−1
sti−1

∑n
k=i stkP

n
k+1

Pni+1

∑n+1
k=i P

k
i+1δk

(5)

for i ≥ 2. Furthermore, we prove that minimizing the cost
C(αi) for fixed values of αk, i < k ≤ n+ 1, is equivalent to
minimizing the function

∆i(αi) =

(
δi−1
M

+
αi
M

n+1∑
k=i

P ki+1δk

)(
sti−1 +

1

αi

n∑
k=i

stk
P ki+1

)
.

We have already shown these results for i = 2, because we
have exactly C(α2) = ∆2(α2).

Let us assume that the results are true for all values smaller
than or equal to i, and let us establish the result for αi+1. We
express ∆i as a function of ∆i+1, assuming that the optimal
value of αi is used in the expression of the cost. Let a =
αi

M

∑n+1
k=i P

k
i+1δk and b =

∑n
k=i

stk
Pk

i+1

. We can rewrite ∆i as:

∆i =
sti−1δi−1

M
+ sti−1aαi +

δi−1
Mαi

b+ ab.

Because of the hypothesis, αi is minimizing ∆i, and because
of the form of ∆i, we have αi =

√
b
a

δi−1

Msti−1
, and

∆i =
sti−1δi−1

M
+ 2

√
sti−1δi−1

M
ab+ ab.

It is then easy to check that ab = ∆i+1 by developing the
product, and the only terms in αi+1 appear in ∆i+1. Therefore,
in order to minimize the cost expressed as a function of αi+1,
we need to minimize ∆i+1(αi+1). This result is obtained
directly, similarly to the way we obtained α2, thanks to the
form of the function.

This holds for i ≤ n, and we note that αn+1 = 1 (no gain
can be achieved by having a larger last buffer). Therefore, we
derive the value of

αn =

√
δn−1
stn−1

stn
δn + δn+1

. (6)

We can therefore compute all optimal rational values of
the αi’s. Interestingly, αi depends only of the δk’s and of the
stk’s for k ≥ i−1. Only α1 accounts for M , because all other
values are ratios.

We will discuss how to choose integer values in Sec-
tion IV-B. Indeed, the integer value αi can be either dαie
or bαic. For all 1 ≤ i ≤ n+ 1, each choice for αi influences
the value of the cost. Consequently, we have potentially to
consider 2n+1 different configurations. Moreover, the limited
memory size M is an additional constraint to these choices.
It is why we choose the integer value of each αi using three
heuristics (Up, Down and Closest) detailed in the next section.

B. General case

In the general case, it is no longer possible to foresee if
the value of min(bi, bi+1) is bi or bi+1 when computing the
overhead C given by Equation (2). However, intuitively, if
stage Si has a larger setup time than Si−1 and Si+1 (for 1 <
i < n), the capacity of its input and output buffers should be
larger than or equal to the capacity of the input buffer of Si−1
and of the output buffer of Si+1, and both of these buffers
should have the same size, so that we can run stage Si exactly
bi = bi+1 times before paying a setup time.

Our goal is to reuse the theoretical results derived in
Section IV-A. One possibility would have been to compute the
optimal values of the ratios between buffers for each sequence
of stages whose setup costs are monotonic, but then it is very
difficult to decide how to share memory between each of
these sequences of stages. Rather, we decide to sort all setup
costs and compute the ratios as in Section IV-A, and then we
heuristically decide how to choose integer values of buffer size
capacities, while not exceeding the total memory capacity.

We now describe seven heuristics to compute buffer capac-
ities. The first one, described in Section IV-B1, uses identical
buffer capacities. There are obviously some cases where this
naive approach will be optimal, but we then introduce heuris-
tics that target applications with heterogeneous setup times, for
which it may be better to derive buffer capacities of different
sizes. There are two categories of heuristics (Sections IV-B2
and IV-B3), with three variants per heuristic depending on the
rounding strategy used to obtain integer values.

