
Chord: A Scalable Peer-to-peer Lookup Service

for Internet Applications

Ion Stoica∗ Robert Morris† David Liben-Nowell†

David Karger† M. Frans Kaashoek† Frank Dabek†

Hari Balakrishnan†

January 10, 2002

Abstract

A fundamental problem that confronts peer-to-peer applications is to
efficiently locate the node that stores a particular data item. This paper
presents Chord, a distributed lookup protocol that addresses this problem.
Chord provides support for just one operation: given a key, it maps the
key onto a node. Data location can be easily implemented on top of
Chord by associating a key with each data item, and storing the key/data
item pair at the node to which the key maps. Chord adapts efficiently
as nodes join and leave the system, and can answer queries even if the
system is continuously changing. Results from theoretical analysis and
simulations show that Chord is scalable, with communication cost and the
state maintained by each node scaling logarithmically with the number of
Chord nodes.

1 Introduction

Peer-to-peer systems and applications are distributed systems without any cen-
tralized control or hierarchical organization, where the software running at each
node is equivalent in functionality. A review of the features of recent peer-to-
peer applications yields a long list: redundant storage, permanence, selection

∗University of California, Berkeley. istoica@cs.berkeley.edu
†MIT Laboratory for Computer Science, {rtm, dln, karger, kaashoek, fdabek,

hari}@lcs.mit.edu.

Authors in reverse alphabetical order.
<chord@lcs.mit.edu>; <http://pdos.lcs.mit.edu/chord/>.

This research was sponsored by the Defense Advanced Research Projects Agency (DARPA)
and the Space and Naval Warfare Systems Center, San Diego, under contract N66001-00-1-
8933.

of nearby servers, anonymity, search, authentication, and hierarchical naming.
Despite this rich set of features, the core operation in most peer-to-peer systems
is efficient location of data items. The contribution of this paper is a scalable
protocol for lookup in a dynamic peer-to-peer system with frequent node arrivals
and departures.

The Chord protocol supports just one operation: given a key, it maps the key
onto a node. Depending on the application using Chord, that node might be
responsible for storing a value associated with the key. Chord uses a variant of
consistent hashing [11] to assign keys to Chord nodes. Consistent hashing tends
to balance load, since each node receives roughly the same number of keys, and
involves relatively little movement of keys when nodes join and leave the system.

Previous work on consistent hashing assumed that nodes were aware of most
other nodes in the system, making it impractical to scale to large number of
nodes. In contrast, each Chord node needs “routing” information about only a
few other nodes. Because the routing table is distributed, a node resolves the
hash function by communicating with a few other nodes. In the steady state, in
an N -node system, each node maintains information only about O(log N) other
nodes, and resolves all lookups via O(log N) messages to other nodes. Chord
maintains its routing information as nodes join and leave the system; with high
probability each such event results in no more than O(log2 N) messages.

Three features that distinguish Chord from many other peer-to-peer lookup
protocols are its simplicity, provable correctness, and provable performance.
Chord is simple, routing a key through a sequence of O(log N) other nodes
toward the destination. A Chord node requires information about O(log N)
other nodes for efficient routing, but performance degrades gracefully when
that information is out of date. This is important in practice because nodes
will join and leave arbitrarily, and consistency of even O(log N) state may be
hard to maintain. Only one piece information per node need be correct in order
for Chord to guarantee correct (though slow) routing of queries; Chord has a
simple algorithm for maintaining this information in a dynamic environment.

The rest of this paper is structured as follows. Section 2 compares Chord
to related work. Section 3 presents the system model that motivates the Chord
protocol. Section 4 presents the base Chord protocol and proves several of its
properties. Section 6 presents simulations supporting our claims about Chord’s
performance. Finally, we outline items for future work in Section 7 and sum-
marize our contributions in Section 8.

2 Related Work

While Chord maps keys onto nodes, traditional name and location services pro-
vide a direct mapping between keys and values. A value can be an address, a
document, or an arbitrary data item. Chord can easily implement this function-
ality by storing each key/value pair at the node to which that key maps. For
this reason and to make the comparison clearer, the rest of this section assumes
a Chord-based service that maps keys onto values.

2

DNS provides a host name to IP address mapping [15]. Chord can provide
the same service with the name representing the key and the associated IP ad-
dress representing the value. Chord requires no special servers, while DNS relies
on a set of special root servers. DNS names are structured to reflect adminis-
trative boundaries; Chord imposes no naming structure. DNS is specialized to
the task of finding named hosts or services, while Chord can also be used to
find data objects that are not tied to particular machines.

The Freenet peer-to-peer storage system [4, 5], like Chord, is decentralized
and symmetric and automatically adapts when hosts leave and join. Freenet
does not assign responsibility for documents to specific servers; instead, its
lookups take the form of searches for cached copies. This allows Freenet to
provide a degree of anonymity, but prevents it from guaranteeing retrieval of
existing documents or from providing low bounds on retrieval costs. Chord does
not provide anonymity, but its lookup operation runs in predictable time and
always results in success or definitive failure.

The Ohaha system uses a consistent hashing-like algorithm for mapping doc-
uments to nodes, and Freenet-style query routing [18]. As a result, it shares some
of the weaknesses of Freenet. Archival Intermemory uses an off-line computed
tree to map logical addresses to machines that store the data [3].

The Globe system [2] has a wide-area location service to map object iden-
tifiers to the locations of moving objects. Globe arranges the Internet as a
hierarchy of geographical, topological, or administrative domains, effectively
constructing a static world-wide search tree, much like DNS. Information about
an object is stored in a particular leaf domain, and pointer caches provide search
short cuts [21]. The Globe system handles high load on the logical root by parti-
tioning objects among multiple physical root servers using hash-like techniques.
Chord performs this hash function well enough that it can achieve scalability
without also involving any hierarchy, though Chord does not exploit network
locality as well as Globe.

The distributed data location protocol developed by Plaxton et al. [19], a
variant of which is used in OceanStore [12], is perhaps the closest algorithm to
the Chord protocol. It provides stronger guarantees than Chord: like Chord
it guarantees that queries make a logarithmic number hops and that keys are
well balanced, but the Plaxton protocol also ensures, subject to assumptions
about network topology, that queries never travel further in network distance
than the node where the key is stored. The advantage of Chord is that it is
substantially less complicated and handles concurrent node joins and failures
well. The Chord protocol is also similar to Pastry, the location algorithm used
in PAST [8]. However, Pastry is a prefix-based routing protocol, and differs in
other details from Chord.

CAN uses a d-dimensional Cartesian coordinate space (for some fixed d) to
implement a distributed hash table that maps keys onto values [20]. Each node
maintains O(d) state, and the lookup cost is O(dN 1/d). Thus, in contrast to
Chord, the state maintained by a CAN node does not depend on the network
size N , but the lookup cost increases faster than log N . If d = log N , CAN
lookup times and storage needs match Chord’s. However, CAN is not designed

3

to vary d as N (and thus log N) varies, so this match will only occur for the
“right” N corresponding to the fixed d. CAN requires an additional maintenance
protocol to periodically remap the identifier space onto nodes. Chord also has
the advantage that its correctness is robust in the face of partially incorrect
routing information.

Chord’s routing procedure may be thought of as a one-dimensional analogue
of the Grid location system [14]. Grid relies on real-world geographic location
information to route its queries; Chord maps its nodes to an artificial one-
dimensional space within which routing is carried out by an algorithm similar
to Grid’s.

Chord can be used as a lookup service to implement a variety of systems, as
discussed in Section 3. In particular, it can help avoid single points of failure or
control that systems like Napster possess [17], and the lack of scalability that
systems like Gnutella display because of their widespread use of broadcasts [10].

3 System Model

Chord simplifies the design of peer-to-peer systems and applications based on
it by addressing these difficult problems:

• Load balance: Chord acts as a distributed hash function, spreading keys
evenly over the nodes; this provides a degree of natural load balance.

• Decentralization: Chord is fully distributed: no node is more important
than any other. This improves robustness and makes Chord appropriate
for loosely-organized peer-to-peer applications.

• Scalability: The cost of a Chord lookup grows as the log of the number
of nodes, so even very large systems are feasible. No parameter tuning is
required to achieve this scaling.

• Availability: Chord automatically adjusts its internal tables to reflect
newly joined nodes as well as node failures, ensuring that, barring major
failures in the underlying network, the node responsible for a key can
always be found. This is true even if the system is in a continuous state
of change.

• Flexible naming: Chord places no constraints on the structure of the
keys it looks up: the Chord key-space is flat. This gives applications a
large amount of flexibility in how they map their own names to Chord
keys.

The Chord software takes the form of a library to be linked with the client
and server applications that use it. The application interacts with Chord in
two main ways. First, Chord provides a lookup(key) algorithm that yields the
IP address of the node responsible for the key. Second, the Chord software on
each node notifies the application of changes in the set of keys that the node

4

is responsible for. This allows the application software to, for example, move
corresponding values to their new homes when a new node joins.

The application using Chord is responsible for providing any desired authen-
tication, caching, replication, and user-friendly naming of data. Chord’s flat key
space eases the implementation of these features. For example, an application
could authenticate data by storing it under a Chord key derived from a cryp-
tographic hash of the data. Similarly, an application could replicate data by
storing it under two distinct Chord keys derived from the data’s application-
level identifier.

The following are examples of applications for which Chord would provide
a good foundation:

Cooperative Mirroring, as outlined in a recent proposal [6]. Imagine a
set of software developers, each of whom wishes to publish a distribution.
Demand for each distribution might vary dramatically, from very popular
just after a new release to relatively unpopular between releases. An
efficient approach for this would be for the developers to cooperatively
mirror each others’ distributions. Ideally, the mirroring system would
balance the load across all servers, replicate and cache the data, and ensure
authenticity. Such a system should be fully decentralized in the interests
of reliability, and because there is no natural central administration.

