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0.1 Introduction

In this chapter, scheduling is defined as the activity that consists in mapping a task graph onto a target
platform. The task graph represents the application, nodes denote computational tasks, and edges model
precedence constraints between tasks. For each task, an assignment (choose the processor that will execute
the task) and a schedule (decide when to start the execution) are determined. The goal is to obtain an efficient
execution of the application, which translates into optimizing some objective function.

The traditional objective function in the scheduling literature is the minimization of the total execution
time, or makespan. Section 0.2 provides a quick background on task graph scheduling, mostly to recall
some definitions, notations, and well-known results.

In contrast to pure makespan minimization, this chapter aims at discussing scheduling problems that
arise at large scale, and involve one or several different optimization criteria, that depart from, or comple-
ment, the classical makespan objective. Section 0.3 assesses the importance of key ingredients of modern
scheduling techniques: (i) multi-criteria optimization; (ii) memory management; and (iii) reliability. These
concepts are illustrated in the following sections, which cover four case studies. Section 0.4 is devoted to
illustrate multi-criteria optimization techniques, that mix throughput, energy and reliability. Sections 0.5
and 0.6 illustrate different memory management techniques to schedule large task graphs. Finally, Sec-
tion 0.7 discusses the impact of checkpointing techniques to schedule parallel jobs at very large-scale. We
conclude this chapter by stating some research directions in Section 0.8, by defining terms in Section 0.9,
and by pointing to additional sources of information in Section 0.10.

0.2 Background on Scheduling

0.2.1 Makespan Minimization

Traditional scheduling assumes that the target platform is a set of p identical processors, and that no commu-
nication cost is paid. In that context, a task graph is a directed acyclic vertex-weighted graphG = (V,E,w),
where the set V of vertices represents the tasks, the set E of edges represents precedence constraints be-
tween tasks (e = (u, v) ∈ E if and only if u ≺ v). and the weight function w : V −→ N∗ gives the weight
(or duration) of each task. Task weights are assumed to be positive integers. A schedule σ of a task graph
is a function that assigns a start time to each task: σ : V −→ N∗ such that σ(u) + w(u) ≤ σ(v) whenever
e = (u, v) ∈ E. In other words, a schedule preserves the dependence constraints induced by the precedence
relation ≺ and embodied by the edges of the dependence graph; if u ≺ v, then the execution of u begins
at time σ(u) and requires w(u) units of time, and the execution of v at time σ(v) must start after the end
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of the execution of u. Obviously, if there was a cycle in the task graph, no schedule could exist, hence the
restriction to acyclic graphs (DAGs).

There are other constraints that must be met by schedules, namely, resource constraints. When there
is an infinite number of processors (in fact, when there are as many processors as tasks), the problem is
with unlimited processors, and denoted P∞|prec|Cmax in the literature [26]. We use the shorter notation
Pb(∞) in this chapter. When there is only a fixed number p of available processors, the problem is with
limited processors, and denoted Pb(p). In the latter case an allocation function alloc : V −→ P is required,
where P = {1, . . . , p} denotes the set of available processors. This function assigns a target processor to
each task. The resource constraints simply specify that no processor can be allocated more than one task at
the same time:

alloc(T ) = alloc(T ′)⇒
{

σ(T ) + w(T ) ≤ σ(T ′)
or σ(T ′) + w(T ′) ≤ σ(T ).

This condition expresses the fact that if two tasks T and T ′ are allocated to the same processor, then their
executions cannot overlap in time.

The makespan MS(σ, p) of a schedule σ that uses p processors is its total execution time: MS(σ, p) =
maxv∈V {σ(v) + w(v)} (assuming that the first task(s) is (are) scheduled at time 0). The makespan is the
total execution time, or finish time, of the schedule. Let MSopt(p) be the value of the makespan of an
optimal schedule with p processors: MSopt(p) = minσ MS(σ, p). Because schedules respect dependences,
we have MSopt(p) ≥ w(Φ) for all paths Φ in G (weights extend to paths in G as usual). We also have
Seq ≤ p×MSopt(p), where Seq =

∑
v∈V w(v) = MSopt(1) is the sum of all task weights.

While Pb(∞) has polynomial complexity (simply traverse the graph and start each task as soon as pos-
sible using a fresh processor), problems with a fixed amount of resources are known to be difficult. Lettting
Dec(p) be the decision problem associated with Pb(p), and Indep − tasks(p) the restriction of Dec(p) to
independent tasks (no dependence, i.e., when E = ∅) , well-known complexity results are summarized
below:

• Indep − tasks(2) is NP-complete but can be solved by a pseudo-polynomial algorithm. Moreover,
∀ ε > 0, Indep − tasks(2) admits a (1 + ε)-approximation whose complexity is polynomial in 1

ε .

• Indep − tasks(p) is NP-complete in the strong sense.

• Dec(2) (and hence Dec(p)) is NP-complete in the strong sense.

Because Pb(p) is NP-complete, heuristics are used to schedule task graphs with limited processors. The
most natural idea is to use greedy strategies: at each instant, try to schedule as many tasks as possible
onto available processors. Such strategies deciding not to deliberately keep a processor idle are called list
scheduling algorithms. Of course there are different possible strategies to decide which tasks are given
priority in the (frequent) case where there are more free tasks than available processors. Here a free task is a
task whose predecessors have all been executed, hence which is available and ready for execution itself. But
a key result due to Graham [27] is that any list algorithm can be shown to achieve at most twice the optimal
makespan. More precisely, the approximation factor with p processors is 2p−1

p , and this bound is tight.
A widely used list scheduling technique is critical path scheduling. The selection criterion for ready

tasks is based on the value of their bottom level, defined as the maximal weight of a path from the task to an
exit task of the graph. Intuitively, the larger the bottom level, the more “urgent” the task. The critical path
of a task is defined as its bottom level and is used to assign priority levels to tasks. Critical path scheduling
is list scheduling where the priority level of a task is given by the value of its critical path. Ties are broken
arbitrarily.
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0.2.2 Dealing with Communication Costs

Thirty years ago, communication costs have been introduced in the scheduling literature. Because the per-
formance of network communication is difficult to model in a way that is both precise and conducive to
understanding the performance of algorithms, the vast majority of results hold for a very simple model,
which is defined as follows.

The target platform consists of p identical processors that are part of of a fully connected clique. All
interconnection links have same bandwidth. If a task T communicates data to a successor task T ′, the cost
is modeled as

cost(T, T ′) =

{
0 if alloc(T ) = alloc(T ′)
c(T, T ′) otherwise,

where alloc(T ) denotes the processor that executes task T , and c(T, T ′) is defined by the application spec-
ification. The time for communication between two tasks running on the same processor is negligible. A
schedule σ must still preserve dependences, a condition which now writes:

∀e = (T, T ′) ∈ E,
{
σ(T ) + w(T ) ≤ σ(T ′) if alloc(T ) = alloc(T ′)
σ(T ) + w(T ) + c(T, T ′) ≤ σ(T ′) otherwise.

This so-called macro-dataflow model makes two main assumptions: (i) communication can occur as
soon as data are available; and (ii) there is no contention for network links. Assumption (i) is reasonable as
communication can overlap with (independent) computations in most modern computers. Assumption (ii)
is much more questionable (although it makes sense in a shared-memory environment). Indeed, there is no
physical device capable of sending, say, 1, 000 messages to 1, 000 distinct processors, at the same speed as if
there were a single message. In the worst case, it would take 1, 000 times longer (serializing all messages).
In the best case, the output bandwidth of the network card of the sender would be a limiting factor. In other
words, assumption (ii) amounts to assuming infinite network resources. Nevertheless, this assumption is
omnipresent in the traditional scheduling literature.

Including communication costs in the model makes everything difficult, including solving Pb(∞), which
becomes NP-complete in the strong sense. The intuitive reason is that a trade-off must be found between
allocating tasks to either many processors (hence balancing the load but communicating intensively) or few
processors (leading to less communication but less parallelism as well). Even the problem in which all
task weights and communication costs have the same (unit) value, the so-called UET-UCT problem (unit
execution time-unit communication time), is NP-hard [41].

With limited processors, list heuristics can be extended to take communication costs into account, but
Graham’s bound does not hold any longer. For instance, the Modified Critical Path (MCP) algorithm pro-
ceeds as follows. First, bottom levels are computed using a pessimistic evaluation of the longest path,
accounting for each potential communication (this corresponds to the allocation where there is a different
processor per task). These bottom levels are used to determine the priority of free tasks. Then each free task
is assigned to the processor that allows its earliest execution, given previous task allocation decisions. It is
important to explain further what “previous task allocation decisions” means. Free tasks from the queue are
processed one after the other. At any moment, it is known which processors are available and which ones
are busy. Moreover, for the busy processors, it is known when they will finish computing their currently
allocated tasks. Hence, it is always possible to select the processor that can start the execution of the task
under consideration the earliest. It may well be the case a currently busy processor that is selected.

The last extension of the “classical” line of work has been to handle heterogeneous platforms, i.e., plat-
forms that consist of processors with different speeds and interconnection links with different bandwidths.
The main principle remains the same, namely to assign the free task with highest priority to the “best”
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processor, given already given decisions. Now the “best” processor is the one capable to finish the execu-
tion of the task at the earliest, rather than starting the execution of the task, because computing speeds are
different. These ideas have led to the design of the list heuristic called HEFT, for Heterogeneous Earliest
Finish Time [52]. We refer the reader to [14] for a complete description of HEFT, because we have omit-
ted many technical (but important) implementation details. We stress that HEFT has received considerable
acceptance, and is the most widely used heuristic to schedule a task graph on a modern computing platform.

0.2.3 Realistic Communication Models

Assuming an application that runs threads on, say, a node that uses multicore technology, the network link
could be shared by several incoming and outgoing communications. Therefore, the sum of the bandwidths
allotted by the operating system to all communications cannot exceed the bandwidth of the network card.
The bounded multi-port model proposed by Hong and Prasanna [29] assesses that an unbounded number of
communications can thus take place simultaneously, provided that they share the total available bandwidth.

A more radical option than limiting the total bandwidth is simply to forbid concurrent communications
at each node. In the one-port model, a node can either send data or receive data, but not simultaneously. This
model is thus very pessimistic as real-world platforms can achieve some concurrency of communication. On
the other hand, it is straightforward to design algorithms that follow this model and thus to determine their
performance a priori.

