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Abstract

We present a new algorithm for computing the solution of large Markov chain models whose generators can be represented in the form of a
generalized tensor algebra, such as networks of stochastic automata. The tensor structure inherently involves a product state space but, inside this
product state space, the actual reachable state space can be much smaller. For such cases, we propose an improvement of the standard numerical
algorithm, the so-called “shuffle algorithm”, which necessitates only vectors of the size of the actual state space. With this contribution, numerical
algorithms based on tensor products can now handle larger models.
c© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Continuous Time Markov Chains (CTMC) facilitate the
performance analysis of dynamic systems in many areas of
application [2] and are particularly well adapted to the study of
parallel and distributed systems, [3–5]. They are often used in a
high-level formalism in which a software package is employed
to generate the state space and the infinitesimal generator of
the CTMC, as well as to compute stationary and transient
solutions. Several high-level formalisms have been proposed
to help model very large and complex CTMCs in a compact
and structured manner. For example, stochastic automata
networks (SANs), [6,7], queueing networks, [8], generalized
stochastic Petri nets (GSPN), [9], stochastic reward nets, [10]
and stochastic activity nets [11] are, thanks to their extensive
modelling capabilities, widely used in diverse application
domains, notably in the areas of parallel and distributed
systems. It is therefore possible to generate the CTMC that
I An earlier version of this paper was published in [1].
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represents the system to be studied from formalisms such as
these, which model entire systems from their interconnected
subcomponents. Such formalisms often involve a product state
space Ŝ but, inside this product state space, the actual reachable
state space S can be much smaller (S ⊆ Ŝ).

In this paper, our concern is with the computation of the
stationary probability vector π ∈ R|S|, a row vector whose i th
element πi is the probability of being in state i of the CTMC
at a time that is sufficiently long for all influence of the initial
starting state to have been erased, and where S is the set of
states of the CTMC. The vector π is the solution of the system
of linear equations π Q = 0, subject to πe = 1, where Q is the
generator matrix of the CTMC and e is a vector whose elements
are all equal to 1.

The primary difficulty in developing software to handle
large-scale Markov chains comes from the explosion in
the number of states that usually occurs when certain
model parameters are augmented. Indeed, CTMCs that model
real parallel and distributed systems are usually huge and
sophisticated algorithms are needed to handle them. Both
the amount of available memory and the time taken to
generate them and to compute their solutions need to be
carefully analyzed. For example, direct solution methods, such
as Gaussian elimination, are generally not used because the
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amount of fill-in that occurs necessitates a prohibitive amount
of storage space. Iterative methods, which can take advantage
of sparse storage techniques to hold the infinitesimal generator,
are more appropriate, even though here, also, memory
requirements can become too large for real-life models.

During the generation of the CTMC from the high-level
formalism, particular attention must be paid to the way in
which the quantities S, Q and π are stored. Indeed, even
though the computational cost of a particular numerical solution
method may be relatively high, it is essentially the storage
considerations that determine whether this method may be used
or not. Furthermore, iterative methods often need to compute
the product of a probability vector and the generator Q many
many times. They therefore depend directly on the manner in
which these data are stored.

Different techniques have been proposed for storing the set
of reachable states S and for performing efficient searches in
this set. In certain cases, it is possible to define a reachability
function for the model and this may be used to provide access to
the reachable states in constant time [12]. In other cases, multi-
level approaches such as decision diagrams [13] may prove to
be efficient. In what follows, we suppose that S is stored in an
efficient manner and we will no longer be concerned with this
particular aspect of the algorithms.

There have been many techniques proposed to represent the
descriptor Q and the probability vector π . A first approach,
independent of the high-level formalism, consists of storing
the matrix in a row-wise compact sparse format: the nonzero
elements of the matrix and their position in the matrix are kept.
The probability vectors are the size of the reachable state space
|S|. Efficient algorithms are available with which to compute
a vector–matrix product when the matrix is stored in this
fashion [14,15]. However, for very large models, it is frequently
the case that the matrix is too large to be held in memory.

Sanders and his co-workers [16] proposed to generate the el-
ements of Q as they were needed, “on the fly” from a high-level
model. However, this approach can be computationally expen-
sive, especially when the model contains immediate transitions.
A different proposal is to store Q on a fast disk and to seek
the elements as and when they are needed [17]. This obviously
requires a disk that is sufficiently fast and sufficiently large.

Stochastic automata networks (SANs) were introduced by
Plateau et al. [6,7] to keep memory requirements manageable.
These allow Markov chains models to be described in a
memory efficient manner, because their storage is based on
a tensor formalism. Another formalism based on stochastic
Petri nets allows us to obtain a similar tensor formalism, as
shown by Donatelli in [18,19]. However, the use of independent
components connected via synchronizations and functions may
produce a representation with many unreachable states (|S| �

|Ŝ|). Within this Kronecker framework, a number of algorithms
have been proposed. The first, and perhaps the best known, is
the shuffle algorithm [7,20,6,21], which computes the product
but never needs the matrix explicitly. However, as has been
shown previously, this algorithm needs to use vectors π̂ the size
of Ŝ, which we shall call extended. We denote this algorithm
E-Sh, for extended shuffle. Some alternative approaches have
been proposed in [21–24]. They consist of first computing the
state space S, and then solving the model by using iteration
vectors π that contains entries only for these states (size of S),
which we shall call reduced.