Time-Shared Storage for nodes with intermittent connectivity. If a
person wishes some data to be always available, but their machine is only
occasionally available, they can offer to store others’ data while they are
up, in return for having their data stored elsewhere when they are down.
The data’s name can serve as a key to identify the (live) Chord node
responsible for storing the data item at any given time. Many of the same
issues arise as in the Cooperative Mirroring application, though the focus
here is on availability rather than load balance.

Distributed Indexes to support Gnutella- or Napster-like keyword
search. A key in this application could be derived from the desired key-
words, while values could be lists of machines offering documents with
those keywords.

Large-Scale Combinatorial Search, such as code breaking. In this
case keys are candidate solutions to the problem (such as cryptographic
keys); Chord maps these keys to the machines responsible for testing them
as solutions.

Figure 1 shows a possible three-layered software structure for a cooperative
mirror system. The highest layer would provide a file-like interface to users,
including user-friendly naming and authentication. This “file system” layer
might implement named directories and files, mapping operations on them to
lower-level block operations. The next layer, a “block storage” layer, would
implement the block operations. It would take care of storage, caching, and

5

Chord Chord Chord

Server

File System

Block Store Block Store Block Store

Client Server

Figure 1: Structure of an example Chord-based distributed storage system.

replication of blocks. The block storage layer would use Chord to identify the
node responsible for storing a block, and then talk to the block storage server
on that node to read or write the block.

4 The Chord Protocol

This section describes the Chord protocol. The Chord protocol specifies how to
find the locations of keys, how new nodes join the system, and how to recover
from the failure (or planned departure) of existing nodes.

4.1 Overview

At its heart, Chord provides fast distributed computation of a hash function
mapping keys to nodes responsible for them. It uses consistent hashing [11,
13], which has several desirable properties. With high probability the hash
function balances load (all nodes receive roughly the same number of keys).
Also with high probability, when an N th node joins (or leaves) the network,
only an O(1/N) fraction of the keys are moved to a different location—this is
clearly the minimum necessary to maintain a balanced load.

Chord improves the scalability of consistent hashing by avoiding the require-
ment that every node know about every other node. A Chord node needs only
a small amount of “routing” information about other nodes. Because this infor-
mation is distributed, a node resolves the hash function by communicating with
a few other nodes. In an N -node network, each node maintains information
only about O(log N) other nodes, and a lookup requires O(log N) messages.

4.2 Consistent Hashing

The consistent hash function assigns each node and key an m-bit identifier using
a base hash function such as SHA-1 [9]. A node’s identifier is chosen by hashing
the node’s IP address, while a key identifier is produced by hashing the key. We
will use the term “key” to refer to both the original key and its image under the

6

K38

N8

N14

N38

N42

N51

N48

N21

K10

K24

K30

K54

N56

N32

N1

Figure 2: An identifier circle consisting of 10 nodes storing five keys.

hash function, as the meaning will be clear from context. Similarly, the term
“node” will refer to both the node and its identifier under the hash function.
The identifier length m must be large enough to make the probability of two
nodes or keys hashing to the same identifier negligible.

Consistent hashing assigns keys to nodes as follows. Identifiers are ordered
in an identifier circle modulo 2m. Key k is assigned to the first node whose
identifier is equal to or follows (the identifier of) k in the identifier space. This
node is called the successor node of key k, denoted by successor(k). If identifiers
are represented as a circle of numbers from 0 to 2m − 1, then successor(k) is
the first node clockwise from k.

Figure 2 shows an identifier circle with m = 6. The identifier circle has 10
nodes and stores five keys. The successor of identifier 10 is node 14, so key 10
would be located at node 1. Similarly, keys 24 and 30 would be located at node
32, key 38 at node 38, and key 54 at node 56.

Consistent hashing is designed to let nodes enter and leave the network with
minimal disruption. To maintain the consistent hashing mapping when a node n
joins the network, certain keys previously assigned to n’s successor now become
assigned to n. When node n leaves the network, all of its assigned keys are
reassigned to n’s successor. No other changes in assignment of keys to nodes
need occur. In the example above, if a node were to join with identifier 26, it
would capture the key with identifier 24 from the node with identifier 32.

The following results are proven in the papers that introduced consistent
hashing [11, 13]:

Theorem 4.1. For any set of N nodes and K keys, with high probability:

1. Each node is responsible for at most (1 + ε)K/N keys

2. When an (N + 1)st node joins or leaves the network, responsibility for
O(K/N) keys changes hands (and only to or from the joining or leaving
node).

7

When consistent hashing is implemented as described above, the theorem
proves a bound of ε = O(log N). The consistent hashing paper shows that ε can
be reduced to an arbitrarily small constant by having each node run O(log N)
“virtual nodes” each with its own identifier.

The phrase “with high probability” bears some discussion. A simple inter-
pretation is that the nodes and keys are randomly chosen, which is plausible
in a non-adversarial model of the world. The probability distribution is then
over random choices of keys and nodes, and says that such a random choice
is unlikely to produce an unbalanced distribution. One might worry, however,
about an adversary who intentionally chooses keys to all hash to the same iden-
tifier, destroying the load balancing property. The consistent hashing paper
uses “k-universal hash functions” to provide certain guarantees even in the case
of non-random keys.

Rather than using a k-universal hash function, we chose to use the standard
SHA-1 function as our base hash function. This makes our protocol determin-
istic, so that the claims of “high probability” no longer make sense. However,
producing a set of keys that collide under SHA-1 can be seen, in some sense, as
inverting, or “decrypting” the SHA-1 function. This is believed to be hard to
do. Thus, instead of stating that our theorems hold with high probability, we
can claim that they hold “based on standard hardness assumptions.”

For simplicity (primarily of presentation), we dispense with the use of virtual
nodes. In this case, the load on a node may exceed the average by (at most)
an O(log N) factor with high probability (or in our case, based on standard
hardness assumptions). One reason to avoid virtual nodes is that the number
needed is determined by the number of nodes in the system, which may be
difficult to determine. Of course, one may choose to use an a priori upper
bound on the number of nodes in the system; for example, we could postulate
at most one Chord server per IPv4 address. In this case running 32 virtual
nodes per physical node would provide good load balance.

4.3 Simple Key Location

This section describes a simple but slow Chord lookup algorithm. Succeeding
sections will describe how to extend the basic algorithm to increase efficiency,
and how to maintain the correctness of Chord’s routing information.

Lookups could be implemented on a Chord ring with little per-node state.
Each node need only know how to contact its current successor node on the
identifier circle. Queries for a given identifier could be passed around the circle
via these successor pointers until they encounter a pair of nodes that straddle
the desired identifier; the second in the pair is the node the query maps to.

The pseudo-code that implements the query process in this case is shown in
Figure 3(a). Remote calls and variable references are preceded by the remote
node identifier, while local variable references and procedure calls omit the local
node. Thus n.foo() denotes a remote procedure call to node n, while n.bar,
without parentheses, is an RPC to lookup a variable bar on node n.

8

// ask node n to find the successor of id

n.find successor(id)
if (id ∈ (n, n.successor])

return n.successor;
else

// forward the query around the circle
return successor.find successor(id);

(a)

lookup(K54)

N8

N14

N38

N42

N51

N48

N21

N32

N56K54

N1

(b)

Figure 3: (a) Pseudo-code to find the successor node of an identifier id. Remote
procedure calls and variable lookups are preceded by the remote node. (b)
The path taken by a query from node 8 for key 54, using the pseudo-code in
Figure 3(a).

Figure 3(b) shows an example in which node 8 performs a lookup for key 54.
Node 8 invokes find successor for key 54 which eventually returns the successor
of that key, node 56. The query visits every node on the circle between nodes 8
and 56. The result returns along the reverse of the path followed by the query.

4.4 Scalable Key Location

The lookup scheme presented in the previous section uses a number of mes-
sages linear in the number of nodes. To accelerate lookups, Chord maintains
additional routing information. This additional information is not essential for
correctness, which is achieved as long as each node knows its correct successor.

As before, let m be the number of bits in the key/node identifiers. Each node,
n, maintains a routing table with (at most) m entries, called the finger table.
The ith entry in the table at node n contains the identity of the first node, s, that
succeeds n by at least 2i−1 on the identifier circle, i.e., s = successor(n+2i−1),
where 1 ≤ i ≤ m (and all arithmetic is modulo 2m). We call node s the ith

finger of node n, and denote it by n.finger[i] (see Table 1). A finger table entry
includes both the Chord identifier and the IP address (and port number) of the
relevant node. Note that the first finger of n is the immediate successor of n on
the circle; for convenience we often refer to the first finger as the successor.

The example in Figure 4(a) shows the finger table of node 8. The first
finger of node 8 points to node 14, as node 14 is the first node that succeeds
(8 + 20) mod 26 = 9. Similarly, the last finger of node 8 points to node 42, as
node 42 is the first node that succeeds (8 + 25) mod 26 = 40.

This scheme has two important characteristics. First, each node stores in-
formation about only a small number of other nodes, and knows more about

9

Notation Definition
finger[k] first node on circle that succeeds (n+

2k−1) mod 2m, 1 ≤ k ≤ m
successor the next node on the identifier circle;

finger[1].node
predecessor the previous node on the identifier

circle

Table 1: Definition of variables for node n, using m-bit identifiers.