There are more complicated models such as those that deal with bandwidth sharing protocols [36, 37].
Such models are very interesting for performance evaluation purposes, but they almost always prove too
complicated for algorithm design purposes. For this reason, when scheduling task graphs, one prefers to
deal with the bounded multi-port or the one-port model. As stated above, these models represent a good
trade-off between realism and tractability, and we use them for all the examples and case studies of this
chapter.

0.3 Underlying Principles

As stated in the introduction, the case-studies provided in this chapter depart from pure makespan mini-
mization. In this section, we briefly overview the main objectives that can be addressed instead of, or in
complement to, the total execution time.

0.3.1 Multi-Criteria Optimization

The first case-study (Section 0.4) deals with energy consumption. Processors can execute tasks at different
frequencies, and there is a trade-off to achieve between fast execution (which implies high frequencies)
and low energy consumption (which requests low frequencies). To complicate matters, running at low
frequencies increases the probability of a fault during the execution. Altogether, one faces a tri-criteria
problem, involving makespan, energy and reliability.

How to deal with several objective functions? In some approaches, one would form a linear combination
of the different objectives and treat the result as the new objective to optimize for. But it is not natural for the
user to maximize a quantity like 0.6M+0.3E+0.1R, whereM is the makespan,E the energy consumption,
and R the reliability. Instead, one is more likely to fix an execution deadline and a reliability threshold, and
to search for the execution that minimizes the energy consumption under these makespan and reliability
constraints. One single criterion is optimized, under the condition that the constraints on the other criteria
are not violated.

4



0.3.2 Memory Management

The second and third case-studies (Sections 0.5 and 0.6) both deal with memory management issues. In
Section 0.5, the goal is to traverse a task graph (an out-tree) to execute it with a prescribed amount of main
memory. To execute a task, one needs to load the files produced by the parent of the task, the object code of
the task itself, and all the files that it produces for its children. If there is not enough main memory available,
secondary (out-of-core) memory must be used, at the price of a much slower execution. The ordering of the
tasks chosen by the scheduler will have a dramatic impact on the peak amount of memory that is needed
throughout the execution.

The problem investigated in Section 0.6 also deals with out-trees, and is expressed as follows: how to
partition the leaves of the tree in fixed-size parts so that the total memory load is minimized? Here the
load of a part if the sum of the weights of the sub-tree formed by the leaves in the part. Intuitively, the
goal is to construct parts whose leaves share many ancestors, so that the cost of loading theses ancestors is
paid for only a reduced umber of times. Both case-studies arise from scientific applications (such as multi
frontal method for sparse linear algebra) that deploy large collections of tasks, and an efficient memory
management is the key component to efficiency.

0.3.3 Reliability

The fourth case-study (Section 0.7) addresses a completely different problem. Instead of dealing with task
graphs, it deals with a single job that must be executed by one or several processors. This (large) job is
divisible, meaning that it can be split arbitrarily into chunks of different sizes. Processors are subject to
failures, which leads to take a checkpoint after each successful execution of a chunk. Indeed, after a failure,
the execution can resume at the state of the last checkpoint. Frequent checkpoints avoid to lose (in fact,
re-execute) a big fraction of the work when a failure occurs, but they induce a big overhead. What is the
optimal checkpointing policy? In some way, this problem can be viewed as a trade-off between makespan
and reliability, but the framework is totally different from that of Section 0.4. The goal here is to minimize
the expected makespan on a platform subject to failures. With the advent of future exascale machines that
gather millions of processors, the problem has become central to the community.

0.4 Case Study: Tri-Criteria (Makespan, Energy, Reliability) Scheduling

In this section, we are interested in energy-aware scheduling: the aim is to minimize the energy consumed
during the execution of the target application. Energy-aware scheduling has proven an important issue in
the past decade, both for economical and environmental reasons. This holds true for traditional computer
systems, not even to speak of battery-powered systems. More precisely, a processor running at frequency f
dissipates f3 watts per unit of time [8, 10, 16], hence it consumes f3 × d joules when operated during d
units of time. To help reduce energy dissipation, processors can run at different frequencies, i.e., different
speeds. A widely used technique to reduce energy consumption is dynamic voltage and frequency scaling
(DVFS), also known as speed scaling [8, 10, 16]. Indeed, by lowering supply voltage, hence processor clock
frequency, it is possible to achieve important reductions in power consumption; faster speeds allow for a
faster execution, but they also lead to a much higher (supra-linear) power consumption. Processors can have
arbitrary speeds, and can vary them continuously in the interval [fmin, fmax]. This model of continuous
speeds is unrealistic (any possible value of the speed, say

√
eπ , cannot be obtained), but it is theoretically

appealing [10].
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Obviously, minimizing the energy consumption makes sense only when coupled with some performance
bound to achieve, otherwise, the optimal solution always is to run each processor at the slowest possible
speed. We consider a directed acyclic graph (DAG) of n tasks with precedence constraints, and the goal is
to schedule such an application onto a fully homogeneous platform consisting of p identical processors. This
problem has been widely studied with the objective of minimizing the total execution time, or makespan, and
it is well known to be NP-complete [13]. Since the introduction of DVFS, many papers have dealt with the
optimization of energy consumption while enforcing a deadline, i.e., a bound on the makespan [8, 10, 16, 6].

There are many situations in which the mapping of the task graph is given, say by an ordered list of
tasks to execute on each processor, and we do not have the freedom to change the assignment of a given
task. Such a problem occurs when optimizing for legacy applications, or accounting for affinities between
tasks and resources, or even when tasks are pre-allocated [46], for example for security reasons. While
it is not possible to change the allocation of a task, it is possible to change its speed. This technique,
which consists in exploiting the slack due to workload variations, is called slack reclaiming [33, 44]. In
our previous work [6], assuming that the mapping and a deadline are given, we have assessed the impact
of several speed variation models on the complexity of the problem of minimizing the energy consumption.
Rather than using a local approach such as backfilling [55, 44], which only reclaims gaps in the schedule,
we have considered the problem as a whole.

While energy consumption can be reduced by using speed scaling techniques, it was shown in [58, 18]
that reducing the speed of a processor increases the number of transient fault rates of the system; the prob-
ability of failures increases exponentially, and this probability cannot be neglected in large-scale comput-
ing [40]. In order to make up for the loss in reliability due to the energy efficiency, different models have
been proposed for fault-tolerance. In this section, we consider re-execution: a task that does not meet the
reliability constraint is executed twice. This technique was also studied in [58, 57, 43], or in the case-study
of Section 0.7. The goal is to ensure that each task is reliable enough, i.e., either its execution speed is above
a threshold, ensuring a given reliability of the task, or the task is executed twice to enhance its reliability.
There is a clear trade-off between energy consumption and reliability, since decreasing the execution speed
of a task, and hence the corresponding energy consumption, is deteriorating the reliability. This calls for
tackling the problem of considering the three criteria (makespan, reliability, energy) simultaneously. This
tri-criteria optimization brings dramatic complications: in addition to choosing the speed of each task, as in
the makespan/energy bi-criteria problem, we also need to decide which subset of tasks should be re-executed
(and then choose both execution speeds).

Given an application with dependence constraints and a mapping of this application on a homogeneous
platform, we present in this section theoretical results for the problem of minimizing the energy consumption
under the constraints of both a reliability threshold per task and a deadline bound.

0.4.1 Tri-Criteria Problem

Consider an application task graph G = (V, E), where V = {T1, T2, . . . , Tn} is the set of tasks, n = |V |,
and where E is the set of precedence edges between tasks. For 1 ≤ i ≤ n, task Ti has a weight wi, that
corresponds to the computation requirement of the task. We also consider particular class of task graphs,
such as linear chains where E = ∪n−1i=1 {Ti → Ti+1}, and forks with n + 1 tasks {T0, T1, T2, . . . , Tn} and
E = ∪ni=1{T0 → Ti}.

We assume that tasks are mapped onto a parallel platform made up of p identical processors. Each
processor has a set of available speeds that is continuous (in the interval [fmin, fmax]). The goal is to
minimize the energy consumed during the execution of the graph while enforcing a deadline bound and
matching a reliability threshold. To match the reliability threshold, some tasks are executed once at a speed
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high enough to satisfy the constraint, while some other tasks need to be re-executed. We detail below the
conditions that are enforced on the corresponding execution speeds. The problem is therefore to decide
which task to re-execute, and at which speed to run each execution of a task.

In this section, for the sake of clarity, we assume that a task is executed at the same (unique) speed
throughout execution, or at two different speeds in the case of re-execution. In Section 0.4.2, we show that
this strategy is indeed optimal. We now detail the three objective criteria (makespan, reliability, energy),
and then define formally the problem.

The makespan of a schedule is its total execution time. We consider a deadline bound D, which is a
constraint on the makespan. Let Exe(wi, f) be the execution time of a task Ti of weight wi at speed f . We
assume that the cache size is adapted to the application, therefore ensuring that the execution time is linearly
related to the frequency [38]: Exe(wi, f) = wi

f . When a task is scheduled to be re-executed at two different
speeds f (1) and f (2), we always account for both executions, even when the first execution is successful,
and hence Exe(wi, f (1), f (2)) = wi

f (1)
+ wi

f (2)
. In other words, we consider a worst-case execution scenario,

and the deadline D must be matched even in the case where all tasks that are re-executed fail during their
first execution.

To define the reliability, we use the fault model of Zhu et al. [58, 57]. Transient failures are faults caused
by software errors for example. They invalidate only the execution of the current task and the processor sub-
ject to that failure will be able to recover and execute the subsequent task assigned to it (if any). In addition,
we use the reliability model introduced by Shatz and Wang [49], which states that the radiation-induced
transient faults follow a Poisson distribution. The parameter λ of the Poisson distribution is then:

λ(f) = λ̃0 e
d̃ fmax−f
fmax−fmin , (1)

where fmin ≤ f ≤ fmax is the processing speed, the exponent d̃ ≥ 0 is a constant, indicating the sensitivity
of fault rates to DVFS, and λ̃0 is the average fault rate corresponding to fmax. We see that reducing the
speed for energy saving increases the fault rate exponentially. The reliability of a task Ti executed once at
speed f is Ri(f) = e−λ(f)×Exe(wi,f). Because the fault rate is usually very small, of the order of 10−6 per
time unit in [9, 43], 10−5 in [5], we can use the first order approximation of Ri(f) as

Ri(f) = 1− λ(f)× Exe(wi, f) = 1− λ0 e−df ×
wi
f
,

where d = d̃
fmax−fmin

and λ0 = λ̃0e
dfmax . This equation holds if εi = λ(f) × wi

f � 1. With, say,
λ(f) = 10−5, we need wi

f ≤ 103 to get an accurate approximation with εi ≤ 0.01: the task should
execute within 16 minutes. In other words, large (computationally demanding) tasks require reasonably
high processing speeds with this model (which makes full sense in practice).