1) SameB: The first heuristic SameB is the naive approach
that we mentioned in Section I that consists in sharing the
memory M into n+1 buffers with identical capacity, i.e., they
can hold the same number of data sets. For 1 ≤ i ≤ n + 1,
buffer Bi contains data of size δi, and for a capacity b, it will
therefore use an amount of memory b×δi. Therefore, the buffer
capacity b for the SameB heuristic is defined as follows:

b =

⌊
M∑n+1
i=1 δi

⌋
. (7)

As said before, since the bi’s are proportional two by two,
a solution with different buffer capacities imposes that we have
at least bi = 2 × bj for 1 ≤ i, j ≤ n + 1. Therefore, because
the memory size is limited and has to be shared between all
buffers, choosing the same buffer capacities could be the best
compromise.

2) H1-Up, H1-Down and H1-Closest: We propose a set
of heuristics, building upon the theoretical results of Sec-
tion IV-A, as explained above. For stages with a local maxi-
mum setup times, we plan to adapt the buffer size as shown
in Figures 1, 2 and 3, depending on the available memory
space. For simplification, we assume that the last buffer is of
identical size as the input buffer for stage Sn, i.e., bn = bn+1.
The implemented heuristics are described as follows:

1) We first sort the setup values into a non-decreasing order,
using a permutation function π such that stπ(i) ≤ stπ(j)
if π(i) < π(j), for 1 ≤ i, j ≤ n. We then compute
the sequence of the αk’s backwards according to Equa-
tions (6), (5), (4), so that bπ(i) =

∏π(i)
k=1 αk. But, because

the stage Sn has not necessarily the biggest setup time
(stn ≤ max1≤i≤n(sti)), we have to foresee a room
for the buffer bn+1 in order to anticipate the memory
usage to be able to end the computation of the αk’s.
As mentioned before, αn+1 = 1 allows us to obtain
bn = bn+1 in the non-decreasing case described in the
previous section. Now we have to know the position of
stn within the sorted sequence of setups (π(n)) to be able
to insert απ(n)+1 = 1 into the sequence by shifting the
end of the sequence. This can also be done by artificially
adding an extra stage Sn+1 with stn+1 = stn before the
sorting process. Then we obtain the sequence of αk’s,
1 ≤ k ≤ n+ 1.

2) We define three rounding policies (resp. Up, Down and
Closest) to obtain an integer value for each αk so as
to compute each value of bk =

∏k
`=1 α` for 1 ≤ k ≤

n + 1 since bk ∈ N∗. We make our best to increase
αk to dαke to increase the buffer capacity of Bπ−1(k)

and to reduce as far as possible the total setup cost.
However, each αk is an optimal theoretical rational value
that minimizes the cost C, and increasing its value is
not always possible because of the limited memory M
available on the machine. Let α̂k be the integer value
chosen for αk. H1-Up, H1-Down and H1-Closest are
three different heuristics corresponding to three respective
ways to choose an integer value for αk:

a) H1-Up: we consider αk from k = 1 to n + 1 and for
each value of k, we set α̂k = dαke if the memory
use is less than or equal to the memory size M , and
α̂k = bαkc otherwise. Note that when we set an αk
to the lower integer part, the size of the available
memory is increasing, hence leading more room for
further upgrades of the remaining αk’s.

b) H1-Down: we proceed as before, but we consider the
αk’s in a decreasing order, from n+ 1 to 1.

c) H1-Closest: with this last policy, we do not try to force
each time the value of αk to dαke but to bαkc if αk−
bαkc < 0.5 and to dαke otherwise. The memory size
is also taken into account to validate or not the choice
of dαke for α̂k, considering that the choice of bαkc is
always possible.

3) We compute each bk with 1 ≤ k ≤ n+1 using the integer
values α̂` of α` with 1 ≤ ` ≤ k and 1 ≤ k ≤ n+ 1;

4) We replace each value of bk to its original position to
become the size of Bπ−1(k) within the pipeline using the
function π−1(k) for each k, 1 ≤ k ≤ n+ 1.