N1

N14

N38

N51

N48

N21

N32

+32

+1

+2
+4

+8

+16

N42

N8 + 1 N14
N8 + 2 N14
N8 + 4 N14
N8 + 8 N21
N8 +16 N32
N8 +32 N42

Finger table
N8

(a)

N1

lookup(54)

N8

N14

N38

N42

N51

N48

N21

N32

N56K54

(b)

Figure 4: (a) The finger table entries for node 8. (b) The path a query for key 54
starting at node 8, using the algorithm in Figure 5.

nodes closely following it on the identifier circle than about nodes farther away.
Second, a node’s finger table generally does not contain enough information to
directly determine the successor of an arbitrary key k. For example, node 8 in
Figure 4(a) cannot determine the successor of key 34 by itself, as this successor
(node 38) does not appear in node 8’s finger table.

Figure 5 shows the pseudo-code of the find successor operation, extended to
use finger tables. If id falls between n and n’s successor, find successor is done
and node n returns its successor. Otherwise, n searches its finger table for the
node n′ whose ID most immediately precedes id, and then invokes find successor
at n′. The reason behind this choice of n′ is that the closer n′ is to id, the more
it will know about the identifier circle in the region of id.

As an example, consider the Chord circle in Figure 4(b), and suppose node
8 wants to find the successor of key 54. Since the largest finger of node 8 that
precedes 54 is node 42, node 8 will ask node 42 to resolve the query. In turn,
node 42 will determine the largest finger in its finger table that precedes 54, i.e.,
node 51. Finally, node 51 will find out that its own successor, node 56, succeeds
key 54, and thus will return node 56 to node 8.

Since each node has finger entries at power-of-two intervals around the iden-

10

// ask node n to find the successor of id

n.find successor(id)
if (key ∈ (n, n.successor])

return n.successor;
else

n′ = closest preceding node(id);
return n′.find successor(id);

// search the local table for the highest predecessor of id

n.closest preceding node(id)
for i = m downto 1

if (finger[i] ∈ (n, id))
return finger[i];

return n;

Figure 5: Scalable key lookup using the finger table.

tifier circle, each node can forward a query at least half way along the remaining
distance between the node and the target identifier. From this intuition follows
a theorem:

Theorem 4.2. With high probability (or under standard hardness assumptions),
the number of nodes that must be contacted to find a successor in an N -node
network is O(log N).

Proof. Suppose that node n wishes to resolve a query for the successor of k. Let
p be the node that immediately precedes k. We analyze the number of query
steps to reach p.

Recall that if n 6= p, then n forwards its query to the closest predecessor of
k in its finger table. Suppose that node p is in the ith finger interval of node
n. Then since this interval is not empty, node n will finger some node f in this
interval. The distance (number of identifiers) between n and f is at least 2i−1.
But f and p are both in n’s ith finger interval, which means the distance between
them is at most 2i−1. This means f is closer to p than to n, or equivalently,
that the distance from f to p is at most half the distance from n to p.

If the distance between the node handling the query and the predecessor p
halves in each step, and is at most 2m initially, then within m steps the distance
will be one, meaning we have arrived at p.

In fact, as discussed above, we assume that node and key identifiers are
random. In this case, the number of forwardings necessary will be O(log N)
with high probability. After log N forwardings, the distance between the current
query node and the key k will be reduced to at most 2m/N . The expected
number of node identifiers landing in a range of this size is 1, and it is O(log N)
with high probability. Thus, even if the remaining steps advance by only one
node at a time, they will cross the entire remaining interval and reach key k
within another O(log N) steps.

In the section reporting our experimental results (Section 6), we will observe
(and justify) that the average lookup time is 1

2 log N .

11

4.5 Dynamic Operations and Failures

In practice, Chord needs to deal with nodes joining the system and with nodes
that fail or leave voluntarily. This section describes how Chord handles these
situations.

4.5.1 Node Joins and Stabilization

In order to ensure that lookups execute correctly as the set of participating nodes
changes, Chord must ensure that each node’s successor pointer is up to date.
It does this using a basic “stabilization” protocol. Chord verifies and updates
finger table entries using a combination of existing (and possibly out-of-date)
fingers and corrected successor pointers.

If joining nodes have affected some region of the Chord ring, a lookup that
occurs before stabilization has finished can exhibit one of three behaviors. The
common case is that all the finger table entries involved in the lookup are rea-
sonably current, and the lookup finds the correct successor in O(log N) steps.
The second case is where successor pointers are correct, but fingers are inaccu-
rate. This yields correct lookups, but they may be slower. In the final case, the
nodes in the affected region have incorrect successor pointers, or keys may not
yet have migrated to newly joined nodes, and the lookup may fail. The higher-
layer software using Chord will notice that the desired data was not found, and
has the option of retrying the lookup after a pause. This pause can be short,
since stabilization fixes successor pointers quickly.

Our stabilization scheme guarantees to add nodes to a Chord ring in a way
that preserves reachability of existing nodes, even in the face of concurrent joins
and lost and reordered messages. This stabilization protocol by itself won’t
correct a Chord system that has split into multiple disjoint cycles, or a single
cycle that loops multiple times around the identifier space. We discuss the
latter case in Section 5.3. These pathological cases cannot be produced by any
sequence of ordinary node joins. It is unclear whether they can be produced by
network partitions and recoveries or intermittent failures.

Figure 6 shows the pseudo-code for joins and stabilization. When node n
first starts, it calls n.join(n′), where n′ is any known Chord node. The join()
function asks n′ to find the immediate successor of n. By itself, join() does not
make the rest of the network aware of n.

Every node runs stab() periodically. This is how nodes in the system learn
about newly joined nodes. When node n runs stab(), it asks its successor for the
successor’s predecessor p, and decides whether p should be n’s successor instead.
This would be the case if node p recently joined the system. Also stab() notifies
node n’s successor of n’s existence, giving the successor the chance to change its
predecessor to n. The successor does this only if it knows of no closer predecessor
than n.

As a simple example, suppose node n joins the system, and its ID lies between
nodes np and ns. In its call to join(), n acquires ns as its successor. In addition,
n copies all keys with IDs larger or equal to its ID from ns. Node ns, when

12

// ask n′ to build n’s finger table.
n.build fingers(n′)

i0 := blog(successor − n)c + 1; // first non-trivial finger.
for each i ≥ i0 index into finger[];
finger[i] = n′.find successor(n + 2i−1);

n.join(n′)
predecessor = nil;
s = n′.find successor(n);
build fingers(s);
successor = s;

// periodically verify n’s immediate successor,
// and tell the successor about n.
n.stabilize()

x = successor.predecessor;
if (x ∈ (n, successor))

successor = x;
successor.notify(n);

// n′ thinks it might be our predecessor.
n.notify(n′)
if (predecessor is nil or n′ ∈ (predecessor,n))

predecessor = n′;

Figure 6: Pseudocode for stabilization.

N32

N21

K24

K30

N26

N32

N21

successor(N21)

K24

K30

(d)

N32

N21

K24

K30

N26

N32

N21

K30

N26
K24 K24

(a) (b) (c)

Figure 7: Example illustrating the join operation. Node 26 joins the system
between nodes 21 and 32. The arcs represent the successor relationship. (a)
Initial state: node 21 points to node 32; (b) node 26 finds its successor (i.e.,
node 32) and points to it; (c) node 26 copies all keys between 26 and 31 from
node 32; (d) stabilize procedure updates the successor of node 21 to node 26.

notified by n, would acquire n as its predecessor. When np next runs stab(), it
will ask ns for its predecessor (which is now n); np would then acquire n as its
successor. Finally, np will notify n, and n will acquire np as its predecessor. At
this point, all predecessor and successor pointers are correct. Figure 7 illustrates
the join procedure, when n’s ID is 26, and the IDs of ns and np are 21 and 32,
respectively.

As soon as the successor pointers are correct, calls to find predecessor()
will work. Newly joined nodes that have not yet been fingered may cause
find predecessor() to initially undershoot, but the loop in the lookup algorithm
will nevertheless follow successor (finger[1]) pointers through the newly joined
nodes until the correct predecessor is reached. Eventually ffs() will adjust
finger table entries, eliminating the need for these linear scans.

The following result, proved below, shows that the inconsistent state caused

13

by concurrent joins is transient.

Theorem 4.3. If any sequence of join operations is executed interleaved with
stabilizations, then at some time after the last join the successor pointers will
form a cycle on all the nodes in the network.

In other words, after some time each node is able to reach any other node
in the network by following successor pointers.

4.5.2 Impact of Node Joins on Lookup Performance

In this section, we consider the impact of node joins on lookup performance.
Once stabilization has completed, the new nodes will have no effect beyond
increasing the N in the O(log N) lookup time. If stabilization has not yet
completed, existing nodes’ finger table entries may not reflect the new nodes.
The ability of finger entries to carry queries long distances around the identifier
ring does not depend on exactly which nodes the entries point to; the distance
halving argument depends only on ID-space distance. Thus the fact that finger
table entries may not reflect new nodes does not significantly affect lookup speed.
The main way in which newly joined nodes can influence a lookup’s speed is
if the new nodes’ IDs are between the target’s predecessor and the target. In
that case the lookup will have to be forwarded through the intervening nodes,
one at a time. But unless a tremendous number of nodes joins the system, the
number of nodes between two old nodes is likely to be very small, so the impact
on lookup is negligible. Formally, we can state the following result:

Theorem 4.4. If we take a stable network with N nodes, and another set of
up to N nodes joins the network, and all successor pointers (but perhaps not all
finger pointers) are correct, then lookups will still take O(log N) time with high
probability.