We want the reliability Ri of each task Ti to be greater than a given threshold, namely Ri(frel), hence
enforcing a local constraint dependent on the task Ri ≥ Ri(frel). If task Ti is executed only once at
speed f , then the reliability of Ti is Ri = Ri(f). Since the reliability increases with speed, we must have
f ≥ frel to match the reliability constraint. If task Ti is re-executed (speeds f (1) and f (2)), then the
execution of Ti is successful if and only if one of the attempts do not fail, so that the reliability of Ti is
Ri = 1− (1−Ri(f (1)))(1−Ri(f (2))), and this quantity should be at least equal to Ri(frel).

The total energy consumption corresponds to the sum of the energy consumption of each task. Let
Ei be the energy consumed by task Ti. For one execution of task Ti at speed f , the corresponding energy
consumption is Ei(f) = Exe(wi, f)×f3 = wi×f2, which corresponds to the dynamic part of the classical
energy models of the literature [8, 10, 16, 6]. Note that we do not take static energy into account, because
all processors are up and alive during the whole execution.
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If task Ti is executed only once at speed f , then Ei = Ei(f). Otherwise, if task Ti is re-executed at
speeds f (1) and f (2), it is natural to add up the energy consumed during both executions, just as we add
up both execution times when enforcing the makespan deadline. Again, this corresponds to the worst-case
execution scenario. We obtain Ei = Ei(f

(1)
i ) + Ei(f

(2)
i ). In this work, we aim at minimizing the total

energy consumed by the schedule in the worst-case, assuming that all re-executions do take place. This
worst-case energy is E =

∑n
i=1Ei.

Some authors [57] consider only the energy spent for the first execution, which seems unfair: re-
execution comes at a price both in the deadline and in the energy consumption. Another possible approach
would be to consider the expected energy consumption, which would require to weight the energy spent in
the second execution of a task by the probability of this re-execution to happen. This would lead to a less
conservative estimation of the energy consumption by averaging over many execution instances. However,
the makespan deadline should be matched in all execution scenarios, and the execution speeds of the tasks
have been dimensioned to account for the worst-case scenario, so it seems more important to report for the
maximal energy that can be consumed over all possible execution instances.

We are now ready to define the optimization problem: given an application graph G = (V, E), mapped
onto p homogeneous processors with continuous speeds, TRI-CRIT is the problem of deciding which tasks
should be re-executed and at which speed each execution of a task should be processed, in order to minimize
the total energy consumption E, subject to the deadline bound D and to the local reliability constraints
Ri ≥ Ri(frel) for each Ti ∈ V .

We also introduce variants of the problems for particular application graphs: TRI-CRIT-CHAIN is the
same problem as TRI-CRIT when the task graph is a linear chain, mapped on a single processor; and TRI-
CRIT-FORK is the same problem as TRI-CRIT when the task graph is a fork, and each task is mapped on a
distinct processor.

0.4.2 Complexity Results

Note that the formal proofs for this section can be found in [7]. As stated in Section 0.4.1, we start by
proving that there is always an optimal solution where each task is executed at a unique speed:

Lemma 1. It is optimal to execute each task at a unique speed throughout its execution.

The idea is to consider a task whose speed changes during the execution; we exhibit a speed such that
the execution time of the task remains the same, but where both energy and reliability are maybe improved,
by convexity of the functions.

Next we show that not only a task is executed at a single speed, but that its re-execution (whenever it
occurs) is executed at the same speed as its first execution:

Lemma 2. It is optimal to re-execute each task (whenever needed) at the same speed as its first execution,
and this speed f is such that f (inf)i ≤ f < 1√

2
frel, where

λ0wi
e−2df

(inf)
i

(f
(inf)
i )2

=
e−dfrel

frel
. (2)

Similarly to the proof of Lemma 1, we exhibit a unique speed for both executions, in case they differ,
so that the execution time remains identical but both energy and reliability are improved. If this unique
speed is greater than 1√

2
frel, then it is better to execute the task only once at speed frel, and if f is lower

than f (inf)i , then the reliability constraint is not matched. Note that both lemmas can be applied to any
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solution of the TRI-CRIT problem, not just optimal solutions. We are now ready to assess the problem
complexity:

Theorem 1. The TRI-CRIT-CHAIN problem is NP-hard, but not known to be in NP.

Note that the problem is not known to be in NP because speeds could take any real values. The complete-
ness comes from SUBSET-SUM [23]. The problem is NP-hard even for a linear chain application mapped
on a single processor (and any general DAG mapped on a single processor becomes a linear chain).

Even if TRI-CRIT-CHAIN is NP-hard, we can characterize an optimal solution of the problem:

Proposition 1. If frel < fmax, then in any optimal solution of TRI-CRIT-CHAIN, either all tasks are
executed only once, at constant speed max(

∑n
i=1 wi
D , frel); or at least one task is re-executed, and then all

tasks that are not re-executed are executed at speed frel.

In essence, Proposition 1 states that when dealing with a linear chain, we should first slow down the
execution of each task as much as possible. Then, if the deadline is not too tight, i.e., if frel >

∑n
i=1 wi
D ,

there remains the possibility to re-execute some of the tasks (and of course it is NP-hard to decide which
ones). Still, this general principle “first slow-down and then re-execute” can guide the design of efficient
heuristics (see [7]).

While the general TRI-CRIT problem is NP-hard even with a single processor, the particular variant
TRI-CRIT-FORK can be solved in polynomial time:

Theorem 2. The TRI-CRIT-FORK problem can be solved in polynomial time.

The difficulty to provide an optimal algorithm for the TRI-CRIT-FORK problem comes from the fact
that the total execution time must be shared between the source of the fork, T0, and the other tasks that all
run in parallel. If we know D′, the fraction of the deadline allotted for tasks T1, . . . , Tn once the source has
finished its execution, then we can decide which tasks are re-executed and all execution speeds. Indeed, if
task Ti is executed only once, it is executed at speed f (once)i = min(max(wi/D

′, frel), fmax). Otherwise, it
is executed twice at speed f (twice)i = min(max(2wi/D

′, fmin, f
(inf)
i ), fmax), where f (inf)i is the minimum

speed at which task Ti can be executed twice (see Lemma 2). The energy consumption for task Ti is finally
Ei = min

(
wi × f (once)i , 2wi × f (twice)i

)
, and the case that reaches the minimum determines whether the

task is re-executed or not. There remains to find the optimal value of D′, which can be obtained by studying
the function of the total energy consumption, and bounding the value ofD′ to a small number of possibilities.
Note however that this algorithm does not provide any closed-form formula for the speeds of the tasks, and
that there is an intricate case analysis due to the reliability constraints.

If we further assume that the fork is made of identical tasks (i.e., wi = w for 0 ≤ i ≤ n), then we
can provide a closed-form formula. However, Proposition 2 illustrates the inherent difficulty of this simple
problem, with several cases to consider depending on the values of the deadline, and also the bounds on
speeds (fmin, fmax, frel, etc.). First, since the tasks all have the same weight wi = w, we get rid of the
f
(inf)
i introduced above, since they are all identical (see Equation (2)): f (inf)i = f (inf) for 0 ≤ i ≤ n.

Therefore we let fmin = max(fmin, f
(inf)) in the proposition below:

Proposition 2. In the optimal solution of TRI-CRIT-FORK with at least three identical tasks (and hence
n ≥ 2), there are only three possible scenarios: (i) no task is re-executed; (ii) the n successors are all
re-executed but not the source; (iii) all tasks are re-executed. In each scenario, the source is executed at
speed fsrc (once or twice), and the n successors are executed at the same speed fleaf (once or twice).
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For a deadline D < 2w
fmax

, there is no solution. For a deadline D ∈
[

2w
fmax

, w
frel

(1+2n
1
3 )

3
2√

1+n

]
, no task is

re-executed (scenario (i)) and the values of fsrc and fleaf are the following:
• if 2w

fmax
≤ D ≤ min

(
w

fmax
(1 + n

1
3 ), w( 1

frel
+ 1

fmax
)
)

, then fsrc = fmax and fleaf = w
Dfmax−wfmax;

• if w
fmax

(1 + n
1
3 ) ≤ w( 1

frel
+ 1

fmax
), then

– if w
fmax

(1 + n
1
3 ) < D ≤ w

frel
1+n

1
3

n
1
3

, then fsrc = w
D (1 + n

1
3 ) and fleaf = w

D
1+n

1
3

n
1
3

;

– if w
frel

1+n
1
3

n
1
3

< D ≤ 2w
frel

, then fsrc = w
Dfrel−wfrel and fleaf = frel;

• if w
fmax

(1 + n
1
3 ) > w( 1

frel
+ 1

fmax
), then

– if w( 1
frel

+ 1
fmax

)) < D ≤ 2w
frel

, then fsrc = w
Dfrel−wfrel and fleaf = frel;

• if 2w
frel

< D ≤ w
frel

(1+2n
1
3 )

3
2√

1+n
, then fsrc = fleaf = frel.

Note that for larger values of D, depending on fmin, we can move to scenarios (ii) and (iii) with partial
or total re-execution. The case analysis becomes even more painful, but remains feasible. Intuitively, the
property that all tasks have the same weight is the key to obtaining analytical formulas, because all tasks
have the same minimum speed f (inf) dictated by Equation (2). Beyond the case analysis itself, the result
of Proposition 2 is interesting: we observe that in all cases, the source task is executed faster than the other
tasks. This shows that Proposition 1 does not hold for general DAGs, and suggests that some tasks may be
more critical than others. A hierarchical approach, that categorizes tasks with different priorities, may guide
the design of efficient heuristics (see [7]).