Another approach consists of using decision diagrams in
order to represent the Markov chain generator Q. In this tree
representation, only distinct nonzero elements are stored, and
they are kept as the leaves of the tree. On initial construction,
the branches of the tree must be pruned to keep it from
becoming too large. Multi-terminal binary decision diagrams
(MTBDDs) and probabilistic decision graphs (PDGs) can
be used in model checking, e.g. [25,26], or in performance
evaluation [27]. This is a promising approach, but its efficiency
in memory requirements is directly linked to the number
of distinct elements in Q. Moreover, access to the nonzero
elements requires following a path from the root of the tree
to the appropriate leaf, and this must be done every time
an element is needed. As far as we are aware, there are no
comparative studies on the effectiveness of these algorithms in
actually computing solutions of Markov chains.

In order to improve the computation time, another kind of
representation is presented in [28,29]. This representation of the
generator Q as a matrix diagram permits quick access to all of
their elements, and the solution time is often satisfactory, even
for large models. Furthermore, memory requirement to store Q
are barely greater than that needed for a descriptor stored in
tensor format and remains negligible compared to that needed
to store a probability vector. However, techniques linked to a
cache [28] make theoretical estimations of the complexity of
the algorithms difficult, whereas good theoretical results may
be obtained with the Kronecker approach [24].

When |S| ≈ |Ŝ|, the gain in memory obtained with the use of
the tensor formalism can be enormous compared to the standard
approach of an explicit sparse matrix storage. For example, if
a model consists of K components of size ni (i = 1, . . . , K ),
the infinitesimal generator is full and the space needed to store
it with the standard approach is of the order of (

∏K
i=1 ni )

2. The
use of a tensor formalism reduces this cost to

∑K
i=1 n2

i . The
shuffle algorithm E-Sh is very effective in this case, as has been
shown in [7,20,6,21].

However, when there are many unreachable states (|S| �

|Ŝ|), E-Sh is not efficient, because of its use of extended
vectors. The probability vector can therefore have many
zero elements, since only states corresponding to reachable
states have nonzero probability. Moreover, computations are
carried out for all the elements of the vector, even those
elements corresponding to unreachable states. Therefore, the
gain obtained by exploiting the tensor formalism can be lost,
since many useless computations are performed, and memory is
used for states whose probability is always zero. In this case, the
approach first described, based on storing all nonzero elements
of the generator, performs better, since it does not carry out
meaningless computations. However, its extensive memory
requirements prevent its use on extremely large models.

Due to the large memory requirements of this last approach,
it is worthwhile seeking a solution that takes unreachable states
into account and, at the same time, uses the benefits of the
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tensor formalism. Thus, we would like to be able to exploit
the tensor formalism, even in the presence of an important
number of unreachable states. Indeed, the shuffle is an efficient
algorithm when |S| ≈ |Ŝ|, and we will show how to modify
it efficiently for the case in which |S| � |Ŝ|. It is interesting
to work on this algorithm, which conserves its tensor structure
and for which we possess certain theoretical results, and which,
in addition, is used in diverse domains (signal processing [30],
partial differential equations . . . ).

The use of reduced vectors (of size |S|) permits a reduction
in memory used, and some needless computations are avoided.
This leads to significant memory gains when using iterative
methods such as Arnoldi or GMRES, which can possibly
require many probability vectors. A modification to the E-Sh
shuffle algorithm permits the use of such vectors. However, to
obtain good performance at the computation-time level, some
intermediate vectors of size |Ŝ| are also used. The algorithm
Act-Sh-JCB of [24] transforms the reduced vector π into a
vector π̂ of size |Ŝ| before calling E-Sh.

In summary, the algorithm E-Sh is an efficient algorithm
when there are few nonreachable states in the system.
Modifications to reduce memory needs when |S| � |Ŝ| have
been proposed, but the new algorithms also use intermediate
data structures of size |Ŝ| [24]. Our goal is to develop
algorithms that maintain the desirable complexity of E-Sh,
while eliminating the inconvenient data structures of size equal
to the size of the product space, which, to our knowledge, has
not been done before. We hope that this will minimize memory
requirements at the cost of only a small increase in computation
time.