Proof. The original set of fingers will, in O(log N) time, bring the query to the
old predecessor of the correct node. With high probability, at most O(log N)
new nodes will land between any two old nodes. So only O(log N) new nodes
will need to be traversed along successor pointers to get from the old predecessor
to the new predecessor.

More generally, as long as the time it takes to adjust fingers is less than
the time it takes the network to double in size, lookups will continue to take
O(log N) hops. We can achieve such adjustment by repeatedly carrying out
lookups to update our fingers. It follows that lookups perform well so long as
log2 N rounds of stabilization happen between any N node joins.

4.5.3 Failure and Replication

The correctness of the Chord protocol relies on the fact that each node knows
its successor. However, this invariant can be compromised if nodes fail. For
example, in Figure 4, if nodes 14, 21, and 32 fail simultaneously, node 8 will not

14

know that node 38 is now its successor, since it has no finger pointing to 38. An
incorrect successor will lead to incorrect lookups. Consider a query for key 30
addressed to node 8. Node 8 will return node 42, the first node it knows about
from its finger table, instead of the correct successor, node 38.

To increase robustness, each Chord node maintains a successor list of size
r, containing the node’s first r successors. If a node’s immediate successor does
not respond, the node can substitute the second entry in its successor list. All
r successors would have to simultaneously fail in order to disrupt the Chord
ring, an event that can be made very improbable with modest values of r. An
implementation should use a fixed r, chosen to be 2 log2 N for the foreseeable
maximum number of nodes N .

Handling the successor list requires minor changes in the pseudo-code in
Figures 5 and 6. A modified version of the stabilize procedure in Figure 6
maintains the successor list. Successor lists are stabilized as follows: node u
reconciles its list with its successor s by copying s’s list `, adding s the front of
`, and deleting the last element. If node n notices that its successor has failed, it
replaces it with the first live entry in its successor list and reconciles its successor
list with its new successor. At that point, n can direct ordinary lookups for keys
for which the failed node was the successor to the new successor. As time passes,
stabilize will correct finger table entries and successor list entries pointing to the
failed node.

A modified version of the closest preceding node procedure in Figure 5
searches not only the finger table but also the successor list for the most im-
mediate predecessor of id. In addition, the pseudo-code needs to be enhanced
to handle node failures. If a node fails during the find successor procedure, the
lookup proceeds, after a timeout, by trying the next best predecessor among
the nodes in the finger table and the successor list.

The following results quantify the robustness of the Chord protocol, by show-
ing that neither the success nor the performance of Chord lookups is likely to be
affected even by massive simultaneous failures. Both theorems assume that the
successor list has length r = O(log N). A Chord ring is stable if every node’s
successor list is correct.

Theorem 4.5. If we use a successor list of length r = O(log N) in a network
that is initially stable, and then every node fails with probability 1/2, then with
high probability find successor returns the closest living successor to the query
key.

Proof. Before the failures, each node was aware of its r immediate successors.
The probability that all of these successors fail is (1/2)r, so with high probability
every node is aware of its immediate living successor. As was argued in the
previous section, if the invariant that every node is aware of its immediate
successor holds, then all queries are routed properly, since every node except
the immediate predecessor of the query has at least one better node to which it
will forward the query.

Theorem 4.6. In a network that is initially stable, if every node then fails with

15

probability 1/2, then the expected time to execute find successor is O(log N).

Proof. We consider the expected time for a query to move from a node that has
the key in its ith finger interval to a node that has the key in its (i− 1)st finger
interval. We show that this expectation is O(1). Summing these expectations
over all i, we find that the time to drop from the mth finger interval to the
(m − log N)th finger interval is O(log N). At this point, as was argued before,
only O(log N) nodes stand between the query node and the true successor, so
O(log N) additional forwarding steps arrive at the successor node.

To see that the expectation is O(log N) consider the current node n that has
the key in its ith finger interval. If n’s ith finger s is up, then in one forwarding
step we accomplish our goal: the key is in the (i− 1)st finger interval of node s.
If s is down then, as argued in the previous theorem, n is still able to forward
(at least) to some node. More precisely, n was aware of z immediate successors;
assume z ≥ 2 log N . If we consider the (log N)th through (2 log N)th successors,
the probability that they all fail is 1/N . So with high probability, node n can
forward the query past at least log N successors. As was implied by Lemma ??,
it is unlikely that all log N of these skipped nodes had the same ith finger. In
other words, the node to which n forwards the query has a different ith finger
than n did. Thus, independent of the fact that n’s ith finger failed, there is a
probablity 1/2 that the next node’s ith finger is up.

Thus, the query passes through a series of nodes, where each node has a
distinct ith finger (before the failures) each of which is up independently with
probability 1/2 after the failures. Thus, the expected number of times we need
to forward the query before finding an ith finger that is up is therefore 2. This
proves the claim.

Under some circumstances the preceding theorems may apply to malicious
node failures as well as accidental failures. An adversary may be able to make
some set of nodes fail, but have no control over the choice of of the set. For
example, the adversary may be able to affect only the nodes in a particular
geographical region, or all the nodes that use a particular access link, or all the
nodes that have a certain IP address prefix. Because Chord node IDs are gen-
erated by hashing IP addresses, the IDs of these failed nodes will be effectively
random, just as in the failure case analyzed above.

The successor-list mechanism also helps higher layer software replicate data.
A typical application using Chord might store replicas of the data associated
with a key at the k nodes succeeding the key. The fact that a Chord node keeps
track of its r successors means that it can inform the higher layer software
when successors come and go, and thus when the software should propagate
new replicas.

4.5.4 Voluntary Node Departures

Since Chord is robust in the face of failures, a node voluntarily leaving the
system could be treated as a node failure. However, two enhancements can
improve Chord performance when nodes leave voluntarily. First, a node n that

16

is about to leave may transfer its keys to its successor before it departs. Second,
n may notify its predecessor p and successor s before leaving. In turn, node p
will remove n from its successor list, and add the last node in n’s successor list to
its own list. Similarly, node s will replace its predecessor with n’s predecessor.
Here we assume that n sends its predecessor to s, and the last node in its
successor list to p.

5 Chord Protocol Analysis

The previous section described the (major part of the) chord protocol, but
analyzed it only in certain simple models. In particular, we gave theorems
regarding the eventual stabilization of the chord ring after nodes stopped joining,
and we gave theorems regarding the robustness of a stable chord ring in the
presence of failures. In this section, we delve deeper and prove that the chord
protocol is robust in more realistic models of system usage. We consider a model
in which nodes are continuously joining and departing, and show that (i) the
system remains stable and (ii) lookups continue to work, and work quickly.

5.1 Lookups eventually succeed

The following theorems show that all lookup problems caused by concurrent
joins are transient. The theorems assume that any two nodes trying to commu-
nicate will eventually succeed.

Theorem 5.1. Once a node can successfully resolve a given query, it will always
be able to do so in the future.

Theorem 5.2. At some time after the last join all successor pointers will be
correct.

The proofs of these theorems rely on an invariant and a termination argu-
ment. The invariant states that once node n can reach node r via successor
pointers, it always can. To argue termination, we consider the case where two
nodes both think they have the same successor s. In this case, each will at-
tempt to notify s, and s will eventually choose the closer of the two (or some
other, closer node) as its predecessor. At this point the farther of the two will,
by contacting s, learn of a better successor than s. It follows that every node
progresses towards a better and better successor over time. This progress must
eventually halt in a state where every node is considered the successor of exactly
one other node; this defines a cycle (or set of them, but the invariant ensures
that there will be at most one). We now formalize this argument.

Definition 5.3. Node s is reachable from node p if, by starting at p and follow-
ing successor pointers, one eventually reaches s. We also say node p can reach
node s.

Definition 5.4. An arc path from p to s is a path of successor pointers, starting
at p and ending at s, that only goes through nodes between p and s.

17

Lemma 5.5. If at some time t there is an arc path from p to s, then at all
future t′ > t there is an arc path from p to s.

Proof. By induction on time, which in this case can be considered as the number
of changes to the system (successor or predecessor pointers).

When a node joins it sets up a successor pointer, which lets it reach nodes
it couldn’t reach before, but clearly doesn’t destroy any existing arc path.

Now consider stabilization. Consider a time when node p changes its succes-
sor from s to a. It does so only because p contacted s and heard about a, and
because p < a < s. This means that at some earlier time node s learned about
node a. This can only have happened because a told s about itself, which could
only happen if a’s successor was s at some earlier time. At this time, there was
arc path from a to s (namely, the successor link). It follows by induction that
just before p changes its pointer to a, there is still an arc path from a to s. Since
p < a < s, the arc path from a to s cannot include p. Thus, when p changes its
pointer the arc path from a to s is undisturbed. But the concatenation of the
edge (p, a) with the arc path from a to s forms an arc path from p to s (since
all nodes on the path are either a, which is between p and s, or on the arc path
from a to s, and thus between a and s, and thus between p and s).

Now consider any arc path from x to y that used the successor edge from
p to s (so might be disrupted by the change in p’s sucessor). Since it is an arc
path, both p and s must be between x and y. We have just argued that all the
nodes on the new path from p to s are between p and s; it follows that they are
between x and y as well. Thus, the path from x to y remains an arc path.

Corollary 5.6. If at time t there is a path of successor arcs from a to b, then
at all t′ > t there is still a path of successor arcs from a to b.

Proof. By the previous lemma, each successor arc on the path from a to b can
only be replaced by a path; it cannot be disconnected. The concatenation of all
these replacement paths forms a path from a to b.

Corollary 5.7. Suppose that a is the first node in the Chord network. Then at
any time, every node can reach a via successor pointers.