0.4.3 Conclusion

In this case-study, we have accounted for the energy cost associated to task re-execution in a more realistic
and accurate way than the best-case model used in [57]. Coupling this energy model with the classical
reliability model used in [49], we have been able to formulate a tri-criteria optimization problem: how to
minimize the energy consumed given a deadline bound and a reliability constraint? The “antagonistic“ rela-
tion between speed and reliability renders this tri-criteria problem much more challenging than the standard
bi-criteria (makespan, energy) version. We have assessed the intractability of this tri-criteria problem, even
in the case of a single processor. In addition, we have provided several complexity results for particular
instances. Note that several polynomial time heuristics are discussed in [7].

Further work could tackle the design of efficient approximation algorithms. However, this is quite a chal-
lenging work for arbitrary DAGs, and one may try to focus on special graph structures, e.g., series-parallel
graphs. However, looking back at the complicated case analysis needed for an elementary fork-graph with
identical weights (Proposition 2), we cannot underestimate the difficulty of this problem. Also, it could
be interesting to study the expected energy consumption, instead of the worst-case energy consumption.
However, the complexity of the problems is likely to increase drastically. Finally, we point out that en-
ergy reduction and reliability will be even more important objectives with the advent of massively parallel
platforms, made of a large number of clusters of multi-cores. More efficient solutions to the tri-criteria
optimization problem (makespan, energy, reliability) could be achieved through combining replication with
re-execution. A promising (and ambitious) research direction would be to search for the best trade-offs that
can be achieved between these techniques that both increase reliability, but whose impact on execution time
and energy consumption is very different. The comprehensive set of theoretical results presented in this
case-study provides solid foundations for further studies, and constitute a partial yet important first step for
solving the problem at very large scale.
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0.5 Case Study: Memory-Aware Scheduling

In this section we review the latest results in memory-aware scheduling. When processing an application on
a computational grid, it is likely that the involved data will have a very high volume. Such large data sizes
may prevent the processing of some task on given resources, and more often, may prevent the processing of
two data-intensive tasks on the same resource, because of the input and output data needed for these tasks.
In this case, some of the data may need to be discarded from the main storage system (such as memory) and
to be written to a secondary storage system (such as disk), to be able to proceed with the execution.

In Grid computing, workflows are usually modeled as Directed Acyclic Graph (DAG), where nodes
represent computational tasks and edges represent the dependencies among tasks. The dependencies are
in the form of input and output files: each node accepts a set of (large) files as input, and produces a set
of (large) files as output, each of them accepted by different child tasks. The execution scheme of such a
workflow corresponds to a traversal of the DAG, where visiting a node translates into reading the associated
input files and producing output files. Even on a single machine, finding a way to traverse the DAG to
minimize the needed storage is a difficult problem: when restricting the problem to uniform sizes, it is
similar to the pebble game problem, which has been proven NP-hard by Sethi [48] (the general problem
allowing recomputation, that is, re-pebbling a vertex which have been pebbled before, has been proven
PSPACE complete by Gilbert, Lengauer and Tarjan [25]). Latest studies focus on the restricted problem of
traversing tree-shaped DAGs to minimize the memory demand on a single machine.

For convenience we refer to the two-levels of storage as main memory and secondary memory, and also
as in-core and out-of-core. Many combinations such as cache and RAM, or RAM and disk, or even disk
and tape, lead to the same association of a faster but smaller storage device together with a larger but slower
device. The difficulty remains the same for all combinations: find an execution scheme that makes the best
use of main memory, and minimizes accesses to secondary memory.

Throughout the case-study we consider out-trees where a task can be executed only if its parent has
already been executed. However, all results equivalently apply to in-trees, where tasks are processed from
the leaves up to the root, as explained below. Each task (or node) i in the tree is characterized by the size
fi of its input file (data needed before the execution and received from its parent), and by the size ni of its
execution file. During execution, non-leaf nodes generate several output files, one for each child, which
can have different sizes. A task can be processed only in-core; its execution is feasible only if all its files
(input, output, and execution) fit in currently available memory. More formally, let M be the size of the
main memory, and S the set of files stored in this memory when the scheduler decides to execute task i.
Note that S must contain the input file of task i. The processing of task i is possible if we have:

MemReq(i) = fi + ni +
∑

j∈Children(i)

fj ≤M −
∑

j∈S,j 6=i
fj (3)

where MemReq(i) denotes the memory requirement of task i (and Children(i) its child nodes in the tree).
Once i has been executed, its input file and execution file can be discarded, and replaced by other files in
main memory; the output files can either be kept in main memory, in order to execute some child of the task,
or they can temporarily be stored into secondary memory (and retrieved later when the scheduler decides
to execute the corresponding child of i). The volume of accesses (reads or writes) to secondary memory is
referred to as the I/O volume.

Clearly, the traversal, i.e., the order chosen to execute the tasks, plays a key role in determining which
amount of main memory and I/O volume are needed for a successful execution of the whole tree. More
precisely, there are two main problems which the scheduler must address:
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MINMEMORY Determine the minimum amount of main memory that is required to execute the tree with-
out any access to secondary memory.

MINIO Given the size M of the main memory, determine the minimum I/O volume that is required to
execute the tree.

Obviously, a necessary condition for the execution to be successful is that the size M of main memory
exceeds the largest memory requirement over all tasks:

max
i

MemReq(i) ≤M

However, this condition is not sufficient, and a much larger main memory size may be needed for the
MINMEMORY problem.

This problem has two main motivations. The first one (chronologically) arose from numerical linear
algebra. Tree workflows (assembly or elimination trees) appear during the factorization of sparse matrices,
and the huge size of the files involved makes it absolutely necessary to reduce the memory requirement of
the factorization. The trees arising in this context are in-trees (as said before, there is no difference between
in-trees and out-trees). Liu [34] discusses how to find the best traversal for the MINMEMORY problem when
the traversal is required to correspond to a postorder traversal of the tree. In the follow-up study [35], an
exact algorithm is proposed to solve the MINMEMORY problem, without the postorder constraint on the
traversal. Another exact algorithm has been proposed recently [30]. Although its theoretical worst-case
complexity is similar to Liu’s algorithm, its performs better on elimination trees arising from real sparse
matrice factorizations.

The second motivation for this problem comes from computations and simulations involving large ob-
jects, such as the accurate modeling of the electronic structure of atoms and molecules in quantum chemistry,
or in some computational physics code. In this context, Liu’s exact algorithm has been recently rediscov-
ered by Lam et al. [32]. In the following, we first propose a formal model for the problem. Then we review
state-of-the-art results and algorithms for the MINMEMORY and MINIO problems.

0.5.1 Problem Modeling

We consider a tree workflow T composed of p nodes, or tasks, numbered from 1 to p. Nodes in the tree
have an input file, an execution file (or program), and several output files (one per child). More precisely:

• Each node i has an input file of size fi. If i is not the root, its input file is produced by its parent
parent(i); if i is the root, its input file can be of size zero, or contain input from the outside world.

• Each node i in the tree has an execution file of size ni.

• Each non-leaf node i in the tree, when executed, produces a file of size fj for each j ∈ Children(i).
Here Children(i) denotes the set of the children of i. If i is a leaf-node, then Children(i) = ∅ and
i produces a file of null size: we then consider that the terminal data produced by leaves are directly
written to the secondary memory or sent to the outside world, independently from the I/O mechanism.

The memory requirement MemReq(i) of node i is the total amount of main memory that is needed to
execute node i, as underlined in Equation (3). After i has been processed, its input file and program can be
discarded, while its output files can either be kept in main memory (to process the children of i) or be stored
in secondary memory temporarily.
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0.5.2 In-Core Traversals and the MINMEMORY Problem

For the MINMEMORY problem, we are given a tree T with p nodes and an initial amount of memory M . A
traversal is an ordering of the p nodes that specifies at which step whey are executed. A traversal must obey
precedence constraints (a node is always scheduled after its parent) and must never exceed the available
memory. A formal definition of a traversal is given below.

Definition 1 (INCORETRAVERSAL). Given a tree T and a amount M of available memory, the problem
INCORETRAVERSAL(T ,M) consists in finding a feasible in-core traversal σ described by a permutation
of the nodes of a tree T such that:

∀i 6= root , σ(parent(i)) < σ(i) (4)

∀i,
∑

σ(j)<σ(i)

 ∑
k∈Children(j)

fk − fj

+ ni +
∑

k∈Children(i)

fk ≤M (5)

In this definition, Equation (4) accounts for precedence constraints and Equation (5) deals with mem-
ory constraints. A postorder traversal is a traversal where nodes are visited according to some top-down
postorder ordering of the tree nodes. Hence, in a postorder traversal, after processing a vertex i, the whole
subtree rooted in i is completely processed.

Definition 2 (MINMEMORY). Given a tree T , determine the minimum amount of memory M such that
INCORETRAVERSAL(T ,M) has a solution. MINMEMORY-POSTORDER is the same problem restricted to
postorder traversals.

Here, we have chosen to define the problem for out-trees and top-down traversals. However, it is possible
to define a similar problem for in-trees and bottom-up traversals. Both problems are equivalent. Consider
an in-tree T and the out-tree T ′ obtained when reversing all its edges. Then, from any traversal of T we can
obtain a valid traversal of T ′ with same memory footprint simply by reversing the order of visited nodes.
This, all results mentioned in the following apply both for in-trees and out-trees.

Postorder traversals

Postorder traversals are very natural for the MINMEMORY problem, and they are widely used in sparse
matrix software like MUMPS [2, 4]. Liu [34] has characterized the best postorder traversal, leading to a
fast but sub-optimal solution for MINMEMORY. In a nutshell, the best postorder is obtained by guaran-
teeing that in the resulting order, the children of a node are listed in the increasing order of the memory
requirement of their respective subtrees. This can be done with a recursive algorithm, which computes
a memory-optimal schedule for each subtree: at each level subtrees are sorted in non increasing order of
maxi∈subtree(MemReq(i)) − fsubroot) (where subroot is the root of the current subtree). In the following,
we denote this algorithm by PostOrder . Although it has a low time complexity (O(p log(p))) and it is
widely used in practice, it may require arbitrarily more main memory than the optimal traversal.

Theorem 3. Given any arbitrarily large integer K, there exist trees for which the best postorder traversal
requires at least K times the amount of main memory needed by the optimal traversal for MINMEMORY.