In the next section, we present the shuffle algorithm E-Sh
for the multiplication of a vector and a SAN descriptor. We
then present (in Section 3) two new versions of the shuffle
algorithm to save both computations and memory. The first one
is partially reduced (use of intermediate vectors of size |Ŝ|)
and we denote the corresponding algorithm PR-Sh. It focuses
on computation time, but the saving in memory turns out to
be somewhat insignificant. Another version of the algorithm
concentrates on the amount of memory used, and allows us to
handle even more complex models. In this new algorithm, all
the intermediate data structures are stored in reduced format.
We refer to this as fully reduced and denote the corresponding
shuffle algorithm FR-Sh. A series of tests comparing these
shuffle algorithms is presented in Section 5. These algorithms
were incorporated into the software package PEPS [12,31] and
tested by means of this package.

2. The shuffle algorithm

In SANs [7,20] and in SGSPNs (Superposed Generalized
Stochastic Petri Nets) [19], it has been shown that the transition
matrix can be expressed as:

Q = D +

N⊕
g

i=1

Q(i)
l +

E∑
e=1

N⊗
g

i=1

Q(i)
e =

(N+2E)∑
j=1

 N⊗
g

i=1

Q(i)
j

 .

(1)
Here, N is the number of automata (resp. sub Petri nets) in the
network and E is the number of synchronizing events (resp.
transitions). In the first representation, D is the diagonal of the
descriptor; the tensor sum corresponds to the analysis of the
local events and is called the local part of the descriptor; the
tensor product corresponds to the analysis of the synchronizing
events and is called the synchronizing part of the descriptor.
The second representation shows that the basic operation of
interest in computing the steady state vector of the Markov
chain using iterative methods is the product of a row vector π̂

and a tensor product1
⊗

g
N
i=1

Q(i). This term is composed of a

sequence of N matrices denoted Q(i) with i ∈ [1 . . . N ], each
associated with an automaton A(i). We begin by introducing
some definitions concerning finite sequences of matrices:

• ni is the order of the i th matrix in a sequence;
• nle f ti is the product of the order of all the matrices that are

to the left of the i th matrix of a sequence, i.e.,
∏i−1

k=1 nk with
the special case nle f t1 = 1;

• nrighti is the product of the order of all the matrices that are
to the right of the i th matrix of a sequence, i.e.,

∏N
k=i+1 nk

with the special case nrightN = 1.

We first assume that there are no functional dependences
(i.e. state dependent rates, when the rate of one automaton
depends on the state of the entire system [7]). According
to the decomposition property of tensor products [7], every
tensor product of N matrices is equivalent to the product of
N normal factors. To compute the multiplication of a vector by
the term

⊗N
i=1 Q(i), it is therefore sufficient to know how to

multiply a row-vector π̂ and a normal factor i : π̂ × I nle f ti ⊗

Q(i)
⊗ I nrighti . Furthermore, the property of commutativity

between normal factors allows multiplication of the normal
factors in any desired order. The matrix I nle f ti ⊗ Q(i)

⊗

I nrighti is a block diagonal matrix in which the blocks are
the matrix Q(i)

⊗ I nrighti . We can treat the different blocks
in an independent manner, which suggests the possibility of
introducing parallelism into the algorithm [32]. There are
nle f ti blocks of the matrix, each of which is to be multiplied
by a different piece of the vector, which we shall call a vector
slice. The vector is divided according to Inle f ti , and so we shall
call these vector slices l-slices (for left), and denote them by
p0, . . . , pnle f ti −1, each of size nrighti × ni .

Thus, the E-Sh algorithm consists of a loop over the
nle f ti l-slices, and at each iteration it computes the resulting
l-slice, rl = pl ×Q(i)

⊗I nrighti . The computation of an element
of the resulting l-slice corresponds to the multiplication of pl
by a column of the matrix Q(i)

⊗ I nrighti . Due to the structure
of this matrix, the multiplication therefore boils down to the
repeated extraction of components of pl (at distance nrighti
apart), forming a vector called zin from these components and
then multiplying zin by a column of the matrix Q(i). Notice
carefully that zin is composed of elements of pl which may not
be consecutive. In a certain sense, it is a slice of pl . The slice

1 The indices j have been omitted from the matrices Q(i)
j in order to simplify

the notation.
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zin corresponds to elements of pl which must be multiplied by
the elements of the column of Q(i). The structure of the matrix
Q(i)

⊗ I nrighti informs us that we must consider nrighti slices
zin. Thus, we number the zin from 0 to nrighti − 1. Extracting
a zin is the same as accessing the vector pl and choosing the
elements at intervals of nrighti positions in the vector.

Once a zin has been obtained, we can compute an element
of the result by multiplying the zin by a column of Q(i).
The multiplication of a zin by the entire matrix Q(i) therefore
provides several elements of the result, a slice of the result,
called zout. The positions of the elements of zout in rl correspond
to the positions of the elements of zin in pl . We number the zout
in the same way as we did for zin. Therefore, the multiplication
of the zin n◦ k by Q(i) gives zout n◦ k.