5) We then consider each stage Si that is a local maximum

bi+1bi−1 bi bi+1 bi−1 bi

Figure 1. Adapting the buffer size to bi when the available memory is large
enough.

bi+1bi−1 bi bi+1 bi−1 bi

Figure 2. Adapting the buffer size to bi+1 when the available memory is
not large enough.

in terms of setup costs, i.e., sti = max(sti−1, sti, sti+1)
(for 1 < i < n). As we said before, bi should be equal
to bi+1 even if we plan to take advantage of the whole bi
inputs of Si, in order to reduce the overhead caused by
the sti setup cost. Therefore, we want ideally to increase
the allocated memory of the output buffer of Si, as shown
in Figure 1. As bk =

∏k
`=1 α̂`, if bi+1 < bi then there

is at least a factor of 2 between bi and bi+1. This re-
allocation phase is a very memory consuming process. In
some cases, increasing the capacity of output buffer Bi+1

of the stage Si from bi+1 to bi may not be possible. When
the available memory is not large enough to increase the
value of bi+1, we re-allocate the memory as follows. We
reduce the value of bi to max(bi−1, bi+1) as shown in
Figure 2 when bi+1 = max(bi−1, bi+1) and in Figure 3
when bi+1 = max(bi−1, bi+1). In this way, the available
memory size is increasing step by step and may make one
or more re-allocations as presented in Figure 1 possible.

The three heuristics H1-Up, H1-Down and H1-Closest are
compared together in Section V that shows simulations onto
numerous scenarios.

3) H2-Up, H2-Down and H2-Closest: Because of the lim-
ited memory space, giving a larger number of inputs as far as
possible to stages that are bigger than the others could appear
as a good deal to reduce the value of C compared to sharing
this extra memory space to each buffer bi with 1 ≤ i ≤ n+ 1.
We introduce three new heuristics H2-Up, H2-Down and H2-
Closest that aim at changing the number of inputs of each Si+1

bi+1bi−1 bi bi+1 bi−1 bi

Figure 3. Adapting the buffer size to bi−1 when the available memory is
not large enough.

when sti = max(sti−1, sti, sti+1) for all 1 < i < n, even if
the memory space is not large enough. H2-Up, H2-Down and
H2-Closest are designed as follows:

1) We follow the first four steps for each of the three
heuristics H1-Up, H1-Down and H1-Closest to begin
respectively the three new heuristics H2-Up, H2-Down
and H2-Closest. For instance, each bi computed using H2-
Up has the same value as with H1-Up after the step (4) of
H1-Up description (before dealing with local maximum
setup costs).

2) For each stage Si with sti = max(sti−1, sti, sti+1)
(1 < i < n), we propose to force bi+1 to take the value
of bi to decrease as far as possible the impact of the large
values of sti in the expression of C (see equation (2)),
even if there is not enough available memory. Figure 1 il-
lustrates how the re-allocation phase works. As explained
in the previous section in the step (5) of H1-*, this re-
allocation phase is a very memory consuming process. To
make this operation possible, we repair the memory loss
by changing the proportionality between each buffer as
explained in the next step.

3) We re-compute the value of α̂1 as follows: as α1 is
designed to take advantage of the memory considering the
already computed values of each αk with 1 < k ≤ n+ 1,
using Equation (4) but by using only integer numbers, it
is possible to re-evaluate α1 considering the same formula
by changing P k2 to bk/α̂1 since bk =

∏k
`=2 α̂`× α̂1. The

values of the bk are considered in the order given by the
π function. Let α′1 be the new rational value of α1:

α′1 =
M

δ1 +
∑n+1
k=2

bk
α̂1
δk
. (8)

4) We round down α′1 to give an integer value to α̂1
′.