The proof of this results relies on the family of trees illustrated on Figure 1, where all branches are
identical and all tasks have a zero length execution file. On the single-level tree of Figure 1(a), any postorder
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Figure 1: First levels of the graph for the proof of Theorem 3. Here b is the number of children of the nodes
with more than one child.

traversal requires an amount of M + ε + (b − 1)M/b main memory, while the optimal traversal (which
alternates between branches) only requires Mmin = M + ε. Now replace each leaf by a copy of the harpoon
graph, as shown in Figure 1(b). The value of Mmin is unchanged, while a postorder traversal requires
M + ε+ 2(b− 1)M/b. Iterating the process K times leads to the desired result.

The tree used to prove that postorder may require an arbitrarily large memory compared from the optimal
is very different to usual trees encountered in practice: it has many edges with zero weight, and on a path
from the root, the edge weights alternate between large and small values. It is thus interesting to compare
the actual performance of PostOrder in terms of the memory requirement of the resulting traversal with
respect to the optimal value on realistic trees. To this goal, one can use assembly trees that arise from the
factorization of matrices obtained from the University of Florida Sparse Matrix Collection (see [30] for
details on the experimental dataset). The optimal memory requirement of a traversal is computed using
the exact algorithms presented below. The experiments show that in 95.8% of the cases, PostOrder is
optimal. In the non-optimal cases, PostOrder requires up to 18% more memory than the optimal solution
(the average increase is in memory is around 1%).

Exact algorithms

Liu [35] proposes an algorithm for MINMEMORY which is optimal among all possible traversals, not only
postorder ones. It is a recursive bottom-up traversal of the tree which, at each node of the tree, combines
the optimal traversals built for all subtrees (see Algorithms 1 and 2). The combination is based on the
notion of Hill-Valley Segments: the schedule corresponding to a subtree is split into a sequence of segments.
Each segment ends at a (local) minimum memory: to minimize the memory, it is better to totally process a
segment before switching to the processing of another subtree. Then, the sequence of segments computed
for all subtrees are ordered by non-increasing hill − valley value and merged. The motivation is then to
process first segments with high memory peak (hill) but small residual memory requirement (valley).

Liu provides a complex proof for the optimality of the obtained schedule. It also states that the worst-
case complexity of this algorithm is O(p2) using some sophisticated multi-way merging algorithm.

Another optimal algorithm, the MinMem has been proposed in [30] to minimize memory during the
tree traversal. It is based on an advanced tree exploration routine: the Explore algorithm described in
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Algorithm 1 LiuMinMem (T )
Input: tree T rooted at r
if r is a leaf then

return the sequence consisting of the node r
else

Let T1, . . . , Tk be the subtrees rooted at the children of r for i = 1, . . . , k do
Si ← LiuMinMem(Ti)

return S = Combine(T, S1, . . . , Sk)

Algorithm 2 Combine (T, S1, . . . , Sk)
for i = 1, . . . , k do

Compute the memory occupation at each step of Si when processing subtree Ti
Split Si into a series of m segments such that:
• the memory occupation at the end of the first segment is the minimum memory (valley) in Si
• the memory occupation at the end of the ith segment is the minimum memory in Si restricted to

segments i to m

For each segment s, compute its hill (maximum memory) and valley (minimum memory) values
Sort all segments by hill-valley value
return this ordering of the nodes

Algorithm 3 Explore (T,M avail)
Input: tree T rooted at r and available memory M avail

Output: 〈L,m, S〉 where L is a state (described by the input files it contains) with minimum memory m
which can be reached with memory M , and S a schedule to reach it.

if r is a leaf and there is enough memory for its processing then
return 〈∅, 0, (r)〉

if there is not enough memory to process r then
return 〈∅,∞, ∅〉

S ← (r)
CurrentCut ← {Children of r}
stopped ← 0
while stopped 6= 1 do

stopped ← 1
foreach j ∈ CurrentCut do

Compute the available memory for the processing of the subtree at j:
M avail
j ←M avail −

∑
k∈CurrentCut\{j} fk

〈Lj ,mj , Sj〉 ← Explore(T,M avail
j )

if exploring the subtree at j leads to state with less memory: mj ≤ fj then
stopped ← 0
CurrentCut ← CurrentCut\{j} ∪ Lj
append traversal Sj to the end of S: S ← S ⊕ Sj

m←
∑

j∈CurrentCut fj
return 〈CurrentCut ,m, S〉
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Algorithm 3. The Explore algorithm requires a tree T to explore and an amount of available memory
Mavail . With these parameters, the algorithm computes state with minimal residual memory that can be
reached with memory Mavail . If the whole tree can be processed, then the minimal residual memory is zero.
Otherwise, the algorithm stops before reaching the bottom of the tree, because some parts of the tree require
more memory than what is available. In this case, the state with minimal residual memory corresponds to
a cut in the tree: some subtrees are not yet processed, and the input files of their root nodes are still stored
in memory. The Explore algorithm outputs the cut with minimal memory occupation, as well as a possible
traversal to reach this state with the provided memory.

When called on a tree T , the algorithm first checks if the current node can be executed. If not, the
algorithm stops. Otherwise, it recursively proceeds in its subtree. The optimal cut is initialized with its
children, and iteratively improved. All the nodes in the cut are explored: if the cut Lj found in the subtree of
a child j has a smaller memory occupation than the child itself, the cut is updated by removing child j, and
by adding the corresponding cut Lj . When no more nodes in the cut can be improved, then the algorithm
outputs the current cut.

The Explore algorithm can be used to check whether a given tree can be processed using a given mem-
ory. A possible way to compute the minimum memory to process the tree is then to perform a binary
search on the available memory. However, there are several ways to speed-up such an algorithm (for details,
see [30]):
• We can transform the Explore algorithm so that it also returns the minimum increment in the available

memory needed to explore more nodes. This helps to reduce the number of calls to Explore.
• When calling Explore several times on the same subtree with an increasing memory, the beginning

of the subtree will be explored many times. To avoid this, it is possible to store the current state of
exploration, as well a the current schedule. This ensures that nodes are not visited several times.

Using these optimizations, it is possible to prove that the MinMem algorithm based on the Explore pro-
cedures has a similar time complexity with LiuMinMem (O(p2)). Although both exact algorithms have
the same worst-case time complexity, it is interesting to note that MinMem is faster than LiuMinMem
on realistic trees: Experiments on the same set of trees described above show that MinMem is the fastest
algorithm in 80% of the cases. This is explain by the fact that LiuMinMem has to sort segments when
merging schedules obtained for subtrees. On the contrary, MinMem does not use sorting. This can make
a significant difference if, for example, for each node, the size of the input file is larger than the size of the
output files, MinMem will run in O(n) for a tree of n nodes.

0.5.3 Out-of-Core Traversals and the MINIO Problem

Out-of-core processing enables solving large problems, when the size of the data cannot fit into the main
memory. In this case, some temporary data are copied into the secondary memory, and unloaded from the
main memory, so as to leave room for other computations. Since secondary memory has a smaller access
rate, the usual objective is to limit the volume of I/O operations.

Defining traversals that perform I/O operations is more complicated than defining in-core traversals: in
addition to determining the ordering of the nodes (the permutation σ), at each step we have to identify which
files are written into secondary memory (if necessary). When a task i is scheduled for execution but its input
file was moved to secondary memory, that file must be read and loaded back into the main memory before
processing task i. Thus, a given file is written at most once in the secondary memory. Moreover, it a file
is to be written in the secondary memory, it is always beneficial to write it as soon as it is created. Thus,
we can model the I/O operations via a binary function δIO such that δIO(i) = 1 if and only if the input file
of task i (of size fi) should be moved to secondary memory. Formally, a valid out-of-core traversal can be
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defined as follows.

Definition 3 (OUTOFCORETRAVERSAL). Given a tree T and a fixed amount of main memory M , the
problem OUTOFCORETRAVERSAL(T ,M) consists in finding an out-of-core traversal, described by a per-
mutation σ of the nodes in T (corresponding to the schedule of computations), and a binary function δIO
(corresponding to I/O operations), such that:

∀i 6= root , σ(parent(i)) < σ(i) (6)

∀i,
∑

σ(j)<σ(i)

 ∑
k∈Children(j)

fk − fj

− ∑
σ(parent(j))<σ(i)<σ(j)

δIO(j)+1

fj + ni +
∑

k∈Children(i)

fk ≤M (7)

Then the amount of data written in secondary memory is given by

IO =
∑

δIO(i)=1

fi

In Equation (7), the term
∑

σ(parent(j))<σ(i)<σ(j)
δIO(j)+1

fj corresponds to the files that have been written into

secondary memory at step σ(i). The MINIO problem, which asks for an out-of-core traversal with the
minimum amount of I/O volume, can be defined as follows.

Definition 4 (MINIO). Given a tree T , and a fixed amount of main memory M , determine the minimum I/O
volume IO needed by a solution of OUTOFCORETRAVERSAL(T ,M).

The following three variants of the problem are NP-complete.

Theorem 4. Given a tree T with p nodes, and a fixed amount of main memory M , consider the following
problems:
(i) given a postorder traversal σ of the tree, determine the I/O schedule so that the resulting I/O volume is
minimized,
(ii) determine the minimum I/O volume needed by any postorder traversal of the tree,
(iii) determine the minimum I/O volume needed by any traversal of the tree.
The (decision version of) each problem is NP-complete.

Note that (iii) is the original MINIO problem. Also note that the NP-completeness of (i) does not a
priori imply that of (ii), because the optimal postorder traversal could have a particular structure. The same
comment applies for (ii) not implying (iii). The proof of these three results all relies on a reduction from 2-
Partition problem [23], using the tree illustrated on Figure 2. Scheduling this tree with a memory M = 2S
an maximum amount IO of IO = 2/S requires to process first task Tbig , and thus to select a subset of
ais (the input file of tasks Ti) which sums exactly to S/2. For more details on the proofs for all variants,
see [30].

0.5.4 Perspectives and Open Problems

We have gathered in this section existing results on the problem of scheduling trees under memory con-
straints. Many problems are still open. The first one concerns splittable files. Indeed, the NP-completeness
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Figure 2: Reduction of an instance of the 2-partition problem for the NP-completeness proof of MINIO.

of the MINIO problem comes from the difficulty to find a subset of files whose sizes sum up to a given
bound. However, most memory systems nowadays are paginated, and allows to write only portions of files
to secondary memory. Therefore, studying the complexity of the MINIO problem with splittable files is
very relevant. This problem is still open.