Proof. By induction on joins. When a node joins, its successor pointer points
to a node that can reach a; thus the new node can reach a as well. The previous
claim shows that since the new node can initially reach a, it can always reach
a.

Theorem 5.8. If any sequence of join operations is executed interleaved with
stabilizations, then at some time after the last join the successor arcs will form
a cycle on all the node in the network.

Proof. Notice that if two nodes share a successor, one of them will eventually
change successor pointers. Its new successor will be closer on the circle than the
old one, so there can be at most n changes in its successor pointer. Thus after
n2 steps, we must be in a stable state in which every node is the successor of at

18

most (and thus exactly) one node. Of course we also know that every node has
exactly one successor. The only graphical structure satisfying this constraint
(indegree one and outdegree one) is a set of cycles. But by our invariant, every
node can reach the very first node ever in the network, so the set must consist
of exactly one cycle.

5.2 Effect on Lookup Performance

We have not discussed the adjustment of fingers when nodes join because it
turns out that joins don’t substantially damage the performance of fingers. If
a node has a finger into each interval, then these fingers can still be used even
after joins. The distance halving argument is essentially unchanged, showing
that O(log N) hops suffice to reach a node “close” to a query’s target. New
joins influence the lookup only by getting in between the old predecessor and
successor of a target query. These new nodes may need to be scanned linearly (if
their fingers are not yet accurate). But unless a tremendous number of nodes
joins the system, the number of nodes between two old nodes is likely to be
very small, so the impact on lookup is negligible. Formally, we can state the
following:

Theorem 5.9. If we take a stable network with N nodes, and another set of up
to N nodes joins the network with no finger pointers (but with correct successor
pointers), then lookups will still take O(log N) time with high probability.

Proof. The original set of fingers will, in O(log N) time, bring the query to the
old predecessor of the correct node. With high probability, at most O(log N)
new nodes will land between any two old nodes. So only O(log N) new nodes
will need to be traversed along successor pointers to get from the old predecessor
to the new predecessor.

More generally, so long as the time it takes to adjust fingers is less than
the time it takes the network to double in size, lookups will continue to take
O(log N) hops. We can achieve such adjustment by repeatedly carrying out
searches to update our fingers. It follows that lookups perform well so long as
log2 N rounds of stabilization happen between any N node joins.

5.3 Strong Stabilization

The stabilize() protocol described in Figure 6 aims to guarantee that, for any
node u, the predecessor of the successor of node u is the node u itself. This
is a local consistency condition that is necessary, but not sufficient, for proper
behavior in a Chord network. For example, the Chord network shown in Figure
8 is stable under this protocol. However, this network is globally inconsistent
— in fact, there is no node u so that successor(u) is the first node to follow u
on the identifier circle.

Definition 5.10. We say that a Chord network is (1) weakly stable if, for
all nodes u, we have predecessor(successor(u)) = u; (2) strongly stable if, in

19

N1

N8

N14

N21

N48

N56

N32

Figure 8: A weakly stable loopy network. The arrows represent successor point-
ers. The predecessor of a node n’s successor is n itself.

addition, for each node u, there is no node v in u’s component so that u < v <
successor(u); and (3) loopy if it is weakly but not strongly stable.

The protocols in Figure 6 maintain strong stability in a strongly stable net-
work. Thus, so long as all nodes operate according the this protocol, it would
seem that our network will be strongly stable, so that our lookups will be cor-
rect. But we now wish to take a more cautious look. It is conceivable that a bug
in an implementation of the protocol might lead to a loopy state. Alternatively,
the model might break down—for example, a node might be out of contact for
so long that some nodes believe it to have failed, while it remains convinced that
it is alive. Such inconsistent opinions could lead the system to a strange state.
We therefore aim in this section to develop a protocol that will stabilize the
network from an arbitrary state, even one not reachable by correct operation of
the protocol.

A Chord network is weakly stable iff it is stable under the stabilize protocol
of Figure 6. Since this protocol guarantees that all nodes have indegree and
outdegree one, a weakly stable network consists of a collection of cycles. For
a node u, we will say that u’s loop consists of all nodes found by following
successor pointers starting from u and continuing until we reach a node w so
that successor(w) ≥ u. In a loopy network, there is a node u so that u’s loop is
a strict subset of u’s component.

In this section, we present a stabilization protocol (replacing that in Figure 6)
to produce a strongly stable network. Note that this protocol does not attempt
to reconnect a disconnected network; we rely on some external means to do
so. The fundamental stabilization operation by which we unfurl a loopy cycle
is based upon self-search, wherein a node u searches for itself in the network.
For simplicity, we will assume for the moment that this self-search uses only
successor pointers and does not make use of larger fingers. If the network is

20

n.join(n′)
on cycle = false;
predecessor = nil;
s = n′.find successor(n);
while (not s.on cycle) do

s := s.find successor(n′);
successor[0] = s;
successor[1] = s;

n.update and notify(i)
s = successor[i]
x = s.predecessor;
if (x ∈ (n, s))

successor[i] = x;
s.notify(n);

n.stabilize()
u = successor[0].find successor(n);
on cycle = (u = n);
if (successor[0] = successor[1]

and u ∈ (n, successor[1]))
successor[1] = u;

for (i = 0, 1)
update and notify(i);

Figure 9: Pseudocode for strong stabilization.

loopy, then a self-search from u traverses the circle once and then finds the
first node on the loop succeeding u — i.e., the first node w found by following
successor pointers so that predecessor(w) < u < w.

To strongly stabilize a loopy Chord network, we extend the weak stabilization
protocol by allowing each node u to maintain a second successor pointer. This
second successor is generated by self-search, and improved in exactly the same
way as in the previous protocol. The pseudocode is given in Figure 9.

Theorem 5.11. Any connected Chord network becomes strongly stable within
O(N2) rounds of strong stabilization.

Although O(N2) is a slow running time, the situation of a loopy cycle is an
extremely low probability event. Over the infinite life of the system, the amount
of time that we spend recovering from a loopy state is neglible.

There are two key intuitions behind the correctness of this algorithm. Com-
bined, they show that the only stable configuration of the network is the desired
one.

First, we show that if the network is weakly stable but not strongly stable,
then at least one node will find a improved second successor when it performs
a search for itself in the stabilization algorithm.

Having ruled out the “wrong” weak stabilization, we consider non-loops—
i.e, situations in which some nodes have more than one successor pointer. Every
node has at least one successor pointer, meaning there are at least N succes-
sor pointers in the system. If even one node has two distinct pointers (with
successor[0] 6= successor[1]) then in total there are more than N distinct suc-
cessor pointers. If this happens, then some node s has two distinct other nodes
pointing at it as a successor. As we saw in the previous stabilization algorithm,
this is not a stable situation: the closer predecessor p will eventually notify s,
and then the farther predecessor will hear about and switch to p.

It follows that the only stable situation is when every node has exactly one
successor pointer, which points to that nodes true successor in the network.

Lemma 5.12. If the network contains a loopy cycle, then there is some node u
whose self-search reveals a node v so that u < v < successor(u).

Proof. If there is a loopy cycle C, then, by definition, there are u ∈ C and
s ∈ C so that u < s < successor(u). Since C is a cycle, repeatedly following

21

successor pointers from u eventually leads to s; because u < s < successor(u),
we cannot find s on the first traversal of the identifier circle. More generally,
then, there must exist u, w ∈ C so that w is not on u’s loop. Let v be the first
node reached following successor pointers from u so that v is not on u’s loop.
Then predecessor(v) < u < v, and predecessor(v) is on u’s loop.

Denote the nodes of u’s loop as s0(u), s1(u), . . . , s`(u) where (1) s0(u) = u,
(2) successor(si(u)) = si+1(u), and (3) s`(u) = predecessor(v). For some 0 ≤
i < `, we must have si(u) < v < si+1(u). Note that v cannot fall in the range
(s`(u), u), since otherwise v is actually on u’s loop.

If i = 0, the node u’s self-search yields an improved successor v — we have
u = s0(u) < v < s1(u) = successor(u). For i ≥ 1, we have si(u) < v < si+1(u) =
successor(si(u)). The self-search by si(u) also yields v — an improvement over
si+1(u) = successor(si(u)) — since si(u)’s self-search path is a subpath of u’s
self-search path.

Lemma 5.13. If at some time t there is an arc path from p to s, then at all
future times t′ ≥ t, there is an arc path from p to s.

Proof. We proceed by induction on changes to the system, exactly as in the
proof for weak stabilization. Joins and self-searches only add an edge and can-
not destroy an arc path, nor can replacing a duplicated edge. Updates via
predecessors maintain arc paths just as in Lemma 5.5.

Corollary 5.14. If at time t there is a path of successor arcs from a to b, then
at all times t′ ≥ t there is still a path of successor arcs from a to b.

Claim 5.15. If the Chord network is connected but not strongly stable, then,
after O(1) rounds of stabilization, some successor pointer improves.

Proof. If there is a node u so that two distinct nodes, say p1 < p2, both have u
as a successor, then after p2 stabilizes, node u will have a predecessor p so that
p1 < p2 ≤ p < u. When p1 subsequently stabilizes, p1 will replace its pointer to
u by one to p.

If there is a node with two distinct successor pointers, i.e., u.successor[0] 6=
u.successor[1], then there are n + 1 distinct successor pointers, and thus, by the
pigeonhole principle, for some node u, there must be two distinct nodes that
have successor pointers to u and the previous case applies.

Otherwise, every node points to a single node and is pointed to by a single
node, so the network is a collection of cycles. Since we are connected by assump-
tion, we have a single cycle; since we are not strongly stable by assumption, this
cycle is loopy. Then by Lemma 5.12, one round of self-search finds an improved
successor for some node.