Because of the limited memory space, the only possible
value for α̂1

′ is bα′1c. We are then able to compute each
b′k value and we replace each value of bi by b′k where
π(i) = k or π−1(k) = i. Let b′i = b′π−1(k) be the
new number of input data sets of the buffer Bi. The
relation between b′i and b′i+1 is maintained in spite of the
computation of α̂1

′. The re-allocation process guarantees
that the available memory size is greater than zero.

The previous description leads to define H2-Up, H2-Down
and H2-Closest that will also be compared with the previous

heuristics.

Simulations in the next section aim at highlighting that it
can be very interesting to find the appropriate buffer capacity,
so that the impact of the setup costs on the performance of the
system can be significantly decreased.

V. SIMULATION RESULTS

In order to evaluate the different heuristics, we conduct
several simulations. Our major goal is to demonstrate the im-
portance of an intelligent buffer allocation and its influence on
the setup cost. All task sizes are set to δi = 1, hence allowing
a better comparison of the different solutions. Therefore, the
memory size is expressed in terms of total buffer capacities,
and we consider in all experiments that M varies between
4000 and 14000.

In all the simulations, we use two mechanisms to create
the values of the setup costs.

• Rand1 – In the first approach, the setup costs are
randomly drawn between 5 and 100001 with a step
size fixed in the experiment. This means for a step size
of x, the random variable can take its value among the
values 5 + k × x < 100001. This leads to setups of
different costs, but which may vary only slightly. The
setup costs may even zigzag with alternate small and
high values.

• Rand2 – The second approach aims at generating
setup costs that differ highly and secondly promise
to achieve more of a wave shape than a zigzag. For
this purpose, the setup costs belong to one of x setup
types, fixed for each simulation. Each setup type ti is
drawn randomly a value xi between 1 and 9, with the
constraint that type ti = xi × 10i−1, for 1 ≤ i ≤ x.
Then, for each setup type, we randomly fix the number
of stages that belong to each setup type, with the
constraint that #(ti) ≥ #(ti+1).

A. Non-decreasing setup costs

In the first experiment, we evaluate the behavior of the
heuristics for applications with non-decreasing setup costs. In
this case, we can compute the optimal rational buffer sizes as
described in Section IV-A. The final buffer sizes then solely
depend on the rounding technique used to convert the rational
solution into an integer solution. Note that in this application
type, both the H1 and H2 versions of Up, Down and Closest
behave exactly the same way as no buffer adaption has to
be done. Figure 4 shows the results for applications with 70
stages and memory varying from 4000 to 14000: Figure 4(a)
contains the results obtained with Rand1 (step size 122),
whereas Figure 4(c) shows the results of the simulations with
Rand2. Figure 4(b) shows the details of Figure 4(a). All graphs
plot the mean values of the cost of 100 different applications.
As can be seen, the heuristic SameB is outperformed in both
cases. Still, in the case of platforms with low variance of
setup costs (Rand1, Figure 4(a)), SameB performs almost as
good as the best heuristics of H1 and H2, namely H1-Up,
H2-Up, H1-Closest, and H2-Closest. Both H1-Down and H2-
Down perform poorly. Here we can state the importance of
the rounding policy: the Down heuristics tend to increase the

 0

 50000

 100000

 150000

 200000

 250000

 4000 6000 8000 10000 12000 14000

c
o
s
t

memory size

70 stages, step size 13, 100 runs

H1-Up
H2-Up

H1-Closest
H2-Closest

H1-Down
H2-Down

SameB

(a) Applications with randomly increasing setup costs.

 0

 10000

 20000

 30000

 40000

 50000

 60000

 4000 6000 8000 10000 12000 14000

c
o
s
t

memory size

70 stages, step size 13, 100 runs

H1-Up
H2-Up

H1-Closest
H2-Closest

H1-Down
H2-Down

SameB

(b) Detail: Applications with randomly increasing setup costs.