The results presented here only concern the processing of trees on a single machine. It is crucial to
extend these results for other type of graphs (like series-parallel graphs, or any DAGs), and for parallel
machines. It is likely that most problems will be NP-complete, but the results on trees may be useful to
derive good heuristics, in the best case with approximation bounds. Even if approximation algorithms seem
out of reach for general traversals, there is hope to derive an approximation algorithm for postorder traversals
of trees, which are simpler to analyze than arbitrary traversals.

0.6 Case Study: Partitioning Tree Structured Computations

The problem addressed in this case-study arises in the solution of linear systems with a direct method,
and with an out-of-core environment [1]. In order to make the section self-contained, we investigate the
combinatorial problem (in Sections 0.6.1-to-0.6.3) without linear algebra notions, and refer the curious
reader to the related reference items. We briefly discuss the mentioned application and one more related
scenario in Section 0.6.4.

0.6.1 Definitions

Let T = (V,E) be a rooted tree where all the edges are towards the root node r. Each node u, except the
root, has a parent. Each node u, except the leaves, has a set of children, which are the nodes whose parent
is u. For each node u, the vertices in the unique path from u to r are called the ancestors of u, and they are
denoted by P (u). The nodes u and r are included in P (u). A subtree of T rooted at a node u contains all
nodes v for which u ∈ P (v); we use T (u) to denote that subtree and use L(u) to denote the leaf nodes in
the subtree T (u). A topological ordering of a tree T = (V,E) is an ordering of the nodes V in such a way
that any node is numbered before its parent; the root node is ordered last. A postorder traversal of a tree is a
topological ordering where the nodes in each subtree are numbered consecutively.

There is a weight associated with each internal node of T . We use w(u) to denote the weight of the node
u. Leaf nodes are special and have zero weight. We are given a set of n tasks t1, t2, . . . , tn. Each task is
associated with a unique leaf node. In order to execute the task ti, one starts from a leaf node `i and visits all
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the internal nodes in P (`i). Visiting an internal node u entails a cost, w(u). A task requires a unit amount
of memory storage throughout its execution. The task executions are nonpreemptive, i.e., when a task is
started, it continues until the root node. One can execute two or more tasks concurrently at each internal
node, where the cost payed at a node u is always w(u), irrespective of the number of concurrent tasks. As
each task requires a unit amount of memory storage, the number of concurrent tasks is limited. In such a
case, one takes as many tasks as possible and executes them concurrently till the root node. The problem
then becomes that of partitioning the tasks into groups so that each group can be stored in the memory while
the total cost is minimized.

We now define the problem formally. The cost associated with a task ti is

cost(ti) =
∑

u∈P (`i)

w(u) . (8)

If we execute a set S of tasks concurrently, the associates cost is

cost(S) =
∑

u∈P (S)

w(u) where P (S) =
⋃
ti∈S

P (`i) .

Let B be the maximum number of tasks one can execute concurrently. Then we have the following
TREEPARTITIONING problem. Given a tree T , a set of tasks S = {t1, t2, . . . , tn}, and an integer B ≤ n,
partition S into a number of subsets S1, S2, . . . , SK such that |Sk| ≤ B, for k = 1, . . . ,K and the total cost

K∑
k=1

cost(Sk) (9)

is minimum. The number of parts K is not specified (but for feasibility we have K ≥ dn/Be).

0.6.2 Complexity Results

Before introducing the complexity results (and algorithms), we present a lower bound for the cost of an
optimal partition.

Theorem 5. Let T be a node weighted tree, w(u) be the weight of node u, B be the maximum allowed size
of a partition, and L(u) be the number of leaf nodes in the subtree rooted at u. Then we have the following
lower bound, denoted by η, on the optimal solution c? of the TREEPARTITIONING problem:

η =
∑
u∈T

w(u)×
⌈
L(u)

B

⌉
≤ c? .

Proof. Follows easily by noting that the leaf nodes of the subtree T (u) will be partitioned among at least⌈
L(u)
B

⌉
parts.

Each internal node is on a path from (at least) one leaf node, therefore dL(u)/Be is at least 1, and we
have

∑
uw(u) ≤ c?.

Theorem 6. The TREEPARTITIONING problem is NP-complete.
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Figure 3: The instance of the TREEPARTITIONING problem corresponding to a given 3-PARTITION PROB-
LEM. The weight of each node is shown next to the node. The minimum cost of a solution for B = Z to
the TREEPARTITIONING problem is p × wr + 3p × wv which is only possible when the children of each
vi are all in the same part, and when the children of three different internal nodes, say vi, vj , vk, are put in
the same part. This corresponds to putting the numbers ai, aj , ak into a set for the 3-PARTITION problem
which sums up to Z.

Proof. We consider the associated decision problem: given a tree T with n leaves, a value of B, and a cost
bound c, does there exist a partitioning S of the n leaves into subsets whose size does not exceed B, and
such that cost(S) ≤ c? It is clear that this problem belongs to NP since if we are given the partition S, it is
easy to check in polynomial time that it is valid and that its cost meets the bound c. We now have to prove
that the problem is in the NP-complete subset.

To establish the completeness, we use a reduction from 3-PARTITION [23], which is NP-complete in
the strong sense. Consider an instance I1 of 3-PARTITION: given a set {a1, . . . , a3p} of 3p integers, and
an integer Z such that

∑
1≤j≤3p aj = pZ, does there exist a partition of {1, . . . , 3p} into p disjoint subsets

K1, . . . ,Kp, each with three members, such that for all 1 ≤ i ≤ p,
∑

j∈Ki aj = Z?
We build the following instance I2 of our problem: the tree is a three-level tree composed of N =

1 + 3p+ pZ nodes: the root vr, of cost wr, has 3p children vi, of the same cost wv, for 1 ≤ i ≤ 3p. In turn,
each vi has ai children, each being a leaf node of zero cost. This instance I2 of the TREEPARTITIONING

problem is shown in Fig. 3. We let B = Z and ask whether there exists a partition of leaf nodes of cost
c = pwr + 3pwv. Here wr and wv are arbitrary values (we can take wr = wv = 1). We note that the cost
c corresponds to the lower bound shown in Theorem 5; in this lower bound, each internal node vi is loaded
only once, and the root is loaded p times, since it has pZ = pB leaves below it. Note that the size of I2
is polynomial in the size of I1. Indeed, because 3-PARTITION is NP-complete in the strong sense, we can
encode I1 in unary, and the size of the instance is O(pZ).

Now we show that I1 has a solution if and only if I2 has a solution. Suppose first that I1 has a solution
K1, . . . ,Kp. The partition of leaf nodes corresponds exactly to the subsets Ki: we build p subsets Si whose
leaves are the children of vertices vj with j ∈ Ki. Suppose now that I2 has a solution. To meet the cost
bound, each internal node has to be loaded only once, and the root at most p times. This means that the
partition involves at most p subsets to cover all leaves. Because there are pZ leaves, each subset is of
size exactly Z. Because each internal node is loaded only once, all its leaves belong to the same subset.
Altogether, we have found a solution to I1, which concludes the proof.

We can further show that we cannot get a close approximation to the optimal solution in polynomial
time.
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Theorem 7. Unless P=NP, there is no 1 + o
(
1
m

)
polynomial approximation for trees with m nodes in the

TREEPARTITIONING problem.

Proof. Assume that there exists a polynomial 1 + ε(m)
m approximation algorithm for trees with m nodes,

where limm→∞ ε(m) = 0. Let ε(m) < 1 for m ≥ m0. Consider an arbitrary instance I0 of 3-PARTITION
with a set {a1, . . . , a3p} of 3p integers, and an integer Z such that

∑
1≤j≤3p aj = pZ. Without loss of

generality, assume that ai ≥ 2 for all i (hence Z ≥ 6). We ask if we can partition the 3p integers of I0 into
p triples of the same sum Z. Now we build an instance I1 of 3-PARTITION by adding X times the integer
Z−2 and 2X times the integer 1 to I0, whereX = max

(⌈
m0−1
Z+3

⌉
− p, 1

)
. Hence I1 has 3p+3X integers

and we ask whether these can be partitioned into p+X triples of the same sum Z. Clearly, I0 has a solution
if and only if I1 does (the integer Z − 2 can only be in a set with two 1s).

We build an instance I2 of TREEPARTITIONING from I1 exactly as we did in the proof of Theorem 6,
with wr = wv = 1, and B = Z. The only difference is that the value p in the proof has been replaced by
p+X here, therefore the three-level tree now has m = 1 + 3(p+X) + (p+X)Z nodes. Note that X has
been chosen so that m ≥ m0. Just as in the proof of Theorem 6, I1 has a solution if and only if the optimal
cost for the tree is c? = 4(p+X), and otherwise the optimal cost is at least 4(p+X) + 1.

If I1 has a solution, and because m ≥ m0, the approximation algorithm will return a cost at most(
1 +

ε(m)

m

)
c? ≤

(
1 +

1

m

)
4(p+X) = 4(p+X) +

4(p+X)

m
.

But 4(p+X)
m = 4(m−1)

(Z+3)m ≤
4
9 < 1, so that the approximation algorithm can be used to determine whether I1,

and hence I0, has a solution. This is a contradiction unless P=NP.

0.6.3 Approximation Algorithm

Consider the heuristic POPART shown in Algorithm 4 for the TREEPARTITIONING problem. As seen in
Algorithm 4, the POPART heuristic first orders the leaf nodes according to their rank in the postorder. It
then puts the first B leaves in the first part, the next B leaves in the second part, and so on. This simple
partitioning approach results in dn/Be parts, for a tree with n leaf nodes, and puts B nodes in each part,
except maybe in the last one. We have the following theorem which states that this simple heuristic obtains
results that are at most twice the cost of an optimum solution.

Algorithm 4 POPART: A postorder based partitioning
Input T = (V,E) with n leaves; each requested entry corresponds to a leaf node.
Input B: the maximum allowable size of a part.
Output ΠPO = {S1, . . . , SK} where K = dn/Be, a partition on the leaf nodes.