Proof of Theorem 5.11. By Corollary 5.14, connectivity is maintained through-
out strong stabilization. By Claim 5.15, until we are strongly stable, we can
always improve a successor pointer in O(1) rounds of stabilization.

Note that any stabilization operation that alters one of node u’s successor
pointers improves it, in the sense that the new successor is closer to u on the

22

identifier circle than the old successor is. There are 2N pointers (two per node),
and each pointer can only improve N times (since there are only n choices of
nodes at which it can point). Thus after O(N 2) improvements, each node must
have both successor pointers directed at its true successor on the circle.

Observe that a loopy Chord network will never permit any new nodes to join
until its loops merge — in a loopy network, for all u, we have u.on cycle = false,
since u’s self-search never returns u in a loopy network. Thus, if the network
somehow finds its way into a loopy state, it will heal itself within O(N 2) rounds,
unaffected by nodes attempting to join.

We have stated this algorithm so that each stabilization round may takes
O(N) time for the self-search. We can reduce this time to O(log N) time, whp,
using fingers. The fingers can be built up using pointer doubling or having
each node u invoke u.find successor(u + 2i−1) for increasing i. Inductively, it
is straightforward that u.finger[i] will be in u’s loop, and therefore that the
finger-based search will give the same result as the successor-only search.

Strong stabilization in the presence of failures. Maintaining a succes-
sor list of length O(log N) will, as before, ensure that our graph, whp, stays
connected as long as Ω(log N) rounds pass before N/2 nodes fail. (This suc-
cessor list can be formed by following either successor pointer from each node.)
Recall, though, only N failures can occur before we are strongly stable, since,
as discussed above, no nodes can join a loopy network. (Of course, failures at
roughly this rate will cause the ring to disappear rapidly.)

However, if one of u’s successors fails, then there may be a large number of
nodes between the failed successor and the first live entry in u.successor list. So
we may slip backwards using the sense of “progress” from above. But there are
at most N failures before the network empties. If O(N 2) improvements occur
after any of the N failures, then we are strongly stable, so we have the following:

Theorem 5.16. Start from an arbitrary connected state with successor lists of
length O(log N). Allow failures at a rate of at most N/2 nodes in Ω(log N)
steps. Then, whp, in O(N3) rounds, the network is strongly stable.

5.4 Fast Strong Stabilization for Two Well-Interleaved

Loops

While the previous section shows that we can stabilize even a loopy graph,
the time bounds for such stabilization are high. The most likely imaginable
scenario that could lead to the creation of a loopy graph is a network partition
that completely disconnects some of the nodes in the network from others. To
model the problem, we start with a weakly stable network consisting of two
loops — i.e., starting from a node u, following successor pointers, one returns
to u after traversing the identifier circle exactly twice.

We modify u.stabilize() to allow the u to move large distances when it is far
from accurate, by allowing u to move to any node which fingers u.successor,

23

rather than just the predecessor. This allows u to find its true successor on the
cycle in time O(log2 N) (rather than Ω(N)), regardless of where it enters the
cycle.

• Each node u maintains a list of backwards fingers — for every i, node u
stores the closest node with identifier at most u − 2i−1 that fingers u.

• In u.stabilize(), node u contacts its current successor s, and, if s is on
the cycle, changes its successor to the node v > u in s’s list of backwards
fingers minimizing v − u.

This optimization may result in a brief period in which node u previously pointed
to a node on the cycle, and then doesn’t because its current successor is fingered
by a node not on the cycle, and u “backs up” to point to that node instead.
When that node joins the cycle, though, node u will continue its march towards
its true successor.

Lemma 5.17. Whp, in O(log2 N) rounds of following backwards fingers, a node
arrives at its cycle successor.

Proof. Suppose node u’s current successor is v, and that 2−i−1 < v − u ≤
2−i. We consider the number of backward finger links that need to be taken
before u sets its successor to a node w so that w − u ≤ 2−i. Suppose that
u.successor−u > 2−i for O(log N) rounds. Note that, although the probability
of each node in (u + 2−i, u + 2−i−1] being fingered by a node within 2−i+1 of u
is not independent, it is more likely that the next node we see will be fingered
by such a node if the current one is not.

Each node in this range is, in expectation, the ith finger for one other node.
So after O(log N) steps through nodes between distance 2−i and 2−i−1 of node
u, whp, we step to a node v that is fingered by a node within less than distance
2−i from u, by the Chernoff bound.

Then, in O(log2 N) time, whp, u is forwarded to its true cycle successor
— after O(log N) distance halvings, there are, whp, at most O(log N) nodes
between u.successor and u.

In the 2-loop case, self-search is powerful: any node u whose true successor
v is not in u’s loop will find v via its self-search. If all nodes simultaneously
complete their self-search, then, we can stabilize quickly:

Lemma 5.18. If, synchronously, all nodes in a weakly-stable 2-loop network
complete a self-search, and then run the strong stabilization protocol, then, with
high probability, we are strongly stable in O(log N) rounds.

Proof. A chain is a consecutive sequence of nodes on the identifier circle, all
of which fall on the same loop. The tail of a chain is its last node, and is the
one node in the chain whose true successor lies in the other loop. With high
probability, there are no more than O(log N) nodes in a chain.

Once all the self-search successor pointers are added, every node has a pointer
to its true successor; we must only correct the pointer from each chain’s tail u

24

to the next node in u’s loop. This pointer will be moved backwards one node
at a time across the intervening chain (from the other loop) to point at u’s true
successor. This chain has O(log N) nodes with high probability, so in O(log N)
rounds of stabilization we are done.

In the asychronous model, however, the first nodes that complete their self-
searches may break the search algorithm, possibly causing other nodes attempt-
ing to self-search to fail. (By Theorem 5.11, we will eventually stabilize, but
there is no guarantee of efficiency.) We can handle this problem by simple
patience:

• when a a node u’s self-search reveals that the network is loopy, u waits
Θ(log N) rounds (for all other nodes to complete their self-searches) and
only then adds the new successor pointer.

We do not know exactly how long each self-search will take — some nodes’ self-
search path may take a number of long geographic network hops, and therefore
be substantially slower than others. One can easily verify that waiting until only
O(1) self-searches are unfinished yields strong stabilization in O(log2 N) time
with high probability. Under the assumption that search time is independent
of position on the identifier circle, waiting until at most N/2 self-searches are
unfinished allows us to strongly stabilize in O(log3 N) time with high probability.
(With high probability, there are no more than O(log N) consecutive chains
whose head has not completed its self-search; each chain requires only O(log2 N)
rounds to traverse, whp.)

Another possible result of the healing of a network partition is two completely
disconnected Chord rings that can reach each other after the partition heals,
but every node has dropped all pointers to the other loop. To combat this event
for short-duration network partitions, we can do the following, for each node u:

• Remember the closest node v that u has ever pointed to, regardless of
whether it currently is up or down, in the last, say, O(log2 N) rounds.

• Every O(1) rounds, ping v to see if it has been resurrected. If so, add a
second successor pointer to it.

Typically, a node will come back to life when a network partition heals (though
if it does not heal rapidly, a large number of failures will mean that for most
nodes u, their closest ever neighbor will actually have failed while the network
was partitioned).

For the purposes of stabilization, the situation after the network partition
heals is exactly that of the above 2-loop case after the completion of the self-
searches. In time O(log2 N), then, we will re-stabilize these two loops into one,
as long as at least a constant fraction of the nodes alive at the time of the
partition survive until the healing of it.

25

Figure 10: A pseudostar.

5.5 A Dynamic Model

Until now we have assumed that the initial state of the system is a ring. In
practice, we cannot assume that we ever actually start with a ring, because
there will always be some recently joined nodes that have not yet fit into the
ring. Thus, in this section we try to prove a more powerful result: that our
stabilization algorithm continuously keeps the system in a ring-like state.

In this section, for simplicity of presentation, we limit ourselves to a syn-
chronous model of stabilization. With mild complications on the definitions that
follow, we can handle (without an increase in running time) a network with a
reasonable degree of asynchrony, where most machines are operating at roughly
the same rate, and messages take roughly consistent times to reach their desti-
nations. We refer to a round of stabilization as the O(1) time required for each
node to run stabilize(), disregarding any time required for the transfer of keys.

Each node has exactly one successor, so the graph defined by successor point-
ers is a pseudoforest, a graph in which all components are directed trees pointing
towards a root cycle (instead of a root node). We will limit our consideration to
connected networks, where the graph is a pseudotree. The network is (weakly)
stable when all nodes are in the cycle. For each cycle node u, then, there is a
tree rooted at u which we call u’s appendage, and denote Au.

We insist that a node u joining the system invoke u.join(n) for an existing
node n that is already on the cycle. We can use an external infrastructure to
enforce this, or we can use the more complicated join() protocol in Section 5.3.

Definition 5.19. A pseudostar is a Chord network in which:
(i) The cycle is non-loopy;

(ii) Au ⊆ [p, u], where p is the predecessor of u on the cycle;

(iii) for every node v ∈ Au, we have u = v.successor.

See Figure 10.

Lemma 5.20. Starting from a psuedostar, execute an arbitrary sequence of
joins while running stabilize(). Then the resulting network is still a psuedostar.

26

Proof. We proceed by induction over changes to the system.
By (iii), the n.join(v) protocol finds a node s on the cycle so that

s.predecessor < n < s. Thus every search ends with n.successor on the cycle and
(n.successor).predecessor < n < n.successor. The correctness of find successor
on the cycle is guaranteed inductively by property (i). This immediately yields
properties (ii,iii). Property (i) is maintained since joins cannot cause a non-
loopy cycle to become loopy, by Lemma 5.5.