 0

 5000

 10000

 15000

 20000

 4000 6000 8000 10000 12000 14000

c
o
s
t

memory size

70 stages, 6 types, 100 runs

H1-Up
H2-Up

H1-Closest
H2-Closest

H1-Down
H2-Down

SameB

(c) Applications with 6 setup types.

Figure 4. Mean cost for applications with 70 stages and non-decreasing setup
costs.

α-factor of big buffers, whereas the other strategies tend to
increase globally the buffer sizes, which leads to smaller buffer
size differences. Hence the strategies Closest and Up allow us
to better reflect the setup behavior. In the case of platforms
with very heterogeneous setup costs (Figure 4(c)), all H1 and
H2 heuristics outperform SameB. We achieve results up to
5.5 times better than SameB (H2-Closest for M = 6000).
The Down heuristics are still slightly outperformed by Closest
and Up. The defeat of SameB is due to additional setups
that have to be performed for stages with high setup costs,
as SameB allocates less for these expensive stages than the

other strategies.

B. General case: setup costs in wave shape

The second series of simulations tests the behavior of our
heuristics on general platforms.

Rand1 creates general applications with the following prop-
erties: first, setup costs are heterogeneous, but often within the
same order of magnitude; second, as already mentioned, setup
costs tend to zigzag, which imposes to allocate larger buffers
to stages with small setup costs in order to be able to benefit
of the larger buffer as output buffer for a stage with large
setup cost. Results for such applications are shown in Figure 5.
The behavior of the heuristics is similar to the case of non-
decreasing applications, with one important difference: SameB
slightly outperforms the other heuristics and we find the
previous ranking within the rounding heuristics: H2-Closest
and H2-Up are better than H1-Up and H1-Closest. H1-Down
is remarkably worse than the others and H2-Down performs
the worst. Figure 5(a) shows the result of one application
with 70 stages and step size 122. The cost of each heuristic
is normalized by the cost of SameB. Hence SameB has a
ratio of 1. When the memory size is fixed to 8000, H2-Up
and H2-Closest also achieve 1, and H1-Up and H1-Closest
obtain a ration of 1.1. H1-Down achieves 3.4 and H2-Down
finally has a ratio of 5.1. The good performance of SameB
is due to the characteristics of Rand1 generated applications
and its better performance in comparison to applications with
non-decreasing setup costs can be explained as follows. The
zigzag of setup values asks for same buffer sizes, because we
need at least two consecutive large buffers to save setup costs,
hence the good performance of SameB. For non-decreasing
applications, it can be necessary to increase the buffer sizes at
the end of the application to save some setups for high setup
costs, hence SameB is outperformed. Figure 5(b) shows the
mean cost of 100 applications with 70 stages. We observe that
the previous ranking holds true and with increasing memory
size, the total setup cost decreases as more buffer slots can be
allocated for each stage. The relative performance nevertheless
stays the same.

We then test the behavior of the heuristics on applications
generated with Rand2. These applications have the following
properties: first, successive buffers are either the same or
they differ at least of one order of magnitude; second, short
applications have at least one peak, whereas large applications
have several peaks. We hence expect our heuristics to better
cope with the peaks than SameB.

Figure 6 shows the results of an application with 200 stages
and memory varying from 4000 to 20000 and we plot the
results for 4, 5 and 6 setup types. The results of all heuristics
are normalized with the result of SameB. A first observation
reveals that the entire series of H1 heuristics performs awfully
bad. Indeed, their ratio in general exceeds 2 (3 and 4) for
4 (5 and 6) setup types, respectively (Figures 6(a), 6(b) and
6(c)). This means that H1-Up, H1-Closest and H1-Down are
at least two times worse than SameB. As already explained
in Section IV, to be able to benefit from a large buffer, we
need at least two of them to be able to gain in setups as
we can perform stage Si min(bi, bi+1) times without paying
a setup cost. As the computation of the α-values does not

 0

 2

 4

 6

 8

 10

 12

 4000 6000 8000 10000 12000 14000

c
o
s
t

memory size

70 stages, step size 122

H1-Up
H2-Up

H1-Closest
H2-Closest

H1-Down
H2-Down

SameB

(a) Cost for one random application.