1: compute a postorder of the nodes of T
2: L ← sort the leaf nodes according to their rank in the postorder
3: Sk = {L(i) : (k − 1)×B + 1 ≤ i ≤ min{k ×B,n}, for k = 1, . . . , dn/Be}

Theorem 8. Let ΠPO be the partition obtained by the algorithm POPART and c? be the cost of an optimum
solution. Then

cost(ΠPO) ≤ 2× c? .

21



Proof. Consider node u. Since the leaves of the subtree rooted at u are sorted consecutively in L, the
contribution of node u to the cost will be at most

⌈
L(u)
B

⌉
+ 1. Therefore the overall cost is at most

cost(ΠPO) ≤
∑
u

w(u)×
(⌈

L(u)

B

⌉
+ 1

)
≤ η +

∑
u

w(u)

≤ 2× c?

0.6.4 Application Scenarios

In the application of the TREEPARTITIONING problem described by Amestoy et al. [1], each task cor-
responds to a sparse triangular solve operation with a right-hand-side (RHS) vector containing a single
nonzero. There is a tree which describes the data requirements for each solve operation. Each internal
node of the tree corresponds to parts of the triangular matrices stored in a file at disk. Solve operation for
a given RHS vector starts from a leaf node and climbs up to the root. At each internal node, the matrix
parts associated with that node are read from a file, and their inverse are applied to the RHS vector. All the
RHS vectors are of the same size, and there is a huge number of them. Due to the limited memory size, one
can hold only a certain number of RHS vectors at once in memory. In this setting, one organizes the solve
operations in epochs where at each epoch a set of RHS vectors are solved for. Any internal node is accessed
at most once during an epoch, but it can be accessed in multiple epochs. The solution time of an epoch is
dominated by the time spent in reading the files containing the parts of the triangular matrices. In order to
minimize the completion time of the application, one has to minimize the total size of the files read in. This
is an instance of the TREEPARTITIONING problem where the tasks are solve operations; B is the number of
unit size RHS vectors that one can hold in memory; the cost associated with an internal node is the size of
the corresponding file; and the objective function is the total size of the files read in.

Consider a hypothetical application whose tasks correspond to paths from a leaf node to the root in a
given tree. Assume that each internal node is associated with a data. Consider the following parallelization
approach. Each task is to be executed by a single processor. This necessitates replicating the nodes of
the tree at different processors so that each task can be executed by the owner processor. This can be
again described as an instance of the TREEPARTITIONING problem, where this time B is a function of the
available processors. Consider again the same application, where we do not want to replicate the data. In a
possible parallelization approach, the data should be partitioned, and the tasks should be migrated from one
processor to the other whenever needed (e.g., when the parent of a node and the node itself are at different
processors). This time, one partitions the internal nodes of a tree so that the leaf-to-root paths are split among
as few parts as possible. This seemingly different problem is addressed elsewhere [24] with techniques that
are very different than what we saw in this section. However, it is possible to express both problems using
hypergraph models and use a common algorithm to obtain effective solutions [53].

0.7 Case Study: Checkpointing Strategies

Any hardware component may be subject to faults. The Mean Time Between Failures (MTBF) of a processor
is typically of the order of one hundred years. The reader can thus very safely bet that his laptop processor
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will not fail within the next month. Therefore, she does not need any fault-tolerance technique to safely run
a computation on his laptop for, say, 12 hours. Things are completely different if the 12-hour computation
is performed using a large number of processors. Indeed, the probability that one of the processors used
by the application will fail during the 12 hours of the application execution, dramatically increases with
the number of processors enrolled in the execution. For instance, the 45,208-processor Jaguar platform is
reported to experience on the order of one failure per day [39, 11]. In other words, during any execution
that would run for 12 hours using the entire Jaguar platform, there is one chance out of two that a fault will
occur. Faults that cannot be automatically detected and corrected in hardware lead to application failures.
Using fault-tolerance techniques is thus mandatory when using a large number of processors for a significant
amount of time. Resilience—the ability to resist to failures—is thus a key challenge for modern and future
high-performance computing (HPC) systems [19, 47].

The most used fault-tolerance technique is rollback recovery: after a failure, job execution is resumed
from a previously saved fault-free execution state, or checkpoint. Rollback recovery implies frequent (usu-
ally periodic) checkpointing events at which the job state is saved to resilient storage. More frequent check-
points lead to higher overhead during fault-free execution, but less frequent checkpoints lead to a larger loss
when a failure occurs. The design of efficient checkpointing strategies, which specify when checkpoints
should be taken, is thus key to high performance.

In this case study, we consider a single job to be executed on a predefined number of processors. The
scheduling problem, here, is then to decide when (and how many times) to checkpoint the job in order to
minimize its expected execution time.

0.7.1 Problem Statement

We consider an application, or job, that executes on p processors. The job must complete W units of
(divisible) work: there are no constraints on when the job state can be checkpointed. We assume coordinated
checkpointing [54], i.e., that all processors checkpoint the job state simultaneously. We call chunk the
fraction of the whole job that is executed between two consecutive checkpoints. Defining the sequence of
chunk sizes is therefore equivalent to defining the checkpointing dates. We use C to denote the time needed
to perform a checkpoint. The processors are subject to failures, each causing a downtime period, of duration
D, followed by a recovery period, of duration R. The downtime accounts for software rejuvenation (i.e.,
rebooting [31, 15]) or for the replacement of the failed processor by a spare. Regardless, we assume that after
a downtime the processor that failed is fault-free and begins a new lifetime at the beginning of the recovery
period. This period corresponds to the time needed to restore the last checkpoint. Note that although C and
R can fluctuate depending on cluster and network load, as in most works in the field we assume they are
constant. Finally, we assume that failures can happen during recovery or checkpointing, but not during a
downtime (otherwise, the downtime period could be considered part of the recovery period).

We consider the processors from time t0 onward. We use Psuc(x|τ1, ..., τp) to denote the probability that
none of the processors fail for the next x units of time, knowing that the last failure of processor Pi occurred
τi units of time ago, for 1 ≤ i ≤ p. The failure interarrival times on the different processors are defined by
independent and identically distributed random variables. Let Xi be the random variable for the interarrival
time on processor Pi between the last failure (that happened τi units of time ago) and the next one. Then we
have:

Psuc(x|τ1, ..., τp) = P(X1 ≥ τ1 + x, ....,Xp ≥ τp + x | X1 ≥ τ1, ..., Xp ≥ τp) .

Note that we do not assume that the failure stochastic process is memoryless.
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0.7.2 Minimizing the Expected Makespan

Our aim is to minimize the job execution time. However, as we are trying to execute the job on a failure-
prone platform, this execution time cannot be known beforehand: it depends on whether and when failures
will impact the job execution. Therefore, our objective will not be the minimization of the makespan, like
for instance in Section 0.4, but the expectation of the makespan, that is, the average makespan, the average
being taken over all possible failure scenarios.

Formal Problem Definition

A solution to our scheduling problem is fully defined by a function f(ω|τ1, ..., τp) that returns the size
of the next chunk to execute given the amount of work ω that has not yet been executed successfully
(f(ω|τ1, ..., τp) ≤ ω ≤ W) and the amount of time τi elapsed since the last failure of processor Pi,
1 ≤ i ≤ p. f is invoked at each decision point, i.e., after each checkpoint or recovery. Our goal is to
determine a function f that defines an optimal solution. Assuming unit-speed processors without loss of
generality, the time needed to execute a chunk of size w is w + C if no failure occurs.

For a given amount of work ω and a time elapsed since the last failure τ , we define T (ω|τ1, ..., τp) as
the random variable that quantifies the time needed for executing ω units of work. Given a solution function
f , let ω1 = f(ω|τ1, ..., τp) denote the size of the first chunk. We can write the following recursion:

T (0|τ1, ..., τp) = 0

T (ω|τ1, ..., τp) =


ω1 + C + T (ω − ω1|τ1 + ω1 + C, ..., τp + ω1 + C)

if no processor fails during the next ω1 + C units of time,
Twasted(ω1 + C|τ1, ..., τp) + T (ω|τ ′1, ..., τ ′p) otherwise.

(10)

The two cases above are explained as follows:
• If none of the processors fail during the execution and checkpointing of the first chunk (i.e., for
ω1 + C time units), there remains to execute a work of size ω − ω1 and the time since the last failure
is incremented on each processor by ω1 + C.

• If at least one processor fails before the successful completion of the first chunk and of its checkpoint,
then some additional delays are incurred, as captured by the variable Twasted(ω1 + C|τ1, ..., τp). The
time wasted corresponds to the execution up to the failure, a downtime, and a recovery during which
some additional failures (and downtimes) may happen. Regardless, once a successful recovery has
been completed, there still remain ω units of work to execute, and the time since the last failure of a
processor depends on whether it fails (and when) during the attempt to process the first chunk, or the
subsequent downtime and recovery.

We define MAKESPAN formally as: find f that minimizes E(T (W|τ01 , ..., τ0p )), where E(X) denotes the
expectation of the random variable X , and τ0i the time elapsed since the last failure of processor Pi that
happened before t0.

Solving MAKESPAN for the Exponential Distribution

In this section we assume that the failure inter-arrival times of any processor follow an Exponential dis-
tribution with parameter λ, i.e., each Xi = X has probability density fX(t) = λe−λtdt and cumulative
distribution FX(t) = 1 − e−λt for all t ≥ 0. The advantage of the Exponential distribution, exploited time
and again in the literature, is its “memoryless” property: the time at which the next failure occurs does not
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depend on the time elapsed since the last failure occurred. Therefore, in this section, we simply write T (ω),
Twasted(ω), and Psuc(ω) instead of T (ω|τ1, ..., τp), Twasted(ω|τ1, ..., τp), and Psuc(ω|τ1, ..., τp).

A challenge for solving MAKESPAN is the computation of Twasted(ω1 + C). We rely on the following
decomposition:

Twasted(ω1 + C) = Tlost(ω1 + C) + Trec , where

• Tlost(x) is the amount of time spent computing before a failure, knowing that the next failure occurs
within the next x units of time;
• Trec is the amount of time needed by the system to recover from the failure (accounting for the fact

that other failures may occur during recovery).
The expectation of the makespan can then be expressed as a “simple” recursion:

Lemma 3. LetW be the amount of work to execute on p processors whose failure inter-arrival times follow
iid Exponential distributions with parameter λ. The MAKESPAN problem is equivalent to finding a function
f minimizing the following quantity:

E(T (W)) = Psuc(ω1 + C)
(
ω1 + C + E(T (W − ω1 + ω1 + C))

)
+ (1− Psuc(ω1 + C))

(
E(Tlost(ω1 + C)) + E(Trec) + E(T (W))

)
where ω1 = f(W) and where E(Tlost(ω)) is given by

E(Tlost(ω)) =
1

pλ
− ω

epλω − 1
.