A pseudo-code of the E-Sh can be found in [21].
Complexity: The complexity of the algorithm for multiplying
a vector and a classic tensor product may be obtained by
observing the number of vector–matrix multiplications that are
executed [7,20]. If we assume that the matrices Q(i) are stored
in a sparse compacted form, and letting nzi denote the number
of nonzero elements in the matrix Q(i), then the complexity of
E-Sh is given by

N∏
i=1

ni ×

N∑
i=1

nzi

ni
= |Ŝ| ×

N∑
i=1

nzi

ni
.

This should be compared to the multiplication of a vector and
Q =

⊗N
i=1 Q(i), which consists of first computing Q and then

multiplying the result with the vector. This has complexity of
the order of |Ŝ|

2 when the matrices Q(i) are full, and
∏N

i=1 nzi
for a sparse compacted format. So, E-Sh is better than this

last multiplication for nzi ≥ ni .N
1

N−1 . The complexity of the
algorithm handling functional dependences can be found in [21,
7].

The E-Sh has two drawbacks: it uses vector data structure of
size |Ŝ| and computes all vector elements, even the zero entries
out of Ŝ. In what follows, we remove these two drawbacks.

3. Reduced memory shuffle algorithm

The improvement of the shuffle algorithm is based on the
fact that all unreachable states have probability zero in the
initial vector and remain zero after each product with the
infinitesimal generator. Buchholz et al. [24] present algorithms
in which the vectors are the size of S, but the shuffle
algorithm cannot be treated in this fashion, because it is possible
that unreachable states have a nonzero entry in temporary,
intermediate vectors. The algorithm Act-Sh-JCB therefore
transforms the reduced vector into a vector of size |Ŝ| before
calling E-Sh.
Data structures used: The fact that we shall store only the
values of the vector that correspond to reachable states implies
that we must keep track of the positions of these elements in
the corresponding vector in Ŝ. We shall assume that the set of
reachable states is already known. This may be done either by
applying an algorithm that explores all reachable states [22,13]
or by asking the user to provide a function that represents the
set of reachable states of the system [12].
We shall let posπ̂ denote the set of states that have nonzero
entries in any vector π̂ . The probability vectors are such that
posπ̂ ⊆ S, and we represent them with the help of two arrays of
size |S|: the array π̂ .vec contains the entry values and the array
π̂ .posi tions contains the positions of the reachable states in the
corresponding vector in Ŝ. However, it is important to notice
that processing the multiplication of a vector and a normal
factor corresponding to a synchronizing event (with matrix Q(i)

e
in Eq. (1)) may lead to an intermediate vector π̂ for which
we do not have posπ̂ ⊆ S. We can equally well store these
intermediate vectors in two arrays, π̂ .vec and π̂ .positions, of
size |S| if |posπ̂ | ≤ |S|. In this case, the positions no longer
correspond to the reachable states, but they correspond to posπ̂ .
Notice that most often |posπ̂ | ≤ |S|, since the intermediate
vectors are obtained via multiplication with synchronization
matrices, which are matrices that are generally very sparse.
These vectors therefore contain many zero elements. However,
it may happen that |posπ̂ | > |S|. In this case, it becomes
necessary to dynamically reallocate memory in which to store
the vector.2

The principal difficulty in applying ideas of algorithm E-Sh
with the new reduced vector data structure lies in extracting
the slices of the vector zin from an l-slice. Indeed, the previous
algorithm used a skipping procedure to extract the vector slices.
When the vector is stored in a reduced structure, it is not
possible to perform these skips.

A first improvement focuses on the computation time. Then
we will see how to reduce the memory cost.

3.1. Improvements in computation time (PR-Sh)

In this algorithm, all the zin corresponding to an l-slice are
stored in an array. The zins are similar to those used in the
extended shuffle algorithm E-Sh; they are stored in a vector
of length at most |Ŝ|. Thus, for each l-slice (stored in reduced
format), we build an extended vector which contains the
sequence of zin. Each element of the l-slice belongs to a given
zin, and it is in a specific location in this zin. The numbering
of the zin goes from 0 to nrighti − 1, and corresponds to the
numbering introduced in algorithm E-Sh. The position in zin
simply indicates the position of an element in a given zin. The
data structure that holds the zin is a two-dimensional array.

The different steps of the multiplication w = v ×

I nle f ti ⊗ Q(i)
⊗ I nrighti for the partially reduced PR-Sh

algorithm are detailed below. We differentiate between the
nature of w (probability or intermediate vector) to optimize the
performance of the algorithm.

Notice first that an l-slice is a set of consecutive elements
and a single sweep over the vector v allows us to determine the
limits of l-slices.

For l = 0, . . . , nle f ti − 1, the l-slice pl contains elements
with index x such that ni × nrighti × l ≤ v.posi tions(x) <

2 We have not yet implemented dynamic reallocation in the package
PEPS [31]. This happens very rarely in our experience and is the reason why
we have not had need of dynamic reallocation for the moment.
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ni × nrighti × (l + 1). We handle the l-slices in a sequential
manner (but it can be done in parallel).