 0

 50000

 100000

 150000

 200000

 4000 6000 8000 10000 12000 14000

c
o
s
t

memory size

70 stages, step size 122, 100 runs

H1-Up
H2-Up

H1-Closest
H2-Closest

H1-Down
H2-Down

SameB

(b) Mean cost for 100 random applications.

Figure 5. Platform with 70 stages, setup costs are randomly generated.

anticipate this fact, the H1 heuristics adapt the buffer sizes in
consequence (Section IV-B2 step 5). As sometimes there will
not be enough remaining available memory, the big buffers
have to be reduced and H1 loses its advantage over SameB.

A further observation then shows that SameB is outper-
formed by all H2 heuristics. For example, in the case of 4
setup types and M = 8000 (see Figure 6(a)), H2-Up achieves
a ratio of 0.69, H2-Down a ratio of 0.79 and H2-Closest
achieves 0.86. This ranking holds true for the case of 4
setup types: H2-Up outperforms H2-Down, which outperforms
H2-Closest, which outperforms SameB. When the number
of setup types increases, the ratio between H2 and SameB
further increases. For instance, in the case of 5 setup types
(Figure 6(b)), the H2 heuristics are almost twice as efficient
as SameB. In the case of 6 setup types (Figure 6(c)), we
make the following observation: when there is only a small
memory size (M ≤ 5000 for setup costs up to 900000), then
not all of the H2 heuristics are able to provide a solution.
Indeed, H2-Closest and H2-Down lack in finding a valid buffer
allocation. More precisely, they are not capable to adjust the
buffers within the remaining available memory, once the αi-
values (1 < i ≤ n + 1) are fixed. They provide an α1 < 1
and hence there is not sufficient memory left to round to 1.
When the initial memory however is reasonably high, they
once again provide competitive solutions, see Figure 6(d) for
a zoom on H2 and SameB. H2-Up achieves results more than
three times better than SameB (0.31 for M = 15000 and
M = 18000). However, there is no ranking within the H2

heuristics observable. Each strategy outperforms the others on
different memory sizes. The poorest ratio is given by H2-Down
for M = 12000 with a value of 0.59, which means that its
performance is still 1.69 times better than SameB.

To validate our observations on one application with 200
stages, we plot in Figure 7 the mean result over 100 ap-
plications for H2 and SameB. The cost C decreases with
increasing memory and the H2 heuristics achieve results that
are in average 2.7 times better than the results found with
SameB.

C. Summary

To summarize our results, we were able to show the
importance of the different rounding techniques on the final
result. Also, the naive heuristic SameB, where memory is
distributed equally under the stages is efficient but in general
cases a more intelligent way to distribute the memory leads to
considerably better solutions.

We can state that in applications with little variance in
setup sizes or zigzag of setup sizes from one stage to another
(Rand1), the simple SameB heuristic achieves comparable
results to the Up and Closest (resp. H1 and H2) heuristics:
For non-decreasing setup cost applications, SameB is slightly
outperformed and in the general case, SameB is almost always
better than H1 and H2, but the gap is negligibly small.
Both Down heuristics however are to be avoided and are not
competitive.

When applications provide at least one peak or have very
diverging setup costs (Rand2), the simple SameB approach
fails completely in performance. For non-decreasing setup cost
applications, all H1 and H2 heuristics achieve at least 2 times
better costs than SameB. For general applications, we state that
H1 performs very poorly, but the H2 versions perform better
than SameB.

To conclude, we propose to use H2 when peaks of large
setup costs occur in the application, then test the three H2
versions and take the best.