The u.stabilize() protocol cannot create a loop by Lemma 5.5, and incorpo-
rates a node into the cycle by having u’s cycle predecessor point at one of u’s
other predecessors, say p. All of u’s predecessors that are in the range [pc, p] shift
to point to p instead of u, where pc is u’s cycle predecessor, yielding (ii,iii).

Note that this holds even for completely arbitrary joins to the system — e.g.,
if the identifiers of joining nodes were chosen maliciously and not randomly.

Definition 5.21 (Ring-Like State). A Chord network is in the c-ring-like
state iff for some constant c,

(i) The network is a pseudostar;

(ii) Nodes that joined the network at least 8c2 log2 N rounds ago:

(a) are all on the cycle;
(b) comprise at least half of the nodes in the network;
(c) are independently and uniformly distributed around the identifier
circle;

(d) never fall in the range [u + 2i−1, u.finger[i]].

(iii) For the nodes that joined the network in the last 8c2 log2 N rounds:

(a) the nodes are independently and uniformly distributed around the
identifier circle;

(b) for any consecutive nodes u1, u2, . . . , ulog N on the cycle, we have
∑log N

i=1 |Aui
| ≤ c log N ;

Increasing the constant c increases the exponent of the 1 − 1/nO(1) probability
of success in the results of this section.

Note that there may be bias in the order in which nodes that joined the
network recently are incorporated into the cycle — e.g., there is a bias towards
joining the cycle sooner for nodes close to nodes already on the cycle and nodes
falling between two nodes on the cycle which are close together — so we cannot
say that the distribution of all nodes on the cycle is uniform and independent.

For technical reasons, we will consider a strongly stable network with correct
fingers, and all nodes’ identifiers independently and uniformly chosen to be in
the ring-like state. (This allows the creation of a ring-like network.)

Properties (ii.c,iii.a) are immediate from the random join model, so these
are trivially maintained.

Lemma 5.22. Start in the c-ring-like state with N nodes, and allow up to N
random joins at arbitrary times over at least 8c2 log2 N rounds. Then, whp, we
end up in the c-ring-like state. (To improve the probability of success, adjust c
upwards.)

27

Intuitively, we distinguish between “old” nodes which have been present for
longer than 8c2 log2 N rounds, “middle-aged” nodes which have been present
for less time, and the at most N “new” nodes which join during the current
8c2 log N rounds of stabilization. By definition of the ring-like state old nodes
are in the cycle (i.e., are reachable by successor pointers from all nodes on the
cycle). From the fact that identifiers are random, we know that O(log N) nodes
join between any two old nodes.

We also have that finger pointers are correct with respect to old nodes —
that is, that no finger pointer bypasses an old node — by (ii.d). This essentially
places us back into the analysis of the previous section, with the old nodes
playing the role of the initial cycle, before other nodes joined. As was argued
above, since only N nodes join, the fingers pointing at old nodes suffice to route
lookups quickly for new nodes. This implies that no node ends up with too
many nodes in its appendage during the time period being analyzed.

Since no appendage is large, and since at least one node falls off each ap-
pendage per round, it follows that any node present at the beginning of the
analysis (i.e., the middle-aged nodes) will fall off the appendage and onto the
cycle during the rounds of stabilization. All these middle-aged nodes will there-
fore enter the cycle before they become old, thus preserving the invariant of the
ring-like state definition. After all the middle-aged nodes enter the cycle, we
require an additional O(log2 N) rounds of stabilization to ensure that all of the
fingers are correct with respect to the middle-aged nodes, since fix fingers() is
quick by the above.

Proof of Lemma 5.22. Suppose that our process begins running at time t0. Call
the old nodes those which entered the network at time t0 −8c2 log2 N or earlier,
the middle-aged nodes those that entered in the time range (t0 − 8c2 log2 N, t0),
and the new nodes those that enter at time t0 or later. If the initial network is
in the ring-like state in virtue of being strongly stable with correct fingers, we
proceed as if all nodes in the network at t0 were old. Properties (i,ii,iii) still
hold at time t0, the last vacuously.

Call an old gap the interval between two consecutive old nodes on the cycle,
and a gap the interval between each adjacent pair of nodes on the cycle at time
t0, regardless of whether the nodes are old or middle-aged. By (ii), there are at
least N/2 old nodes, all on the cycle, so there are at least N/2 old gaps, and,
since gaps refine old gaps, we have

(∗) whp, at most c log N new nodes will fall into any sequence of log N con-
secutive gaps.

since the joins are random and the old nodes are independently and uniformly
spread over the identifier circle by (ii.c).

We claim that, whp, the conditions (i,ii,iii) still hold at time t0 +8c2 log2 N :

(i) Immediate from Lemma 5.20.

(ii.a) Consider the (middle-aged) nodes S originally found in a particular gap,
say in Au. We claim that within 4c logN rounds, all of the nodes of S

28

will be incorporated into the cycle. Since no node on the cycle ever leaves
it, this implies the desired condition.

Let Jt be the set of nodes that have joined in this gap by time t0 + t, and
let J = J8c2 log2 N be the set of all nodes that join in this gap throughout
the entire process. Note that by (∗), we have, whp, |J | ≤ c log N , and by
property (iii.b) we have |S| ≤ c log N . Therefore |Jt +S| ≤ 2c logN , whp.

At time t, some of the nodes of S ∪ Jt have joined the cycle, and the
remaining nodes of S ∪ Jt are divided among the appendages of u and
those nodes of S∪Jt now on the cycle. If S∪Jt is not entirely incorporated
into the cycle, then note that within two rounds of stabilization, at least
one node from S ∪ Jt is incorporated into the cycle. In the first round,
some node v ∈ {u}∪S∪Jt on the cycle has at least two predecessors (one
on the cycle, say pc, and its closest appendage precedessor, say pa), and
stores pa as its predecessor. (We have v > pa > pc since the network is
a pseudostar.) In the second round, pc acquires pa as its successor, and
now pa is on the cycle.

Thus in 4c logN rounds of stabilization, at least 2c logN nodes from S ∪
J4c log N join the cycle, unless at some time t < 4c logN , all of S ∪ Jt is
already on the cycle. But |S∪J4c log N | ≤ 2c log N , whp. So in either case,
whp after 4c logN rounds, all of S ∪ Jt ⊇ S has been incorporated into
the cycle, for some t ≤ 4c log N .

(ii.b) There were N nodes at time t0, and at most N joined over the next
8c log2 N rounds.

(ii.c) Immediate from the join model — each node has its identifier uniformly
and independently selected.

(ii.d) After all middle-aged nodes have joined the network, the procedure
u.fix fingers() will fix each u.finger[i] to point to the first node follow-
ing u + 2i−1 on the cycle at the time. Whp, u.find successor(u + 2i−1)
requires 2c log N time: whp, the total number of times that the search
path from u will land on a middle-aged node (which may not have a finger
to halve the distance) is c log N , and the distance, whp, halves only log N
times before we reach the target node.

Whp, node u has only c log N fingers, so fixing all of them requires
2c2 log2 N time after the 4c log N rounds that incorporate the middle-
aged nodes in the cycle, whp. So in 8c2 log2 N > 4c logN + 2c2 log2 N
rounds, we are done.

(iii.a) Immediate from the join model.

(iii.b) By (∗), whp, at most c log N of the new nodes will fall into any sequence
of log N gaps. By (ii.a), all non-new nodes in this range are incorporated
into the cycle, so only these c log N new nodes are in appendages in these
gaps. This range may now span more than log N cycle nodes, but this
only decreases the size of appendages.

29

In the static case, where “eventually” all successor pointers are correct,
lookups will eventually produce the correct result, so lookups will eventually
be correct as well. At this point, searches for data associated with a particular
key will consistently return the same node, so that data can be stored and re-
trieved. In our more complicated dynamic case, this is no longer obvious—as
nodes join the network, data must be moved to the new nodes; searches for the
data might arrive at a node that does not have the data yet. However, our
analysis above claiming a near steady state can be adapted to show that when
a lookup on a particular key will always find a node that either has the data or
is about to have the data, so that by waiting for a brief (logarithmic) amount
of time, the data can be retrieved.

5.6 Analysis of Joins with Failures

We now generalize our model to include failures. For intuition, we begin with
a simple model of a ring involving only failures (of course, such a ring will not
last for very long). Then we give an analysis involving both joins and failures.

5.6.1 The pure failure model

As was described above, a node maintains its successor list by copying its suc-
cessor’s successor list and prepending its successor to it. In this section, we ask
how often (relative to the failure rate of nodes) this copying needs to take place.

Lemma 5.23. Suppose that each node in an N -node Chord ring has a successor
list of length 2c logN containing at least the c log N next living successors in the
ring. Suppose N/4 arbitrarily-chosen nodes (though independent of their iden-
tifiers) fail at any time during the execution of 2c logN successor-list copyings
by each node. Then at the end, every node will still have a successor list with
the c logN next living successors on the ring.

Proof. Since the failures are independent of the identifier, the failures are ran-
dom in the identifier space.

With high probability, for every u, at least one of the c log N live nodes in
u.successor list will remain alive throughout this batch of failures. Thus the
ring will remain connected. Inductively, it is straightforward to show that any
node which appears in the ith position of u.successor list was alive i rounds ago.
So after 2c logN rounds, no node that was originally down (before these N/4
failures) will appear in any successor list.