For each l-slice, we begin by extracting all the zin. To
do this, we perform an integer division on the values in
the array v.posi tions, which gives, for j from 0 to |S|,
the number of the zin to which belongs the corresponding
element (v.positions[ j] mod nrighti ) and its place in zin
(v.posi tions[ j] div nrighti ). An integer division by nrighti
boils down to recuperating the elements that are spaced nrighti
apart in the extended vector.

Once we have the zin, it remains to perform the
multiplications of a zin by a column of Q(i), and then to
store the results in the correct place in the vector w. It is
also necessary to evaluate the matrices in cases when they are
functional.

When w is a probability vector, we know which elements
will be nonzero in the solution vector obtained, and we compute
only the value of these elements. When there is no functional
dependence, we traverse the resulting vector and compute the
probability for each reachable state. When extending algorithm
PR-Sh to a generalized tensor product, it is necessary to proceed
in a different way to a linear traversal, otherwise we need to
have one evaluation of matrix per element of S. We perform the
multiplication with only one evaluation per zin, as is done in
E-Sh. To do this, we store some intermediate information in the
following arrays:

• The array used specifies which zout contain at least one
reachable state. This is an array of booleans of size nrighti .

• The array index is a counter to keep track of how many
reachable states are present in each zout.

• The array useful indicates the position in zout of an element
to be computed. Only places corresponding to reachable
states are noted, and they are numbered from 1 to index[r ]

for zout number r . Element use f ul[r ][k] corresponds to the
position in zout number r of the kth reachable state of this
zout.

• The array place holds the place in the resulting vector of the
elements of zout. Once a value has been computed, it must be
stored in the vector. Element number k in zout number r will
therefore be placed at place[r ][k] in the resulting vector.

It is then possible to compute the nonzero elements as
before, but not in the same order (we first compute all those
corresponding to the same zin). To do this, we perform a loop
on nrighti , and we perform the evaluation of the matrix only if
this is necessary. The evaluation must be performed if we have
to compute at least one corresponding element of zout, i.e., if
the corresponding value of used is true. Finally, we compute
each element corresponding to a reachable state of this zout by
carrying out a loop from 0 to index[r ]− 1. The array place lets
us know where to store the result in the vector, and the array
useful lets us know the column of the matrix to be used in the
multiplication.

When w is an intermediate vector, we do not know any more
which elements will be nonzero in the solution vector obtained.
No longer can we perform the computation of a zin by using
only a column of a matrix that gives a result corresponding to
a reachable state, because we do not know where the nonzero
values will be in the resulting vector. In this case, we perform
the multiplication of a zin by the entire matrix, and we store
all the nonzero elements as a (position, value) pair. When the
multiplications of an l-slice have been completed, we store the
nonzero elements obtained in the resulting vector, and update
the arrays positions and vec.

A pseudo-code of the PR-Sh can be found in [21].
Complexity of the algorithm: This algorithm performs |S|

multiplications of a vector slice by a column of a matrix when
w is a probability vector, instead of the |Ŝ| multiplications
required by E-Sh. However, when we have an intermediate
vector, we cannot reduce the number of computations. From
a memory point of view, there is no real gain even if we use
vectors the size of S, because the algorithm uses intermediate
data structures the size of Ŝ.

What we do in the following is to improve the shuffle
algorithm from the perspective of memory usage, so that we
have no need of any data structure of size |Ŝ|.

3.2. Fully reduced memory shuffle algorithm (FR-Sh)

The idea of this new algorithm is the following: for each
normal factor, the nonzero elements of the vector are reordered
so that the elements of a zin are consecutive.

To do this, a somewhat similar method can be adopted
by traversing the vector and extracting all the zin for the
l-slice being treated. For this, we use an intermediate structure3

that consists of a set of triplets (number, place, index), each
triplet corresponding to an element of the vector π̂ : number
represents the number of the zin containing this element; place
represents the place of the element in the zin; index represents
the index (the position) of the element in the reduced vector
(1 ≤ index ≤ |S|), which allows us to find the value of the
element as π̂ .vec[index].

The different steps of the multiplication w = v ×

I nle f ti ⊗ Q(i)
⊗ I nrighti for the FR-Sh algorithm are detailed

below. We differentiate between the nature of w (probability
or intermediate vector) to optimize the performance of the
algorithm.