VI. CONCLUSION

In this paper, we investigate the problem of allocating
memory to buffers of a linear pipelined multi stage application
in order to maximize the throughput when a setup cost has to
be paid to switch from one stage to another. A naive approach
consists in allocating the same buffer capacity to all stages,
which allows each stage to save the same number of setups. We
demonstrate in our work that this straightforward approach is
only efficient in cases of applications with homogeneous setup
times or in particular cases of small fluctuations or zigzags in
setup times. In the case where setup times are heterogeneous,
this strategy is unduly restrictive. We provide a theoretical
study of applications where only one setup time differs from
the others and extend this result to applications with non-
decreasing setup costs. We give an optimal rational optimal
solution of the problem in the latter case and provide a solution
to obtain an efficient integer solution. For general applications,
we adapt our solution and propose seven heuristics, the naive
solution and six more complex ones based on the theoretical
study. Numerous simulations based on exhaustive scenarios

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4000 6000 8000 10000 12000 14000 16000 18000 20000

c
o
s
t

memory size

200 stages, 4 types, 100 runs

H1-Up
H2-Up

H1-Closest
H2-Closest

H1-Down
H2-Down

SameB

(a) 4 setup types.

 0

 1

 2

 3

 4

 5

 4000 6000 8000 10000 12000 14000 16000 18000 20000

c
o
s
t

memory size

200 stages, 5 types, 100 runs

H1-Up
H2-Up

H1-Closest
H2-Closest

H1-Down
H2-Down

SameB

(b) 5 setup types.

 0

 2

 4

 6

 8

 10

 4000 6000 8000 10000 12000 14000 16000 18000 20000 22000

c
o
s
t

memory size

200 stages, 6 types

H1-Up
H2-Up

H1-Closest
H2-Closest

H1-Down
H2-Down

SameB

(c) 6 setup types.

 0

 0.5

 1

 1.5

 2

 4000 6000 8000 10000 12000 14000 16000 18000 20000 22000

c
o
s
t

memory size

200 stages, 6 types

H1-Up
H2-Up

H1-Closest
H2-Closest

H1-Down
H2-Down

SameB

(d) Details for 6 setup types.

Figure 6. Platform with 200 stages, increasing memory and different number
of setup types.

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 160000

 4000 6000 8000 10000 12000 14000 16000 18000 20000 22000

c
o
s
t

memory size

200 stages, 6 types, 100 runs

H1-Up
H2-Up

H1-Closest
H2-Closest

H1-Down
H2-Down

SameB

Figure 7. Mean results over 100 applications with 200 stages and 6 setup
types, zoom on H2 and SameB.

show the relevance of our approach. The results show that our
heuristics outperform the naive solution in all cases. Indeed,
we achieve, depending on the application type, solutions that
are up to 3.3 times better than the naive approach.

In future work, we plan to consider applications where
setup times obey to wave shaped costs. In this case, from one
subsequence of stages with monotonic setup costs to another,
the proportionality of the buffer sizes is no longer mandatory
even if both the input and the output buffer sizes of the stage
whose setup is placed onto a peak have to be equal. This novel
approach promises to be interesting from a theoretical point of
view.

Acknowledgements: This work was supported in part by the
ANR RESCUE project and by the Labex ACTION project
(contract “ANR-11-LABX-01-01”). A. Benoit is with the In-
stitut Universitaire de France.

REFERENCES

[1] R. Ramanath, W. Snyder, Y. Yoo, and M. Drew, “Color image process-
ing pipeline,” Signal Processing Magazine, IEEE, vol. 22, no. 1, pp.
34–43, Jan 2005.

[2] F. Guirado, A. Ripoll, C. Roig, A. Hernàndez, and E. Luque, “Exploiting
throughput for pipeline execution in streaming image processing
applications,” in Proceedings of the 12th international conference
on Parallel Processing, ser. Euro-Par’06. Berlin, Heidelberg:
Springer-Verlag, 2006, pp. 1095–1105. [Online]. Available: http:
//dx.doi.org/10.1007/11823285 115

[3] T. D. R. Hartley, A. Fasih, C. A. Berdanier, F. Özgüner, and Ü. V.
Çatalyürek, “Investigating the use of gpu-accelerated nodes for sar
image formation,” in CLUSTER, 2009, pp. 1–8.