The memoryless property makes it possible to solve the MAKESPAN problem analytically:

Theorem 9. LetW be the amount of work to execute on p processors whose failure inter-arrival times follow
iid Exponential distributions with parameter λ. Let K0 = pλW

1+L(−e−pλC−1)
, where L, the Lambert function,

is defined as L(z)eL(z) = z. Then the optimal strategy to minimize the expected makespan is to splitW into
K∗ = max(1, bK0c) orK∗ = dK0e same-size chunks, whichever minimizes ψ(K∗) = K∗(epλ(

W
K∗+C)−1).

The checkpointing strategy in Theorem 9 can be shown to be optimal among all deterministic and non-
deterministic strategies, as a consequence of Proposition 4.4.3 in [45].

Interestingly, although we know the optimal solution with p processors, we are not able to compute
the optimal expected makespan analytically. Indeed, E(Trec), for which there is a closed form in the case
of sequential jobs [12], becomes quite intricate in the case of parallel jobs. This is because during the
downtime of a given processor another processor may fail. During the downtime of that processor, yet
another processor may fail, and so on. We would need to compute the expected duration of these “cascading”
failures until all processors are simultaneously available. However, as the value of E(Trec) is independent of
the choice of the chunk sizes, not knowing its value does not forbid to find the optimal chunk size function.

MAKESPAN and Arbitrary Distributions

Solving the MAKESPAN problem for arbitrary distributions is difficult because, unlike in the memoryless
case, there is no reason for the optimal solution to use a single chunk size [51]. In fact, the optimal solution
is very likely to use chunk sizes that depend on additional information that becomes available during the exe-
cution (i.e., failure occurrences to date). For sequential jobs, approximated dynamic programming solutions
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have been proposed [12]. They cannot be extended to the parallel case as this would require to memorize the
evolution of the time elapsed since the last failure for all possible failure scenarios for each processor, lead-
ing to a number of states exponential in p. As we cannot attempt to solve directly MAKESPAN, we introduce
a new related optimization problem. This is especially important as failures in real-world computer systems
are recognized not to follow Exponential distributions but rather distributions like the Weibull distribution.

0.7.3 Maximizing the Expectation of the Amount of Work Completed

Rather than directly minimizing the job expected makespan, as in the MAKESPAN problem, in the NEXT-
FAILURE optimization problem we try to maximize the expected amount of work completed before the
next failure occurs. NEXTFAILURE amounts to optimizing the makespan on a “failure-by-failure” basis,
selecting the next chunk size as if the next failure were to imply termination of the execution. Intuitively,
solving NEXTFAILURE should lead to a good approximation of the solution to MAKESPAN, at least for large
job sizes W . Therefore, we use the solution of NEXTFAILURE in cases for which we are unable to solve
MAKESPAN directly.

Formal Problem Definition

For a given amount of work ω and a set of times elapsed since the last failure τ1, ..., τp, we define
W (ω|τ1, ..., τp) as the random variable that quantifies the amount of work successfully executed before
the next failure. Given a solution function f , let ω1 = f(ω|τ1, ..., τp) denote the size of the first chunk. We
can write the following recursion:

W (0|τ1, ..., τp) = 0

W (ω|τ1, ..., τp) =


ω1 +W (ω − ω1|τ1 + ω1 + C, ..., τp + ω1 + C)

if the processor does not fail during the next ω1 + C units of time,
0 otherwise.

(11)

This recursion is simpler than the one for MAKESPAN because a failure during the computation of the first
chunk means that no work (i.e., no fraction of ω) will have been successfully executed before the next
failure. We define NEXTFAILURE formally as: find f that maximizes E(W (W|τ01 , ..., τ0p )).

Solving NEXTFAILURE

Weighting the two cases in Equation (11) by their probabilities of occurrence, we obtain the expected amount
of work successfully computed before the next failure:

E(W (ω|τ1, ..., τp)) = Psuc(ω1 + C|τ1, ..., τp)(ω1 + E(W (ω − ω1|τ1 + ω1 + C, ..., τp + ω1 + C))).

Here, unlike for MAKESPAN, the objective function to be maximized can easily be written as a closed form,
even for arbitrary distributions. Developing the expression above leads to the following result:

Proposition 3. The NEXTFAILURE problem is equivalent to maximizing the following quantity:

E(W (W|τ01 , ..., τ0p )) =
K∑
i=1

ωi ×
i∏

j=1

Psuc(ωj + C|tj1, ..., t
j
p) ,

26



where tji = τ0i +
∑j−1

`=1(ω` + C) is the total time elapsed (without failure) before the start of the execution
of chunk ωj and since the last failure of processor Pi prior to the beginning of the application processing,
and K is the (unknown) target number of chunks.

Unfortunately, there does not seem to be an exact solution to this problem. However, the recursive
definition of E(W (W|τ1, ..., τp)) lends itself naturally to a dynamic programming algorithm. Formally:

Proposition 4. Using a time quantum u, and for any failure inter-arrival time distribution, DPNEXT-
FAILURE (Algorithm 1), called with parameters (W, τ01 , ..., τ

0
p ), computes an optimal solution to NEXT-

FAILURE in time O(Wu
3
).

Algorithm 1: DPNEXTFAILURE (W ,τ1, ..., τp)

1 if W = 0 then return 0
2 best ← 0
3 chunksize ← 0
4 for ω = min{quantum,W} to W step quantum do
5 (expected work , 1st chunk)← DPNEXTFAILURE(W − ω, τ1 + ω + C, ..., τp + ω + C)
6 cur exp work ← Psuc(τ1 + ω + C, ..., τp + ω + C | τ1, ..., τp)× (ω + expected work)
7 if cur exp work > best then best← cur exp work
8 chunksize ← ω

9 return (best, chunksize)

0.7.4 Conclusion

In this case-study, we have considered the problem of deciding when to save the execution state of an
application, i.e., when to take a checkpoint, in order to minimize the expectation of the execution time of an
application in a failure-prone environment. We have showed that the optimal solution was to take periodic
checkpoints when failures follow an exponential distribution. In the general case, it is not known how to
solve the problem analytically. Instead, we have built an approximation of the optimal solution through a
dynamic programming algorithm.

We have considered the problem in a simple setting where all checkpointing and recovery times were
constant. Furthermore, we have analyzed the simplest checkpointing protocol, namely coordinated check-
pointing. More complex protocols have been designed in order to (try to) alleviate the cost of the coordina-
tion [21, 20].

Rollback-recovery, as studied here, is only one of several fault-tolerance mechanisms. Another often
used mechanism is replication (see [22] for a coupling of replication with rollback recovery). The question
with replication is to decide which task should be replicated and how many times. The optimization objective
could be the minimization of the expectation of the execution time (as in this study), or the maximization of
the probability that the computation succeeds (reliability), or a multi-criteria optimization mixing reliability
and performance.

0.8 Conclusion

In this chapter we have presented several case-studies which we believe to be representative of modern
scheduling problems that arise at large-scale. Energy consumption, fault-tolerance, and memory manage-

27



ment are important objectives that must be taken into account in addition to pure makespan minimization.
The case-studies are also representative of the increased level of difficulty of modern scheduling prob-

lems, which typically involve multi-criteria optimization. A variety of mathematical tools and algorithmic
techniques are used to solve such problems, and we hope to have convincingly illustrated many of them in
this chapter. In addition, many bibliographical items have been provided within the text, and in Section 0.10
below, for further reference.

0.9 Defining Terms

Checkpoint and rollback recovery is the technique of saving the current state of the execution at different
points in time; when a failure occurs, the application can rollback to, and recover from, the most
recently saved state: execution resumes from that state instead of from the very beginning.

Dynamic voltage and frequency scaling (DVFS): by lowering supply voltage, hence processor clock fre-
quency, it is possible to achieve important reductions in power consumption; faster speeds allow for a
faster execution, but also lead to a much higher (supra-linear) power consumption.

Heterogeneity: resources are said to be heterogeneous when they do not have all the exact same character-
istics. For instance, the set of processors in a Grid is heterogeneous if they do not all have the same
processing capabilities or the same amount of memory.

Makespan: the makespan of an application is the time at which the application execution is completed.

Re-execution: a task whose execution is not reliable enough (for instance, because its execution speed is
below a threshold) is executed twice (or more) to enhance its reliability.

Resource selection: is the problem of deciding which, among all available resources, should be used to
solve a given problem.

Scheduling: is the problem of deciding at what time (when), and on which resource (where), to execute
each of the (atomic) tasks that must be executed on the given platform.

0.10 Further Information

There is a very abundant literature on scheduling and load balancing strategies for parallel and/or distributed
systems. The survey [50] is a good starting point to this work. The most famous heuristic to schedule a task
graph on an heterogeneous platform is HEFT [52].

A good introduction to multi-criteria optimization is the book by Pinedo [42]. Section 0.4 is mainly
based on [7]. Section 0.5 is mainly based on [30]. Liu proposes two optimal algorithms for optimal memory
traversal of trees, the first one restricted to postorder traversals [34], the second one for any traversal [35].
For more information on the pebble game model such as complexity results for general DAGs, see the
seminal work of Sethi [48] and Gilbert, Lengauer and Tarjan [25]).

The problem discussed in Section 0.6 is mainly based on a recent work by Amestoy et al. [1] The
paper include some improved algorithms for the TREEPARTITIONING problem, as well as a hypergraph
partitioning based formulation. The postorder-based algorithm discussed in Section 0.6.3 is implemented
and incorporated in Mumps [3], a sparse direct solver.
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Young is the author of a seminal study of periodic checkpointing policies [56]. His work was later
extended by Daly [17]. Section 0.7 is mainly based on [12] which contains references to many studies of
checkpointing policies. For non-coordinated checkpointing protocols, [28] by Guermouche et al. is a good
starting point.
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