We handle the l-slices in a sequential manner, as in PR-Sh
(but it can be done in parallel): for each l-slice, we begin by
collecting the necessary information for an efficient execution
of the remainder of the algorithm. The set of triplets infozin
contains information on the zin of the l-slice, while infozout
give information on the zout when available (the slice to
consider in this case is a l-slice of w).
Treatment of an l-slice:
1. Filling infozin: We first perform a traversal of the
l-slice of v.posi tions to construct a set of triplets called
infozin. For each element, we obtain number and place by
performing an integer division of v.posi tions[index] by
nrighti : number = v.posi tions[index] mod nrighti and
place = v.posi tions[index] div nrighti . An integer

3 To implement this structure, we used the Standard Template Library (STL)
containers.
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division by nrighti boils down to fetching the elements that
are spaced nrighti apart in the extended vector.
2. Filling infozout: When w is a probability vector, the array
w.posi tions is initialized with the positions of the states of
S. This means that we can perform a traversal of the l-slice of
w.posi tions to construct a set infozout similar to infozin, but
which takes into account the positions of the vector w (these
may be different from those of v, if v is an intermediate vector).
Thus, the fields number and place respectively represent, for
each element of w, the number of the zout and the place of the
element in the zout. When w is an intermediate vector, we have
no information on w, so there is no infozout.
3. Sorting infozin and infozout: We need to perform a sort4 on
the sets of triplets according to number, so that all the elements
of the same zin (or zout) end up in adjacent positions.
4. Treatment of a zin:

a. Extraction of the zin: The elements of the same zin are
now placed consecutively and a single traversal of infozin
allows us to get the zin one after the other. When w is a
probability vector, we extract the zin only if at least one of the
states of the corresponding zout is reachable. This is obtained
by a single traversal of infozout, because the elements of
the same zout are now placed consecutively. So we need not
necessarily extract all the zin, as is done in E-Sh.
b. Multiplication: When w is a probability vector, infozout
informs us which elements need to be multiplied, and we
can finally perform the multiplication of the zin by the
corresponding columns of the matrix. In this case, we do not
have to perform all the products, as in E-Sh. On the other
hand, when w is an intermediate vector, we do not know a
priori the position of the nonzero elements, so we perform
the sparse multiplication of zin by the entire matrix, and we
store all the nonzero elements as a (position, value) pair.

5. Storing the result: When w is a probability vector, we
perform the multiplication for each reachable state, and the
information contained in infozout tells us where to store the
value obtained (w.vec[index]). The storage therefore takes
place as and when the computations are performed. On the
other hand, when w is an intermediate vector, we must wait
until the end of the computations with all of the zin, and
then sort the nonzero elements by increasing position order. A
linear traversal of these elements is sufficient to fill the tables
w.posi tions and w.vec.5

When all the zin of a given l-slice have been treated, then the
following l-slice is treated. A pseudo-code of the FR-Sh can be
found in [21].
Complexity of the algorithm: Notice first that we no longer
use arrays of size |Ŝ|. All the arrays are of size |S|, since
we assume that there is no intermediate vector π̂ such that
|posπ̂ | > |S|. As far as computation time is concerned,
we reduce the number of multiplications to the order of

4 The STL sort used is introsort, a variant of quicksort which offers a
complexity of O(N log N ) in the worst case.

5 It is at this moment that a dynamic reallocation may be needed.
|S| ×
∑N

i=1
nzi
ni

when w is a probability vector (where we
assume that the number of nonzero elements per column
is uniform). However, we introduce some supplementary
costs, most notably the cost of a sort which could reach
O(|S| log(|S|)).

When the percentage of nonreachable states is high (|S| �

|Ŝ|), the improvement is significant. The computation and
memory cost are somewhat higher than E-Sh when |S| ≈ |Ŝ|.
We have therefore fulfilled our objective of not using any
structure of size |Ŝ| while maintaining an efficient algorithm
when |S| � |Ŝ|. The algorithm FR-Sh has been presented for
models without functional dependences. Some evaluations of
matrices should be added, as has been shown in [21].

4. Numerical results

Now that the algorithms have been presented, we shall study
their performance and compare them with each other on the
basis of both memory needs and execution time.

All numerical experiments were performed using the
software package PEPS [12,31], into which we implemented
the new algorithms. All execution times were measured to
within a tenth of a second on a 531 MHz Pentium III PC with
128 MB of memory. Convergence was verified to an absolute
precision of ten decimal places, i.e., the results have a tolerance
of the order of 10−10. In all experiments, the initial vectors were
chosen to be equiprobable, and we used the unpreconditioned
power method. Furthermore, since the new algorithm does not
alter the speed of convergence of the methods, we only provide
the total time needed during execution and not the number of
iterations required for convergence.

The memory use is taken from the system during execution.
It represents the totality of memory used by PEPS during its
execution (i.e., during the solution of a model). This includes
the data, memory structures reserved by the procedure, and also
the process stack. The only parameters that change from one
algorithm to the next are the memory structures reserved by the
algorithms (probability vectors, intermediate array structures,
and so on).

We present results obtained from two classical parallel
systems chosen from the literature [7,20,33]. The first model,
called mutex1, performs resource sharing with the use of
functions; the second, mutex2, represents the same model,
but with functions replaced by synchronizing transitions. The
results obtained from a queuing network model can be found in
[21].