[4] S. Schneider, H. Andrade, B. Gedik, A. Biem, and K.-L. Wu,
“Elastic scaling of data parallel operators in stream processing,”
in Proceedings of the 2009 IEEE International Symposium on
Parallel&Distributed Processing, ser. IPDPS ’09. Washington, DC,
USA: IEEE Computer Society, 2009, pp. 1–12. [Online]. Available:
http://dx.doi.org/10.1109/IPDPS.2009.5161036

[5] J. Burge, K. Munagala, and U. Srivastava, “Ordering pipelined query
operators with precedence constraints,” Stanford InfoLab, Technical
Report 2005-40, 2005. [Online]. Available: http://ilpubs.stanford.edu:
8090/705/

[6] J. Subhlok and G. Vondran, “Optimal mapping of sequences of data
parallel tasks,” in ACM SIGPLAN Notices, vol. 30(8), 1995, pp. 134–
143.

[7] ——, “Optimal latency-throughput tradeoffs for data parallel pipelines,”
in Proceedings of the eighth annual ACM symposium on Parallel
algorithms and architectures. ACM, 1996, p. 71.

[8] A. Benoit and Y. Robert, “Mapping pipeline skeletons onto heteroge-
neous platforms,” J. Parallel and Distributed Computing, vol. 68, no. 6,
pp. 790–808, 2008.

[9] A. Allahverdi, C. Ng, T. Cheng, and M. Kovalyov, “A survey of
scheduling problems with setup times or costs,” European Journal of
Operational Research, vol. 187, no. 3, pp. 985–1032, 2008.

[10] A. Allahverdi and H. Soroush, “The significance of reducing setup
times/setup costs,” European Journal of Operational Research, vol. 187,
no. 3, pp. 978 – 984, 2008.

[11] A. Bryan and Norman, “Scheduling flowshops with finite buffers and
sequence-dependent setup times,” Comp. & Indus. Engineering, vol. 36,
no. 1, pp. 163 – 177, 1999.

[12] P. B. Luh, L. Gou, Y. Zhang, T. Nagahora, M. Tsuji, K. Yoneda,
T. Hasegawa, Y. Kyoya, and T. Kano, “Job shop scheduling with group-
dependent setups, finite buffers, and long time horizon,” Annals of
Operations Research, vol. 76, pp. 233–259, 1998.

[13] A. Benoit, M. Coqblin, J.-M. Nicod, L. Philippe, and V. Rehn-Sonigo,
“Throughput optimization for pipeline workflow scheduling with
setup times,” in Proceedings of CGWS 2012, the CoreGRID/ERCIM
Workshop on Grids, Clouds and P2P Computing, in conjunction with
EuroPar 2012, Aug. 2012. [Online]. Available: http://graal.ens-lyon.fr/
∼abenoit/papers/RR-7886.pdf

http://dx.doi.org/10.1007/11823285_115
http://dx.doi.org/10.1007/11823285_115
http://dx.doi.org/10.1109/IPDPS.2009.5161036
http://ilpubs.stanford.edu:8090/705/
http://ilpubs.stanford.edu:8090/705/
http://graal.ens-lyon.fr/~abenoit/papers/RR-7886.pdf
http://graal.ens-lyon.fr/~abenoit/papers/RR-7886.pdf

	Introduction and related work
	Framework
	With two different setup costs
	Optimizing the buffer sizes with different setup costs
	All setup costs are non-decreasing
	General case
	SameB
	H1-Up, H1-Down and H1-Closest
	H2-Up, H2-Down and H2-Closest

	Simulation results
	Non-decreasing setup costs
	General case: setup costs in wave shape
	Summary

	Conclusion
	References