In both models, N distinct clients share P identical units of
a common resource. A customer requests use of a resource at
a rate λ and frees up resource at a rate µ. For the tests, we use
the values λ = 6 and µ = 9. The values of N and P are varied
according to the experiment.
Mutex 1

For this first model, a function is used to represent the
mechanism by which access to the units of resource is
restricted. The semantics of this function is as follows: access
permission is granted if at least one unit of the resource
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is available. Freeing up resource, as opposed to acquiring
resource, occurs in an independent manner.

The SAN product state space for this model is of size 2N .
Notice that when P = 1, the reachable state space is of size N +

1, which is considerably smaller than the product state space;
when P = N , the reachable state space is the entire product
state space. Other values of P give rise to intermediate cases.

The first results that we give are for the case in which
N = 16, and P is varied. In all cases, we have |Ŝ| = 65, 536,
and, naturally |S| changes with P (see Table 1).

We notice, as expected, that PR-Sh is faster than FR-Sh.
Both reduced algorithms are better than E-Sh in terms of execu-
tion time so long as the percentage of reachable states remains
reasonable (less than 50%). During execution, we notice that
algorithm FR-Sh permits a reduction in memory needs with re-
spect to algorithm E-Sh as long as the percentage of reachable
states is sufficiently high. Indeed, when we are working in re-
duced vector format, we use structures of the size of |S|, but
an element of the vector needs additional information which is
also stored. Thus, once we exceed 50% of reachable states, we
should not hope to produce a gain in memory, since a vector is
stored with the help of two arrays of size |S|, which is greater
than |Ŝ|. The intermediate structures used in PR-Sh make its
memory use greater in all cases than that of algorithm E-Sh.

We performed additional experiments on larger models to
determine the limits and the possibilities of the algorithms
developed. When N = 24, only algorithm FR-Sh is successful.
With P = 10, we have |Ŝ| = 16, 777, 216 and |S| =

4, 540, 386. The solution is obtained in 101,348 s and requires
307,768 Kb of memory.

The limits of this algorithm are, however, reached when the
percentage of nonreachable states is high. When P ≥ 12, the
memory needs of algorithm FR-Sh become excessive and the
solution cannot be computed in sequence. Larger models can
be solved with a parallel solution [32].
Mutex 2

Let us now look at how this same system may be modeled
without using functional transitions. One possibility is to
introduce an additional automaton, a resource pool automaton,
which counts the number of units of resource available at any
moment. The action of a process in acquiring a resource could
then be represented as a synchronizing event requiring the
cooperation of the demanding process and the resource pool.
A further synchronizing event would be needed for a process to
return resource to the resource pool.

The SAN product state space for this model is of size
2N

∗ (P + 1), and the reachable state space size is identical
to that of Mutex1.

This model allows us to test the efficiency of the new
algorithms in the presence of synchronizations, and hence
intermediate vectors w which do not satisfy posw ⊆ S (see
Table 2).

The first thing to note in these tests is the real inefficiency of
PR-Sh, which is worse than FR-Sh, both from the point of view
of memory needs and from execution time. The difference in
memory needs is obvious, since PR-Sh uses intermediate data
structures the size of Ŝ. As for execution time, algorithm PR-Sh
Fig. 1. Memory use for the mutex2 model.

is not efficient in the presence of intermediate vectors, because
we do not know which elements of the result really need to be
computed, and hence we perform |Ŝ| multiplications of vector
slices by a column of the matrix. FR-Sh carries out tests in order
to know if a zin contains at least one nonzero element before
evaluating the matrix, and only then performs the multiplication
of the zin by the matrix. These tests reduce the number of
multiplications, which in turn occasions an improvement in
time compared to algorithm PR-Sh. It what follows, we no
longer use algorithm PR-Sh in the presence of intermediate
vectors, but use FR-Sh indeed.

We observe that FR-Sh remains efficient with intermediate
vectors. Furthermore, the use of synchronizations implies
a large number of nonreachable states. Algorithm FR-Sh
is therefore the most appropriate when the model contains
synchronized transitions, both from the point of view of
memory needs as well as from the point of view of execution
time.

To verify that the memory required by the new algorithm
FR-Sh really depends on |S| and no longer on |Ŝ|, we have
drawn some curves that depict the memory used by the two
algorithms (Fig. 1). The memory used by FR-Sh is proportional
to |S|, whereas this is not the case for algorithm E-Sh. For E-Sh,
we get a straight line in plotting the memory use as a function
of |Ŝ|, which goes to show that the memory used is indeed
proportional to |Ŝ|. The origin of the straight line corresponds
to the minimum memory needed for the execution of algorithm
FR-Sh on this model (2400 Kb).

5. Conclusions

In this paper we presented new algorithms based on the
shuffle algorithm. The comparative tests that were performed
allow us to reach the following conclusions:

• Algorithm E-Sh, or the extended shuffle algorithm, is the
most efficient when the percentage of reachable states is
large. So, whenever more than half the states are reachable,
this is the preferred algorithm.

• Algorithm PR-Sh, or the partially reduced shuffle
algorithm, takes advantage when the percentage of
unreachable states is high to improve the performance
of the vector-descriptor multiplication when there is
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Table 1
Results for Mutex 1

Model E-Sh PR-Sh FR-Sh

P |S| |S|/|Ŝ| Time Mem Time Mem Time Mem
(%) (s) (Kb) (s) (Kb) (s) (Kb)

1 17 0.03 27.2 4208 1.0 4476 3.5 2124
4 2 517 3.8 112.0 4208 11.5 4584 22.1 2304
6 14 893 22.7 178.2 4208 70.0 5116 93.1 3128
8 39 203 59.8 235.4 4208 206.6 6176 267.4 4748

10 58 651 89.5 292.7 4212 348.6 7016 478.9 6040
12 64 839 98.9 332.0 4212 419.6 7280 612.9 6448
16 65 536 100.0 27.0 4212 84.9 7832 377.8 6516

Table 2
Results for Mutex 2

Model E-Sh PR-Sh FR-Sh

P |Ŝ|
|S|

|Ŝ|
Time Mem Time Mem Time Mem

(%) (s) (Kb) (s) (Kb) (s) (Kb)

1 131 072 0.01 13.6 6 480 6.1 7 928 2.2 2368
4 327 680 0.77 85.4 12 672 40.1 21 784 11.1 2628
6 458 752 3.25 174.9 16 800 101.3 37 440 47.9 3628
8 589 824 6.65 296.5 20 928 219.8 59 860 150.3 5564

10 720 896 8.14 563.1 25 060 449.8 84 604 350.9 7116
12 851 968 7.61 1002.5 29 188 774.6 112 564 603.5 7628
16 1114 112 5.88 1861.5 37 452 1350.0 179 872 918.2 7780
no intermediate vectors. However, it uses intermediate
structures that are of size |Ŝ|, which limits its applicability
on very large models. Furthermore, when there are some
intermediate vectors, the performance is worse than FR-Sh,
and we do not recommend its use in this case.

• Algorithm FR-Sh, or the fully reduced shuffle algorithm,
keeps all data structures at the reduced size. This permits
us to handle very large models, i.e. models that the other
algorithm cannot handle. However, we notice a loss in
computation time and in memory needs with respect to E-
Sh when there are few unreachable states. A formal study of
the complexity as a function of the percentage of reachable
states and of the problem size is part of our future work.

We shall also compare our results with those obtained in
generating the global matrix (in Harwell–Boeing (HB) format,
or HBF) and then performing a vector–matrix multiplication
using standard sparse matrix multiplication. When it is possible
to obtain the global matrix, there is no doubt that, time-wise,
this algorithm performs best. It is from the memory point of
view that it is limited. Therefore, the new algorithm allows us
to solve models that can not be solved with the HBF algorithm.
In the SANs formalism, the use of functions allows a decrease
in the size of the product state space. The use of a generalized
tensor algebra [7,33] permits tensor operations on matrices to
have functional characteristics. However, the cost of matrix
evaluation is high, so we try to limit their number. Some
techniques have been developed in order to decrease the number
of matrix evaluations in the shuffle algorithm E-Sh [7,20]. One
possibility that we considered is a reordering of the automata.
Some details are provided in [21] on the manner in which the
newly presented algorithm needs to be modified in order to
handle the reordering of automata. Automata grouping [7] is
another technique that may be used to decrease the number of
function evaluations, but this technique is not presented here
because the reduced storage of vectors does not cause any
change to these procedures.

Finally, the new algorithms were only compared to the
extended shuffle algorithm and the algorithm that generates the
global matrix in HB format. A comparison with other classical
algorithms, and notably algorithms that use Petri nets [34,23],
were not included. Such a comparison will be performed in
future work. We also propose to perform comparisons with
our algorithms and matrix diagrams. Indeed, Ciardo in [28]
presents a comparison between these two approaches, but he
does not use the most recent algorithm developed for the
Kronecker approach. His results show that matrix diagrams
have a substantial advantage on the Act-Sh-JCB of [24], but
it is now necessary to perform new experiments with FR-Sh in
order to have comparisons with an algorithm that improves both
the memory needs and the computation time when there are a
lot of unreachable states.

We may also consider the use of new data structures in our
algorithms, in order to get the mixed benefits of the Kronecker
approach and elaborated data structures like decision diagrams.
The above comparison will help us to identify the data structure
that produces the best results.

These improvements to the shuffle algorithm will allow us to
model and analyze even larger parallel and distributed systems,
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which is something that seems to us to be of primary importance
in the evolution of such systems.
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in 1980, and a Thèse d’Etat in Computer Science
from the University of Paris 11 in 1984. She was
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