Thus, after the 2c logN rounds, u.successor list contains the first 2c logN
nodes following u on the cycle that were alive at the start of this process (or,
if some of these have subsequently failed, replacements from farther along the
cycle). But, whp, fewer than half of these 2c log N nodes fail, so u.successor list
contains at least the next c log N living successors on the ring.

30

5.6.2 Allowing Failures in the Ring-Like State

Realistically, we need to incorporate a notion of failures into the definition of the
ring-like state. We continue to assume a synchronous model, which can again
be weakened with additional complication (but without a significant running
time increase). As before, Au denotes the nodes in the tree rooted at the cycle
node u. Denote by last(`) the last element of a list `.

Definition 5.24. A robust strongly non-loopy pseudotree is a pseudotree with
successor lists in which:

(i) the cycle is non-loopy;

(ii) Au ⊆ [p, u], where p is the predecessor of u on the cycle;

(iii) for every node v ∈ Au, we have v < v.successor < u.

(iv) if the successor list of s = u.successor skips over a live node v ∈
[s, last(s.successor list)], then v is not in u.successor list.

Lemma 5.25. Starting from a robust strongly non-loopy psuedotree, execute
an arbitrary sequence of joins and failures while running stabilize(). Then, if
the resulting network is still connected, it is still a robust strongly non-loopy
psuedotree.

Proof. We proceed by induction over changes to the system. The join() and
stabilize() operations maintain properties (i,ii,iii) just as in Lemma 5.20, and
property (iv) since they set u.successor list to contain only u.successor and nodes
from (u.successor).successor list.

For node failures, we assume that the network remains connected throughout
the failures. Property (i) is maintained since property (iv) guarantees that we
do not destroy an arcpath from u to any node that remains on the cycle after
the failures. By properties (i,iii), every entry w in a node v’s successor list has
w > v. So, in any failure that causes v ∈ Au to set its successor to any entry
in its successor list, we still have v < v.successor < s, where s is the first living
cycle node after u. This yields (ii,iii). Property (iv) only refers to live nodes,
so failures cannot falsify it.

Note that this holds even for completely arbitrary joins and failures to the
system — e.g., if the selection of failing nodes and the identifiers of joining nodes
were chosen maliciously and not randomly — so long as the network remains
connected.

In a network with successor lists of length 2c log N , we will say that a node u
is fully incorporated into the cycle iff it has been in the cycle for at least 2c2 log N
consecutive rounds. Note that merely having a cycle node u point to node v is
insufficient for v to be robustly on the cycle, since if u fails immediately after
setting u.successor = v, then v will fall off the cycle.

Definition 5.26 (Ring-Like State with Successor Lists). A Chord network
is in the ring-like state with successor lists if it has successor lists of length
2c logN and

31

(i) The graph defined by the first live successor of every node is a robust
strongly non-loopy pseudotree;

(ii) Nodes that joined the network at least 16c5 log2 N rounds ago:

(a) are all fully incorporated into the cycle;
(b) comprise at least half of the nodes in the network;
(c) are independently and uniformly distributed around the identifier
circle;

(d) never fall in the range [u + 2i−1, u.finger[i]].

(iii) For the nodes that joined the network in the last 16c5 log2 N rounds:

(a) the nodes are independently and uniformly distributed around the
identifier circle;

(b) for any consecutive nodes u1, u2, . . . , ulog N on the cycle, we have
∑log N

i=1 |Aui
| ≤ c2 log N ;

(iv) The successor list for every node u:

(a) contains no nodes that failed more than 16c5 log2 N rounds ago;
(b) contains at most c log N nodes that failed within the last
16c5 log2 N rounds;

(c) contains every live node in [u, last(u.successor list)] that success-
fully entered the cycle at least 16c5 log2 N rounds ago;

(v) Node failures are independent and uniform among all nodes that exist
at the time of the failure.

As before, we will consider as ring-like a strongly stable network with correct
fingers, successor lists of length 2c logN satisfying (iv), nodes’ identifiers that
are independently and uniformly chosen, and failures are independently and
uniformly chosen from nodes alive at the time of the failure, and pretend that
all nodes are old.

Lemma 5.27. Consider a Chord network with successor lists, and suppose that
failures are independent and uniformly chosen from all live nodes at the time of
the failure. For any k, running stabilize() can only decrease the probability that
more than k nodes in u.successor list will fail, for any node u.

Proof. For any node v, consider the ith entry wi in v.successor list. We know
inductively that wi was alive i stabilization rounds ago, since it was then placed
into wi−1’s successor list. We have no information as to whether wi failed in
the last i − 1 rounds.

At time t, the u.stabilize() procedure adjusts u.successor to a live node
s, and invokes u.fix successor list() to replace the tail of u.successor list by
s.successor list. By the above, the ith entry of s.successor list at time t − 1
— which is the (i + 1)st entry of u.successor list at time t — was alive in round
t − 1 − i. The previous (i + 1)st entry in u.successor list was alive in round
t − 1 − (i + 1), and could have failed in round t − 1 − i. By the assumption of
random failures, there is a decrease in the probability that the (i+1)st entry of
u.successor list has already failed. If both nodes are alive at time t, then, again
by random failures, the probability that one fails at any time t′ > t is identical
to that probability for the other.

32

When a cycle node u fails, the nodes in Au are incorporated into
Au.successor; we say that Au and Au.successor have merged.

Lemma 5.28. Start with a network of N nodes in the ring-like state with
successor lists of length 2c log N , and allow up to 3N/4 random joins and N/4
random failures at arbitrary times over at least 16c5 log2 N rounds. Then, whp,
we end up in the ring-like state with successor lists of length 2c logN . (To
improve the probability of success, adjust c upwards.)

The intuition is as follows. As in Lemma 5.22, we distinguish old, middle-
aged, and new nodes; by assumption, the Θ(N) old nodes are randomly dis-
tributed on the cycle, and so O(log N) new nodes join between any two old
nodes. Search is, as before, O(log N), since fingers are correct with respect to
old nodes. Cycle nodes can fail, causing their appendages to merge together,
but whp only O(log N) consecutive cycle nodes fail, so the size of an appendage
is O(log N) by (iii.b), whp, including middle-aged and new nodes.

Unlike in Lemma 5.22, it is not true that a node from appendage (fully)
enters the cycle in each round, since the cycle node that points to it may fail
immediately. However, whp, within O(log N) rounds, some node from each ap-
pendage will become fully incorporated into the cycle — in O(log N), attempts,
it will join the cycle with a predecessor that does not fail in this entire process.
Once a node is fully incorporated into the cycle, whp, it never leaves, so within
O(log2 N) rounds, all middle-aged nodes in an appendage will join the cycle.
As before, we require another O(log2 N) rounds of stabilization after this point
to fix all of the fingers.

Proof of Lemma 5.28. As in Lemma 5.22, call the old, middle-aged, and new
nodes those which entered the network before time t0 − 16c5 log2 N , between
then and t0, and after t0, respectively. If the initial network is in the ring-like
state in virtue of being strongly stable with correct fingers, we proceed as if all
nodes in the network at t0 were old — properties (i,ii,iii,iv,v) still hold at time
t0. Define gaps and old gaps as before; we have

(∗) whp, at most c log N new nodes will fall into any sequence of log N con-
secutive gaps.

Whp, c log N successive original cycle nodes will not fail, so each appendage will
merge with fewer than c log N successive original appendages:

(†) whp, at any time during this process, nodes originally found in Au will
merge only with nodes originally found in fewer than c log N consecutive
appendages adjacent to u.

Whp, the 2c logN nodes of the original u.successor list will not all fail for any
u — since only c logN can have failed already, by (iv.a,b), and the probability
that the remaining c log N nodes fail is small, by the Chernoff bound — which
by Lemma 5.27 implies that, whp, u.successor list will never consist entirely of
nodes that will fail:

33

(‡) whp, the graph remains connected throughout this process.

If a node has been on the cycle for 2c2 log N rounds, then, by the Chernoff
bound, whp it is contained in at least c log N successor lists. Similarly, if a node
has been off of the cycle for 2c2 log N rounds, then no node on the cycle will
store it in its successor list, whp. Therefore:

(§) whp, once a node has been in the cycle for at least 2c2 log N rounds, it is
present in at least c log N successor lists; if it has been out of the cycle for
at least 2c logN rounds, it is present in no successor lists on the cycle.

Now, we claim that properties (i–v) continue to hold, whp:

(i) By (‡), immediate from Lemma 5.25.

(ii.a) Consider the (middle-aged) nodes S originally found in a particular gap,
say in Au. We claim that within 12c5 log2 N rounds, all live nodes from S
will be fully incorporated into the cycle. By (§), whp, these nodes never
subsequently leave the cycle, since whp not all of the c logN nodes storing
one of these nodes in their successor lists fail. This implies the desired
condition.

By (†), nodes of S will merge with the nodes contained in at most c log N
adjacent gaps. By (∗), at most c2 log N new nodes will fall into these other
gaps; by property (iii.b), there are at most c3 log N middle-aged nodes in
these gaps. So the nodes of S can merge with at most 2c3 log N other
nodes. By property (iii.b) we have |S| ≤ c2 log N . Whp, then, the total
number of nodes that will ever appear in appendages with nodes of S is
at most 2c3 log n + c2 log N ≤ 3c3 log N .

We claim that within 4c2 log N rounds, whp, some node v in an appendage
containing nodes from S will become fully incorporated into the cycle. In
two rounds of stabilization, as in Lemma 5.22, some such node v will
begin to become incorporated into the cycle. (During these rounds of
stabilization, the node v may fall out of the cycle, and some other v may
begin to join, but for our purposes this is irrelevant.) The key observation
is that it is only harder for node v to become fully incorporated into the
cycle if, for any node u that will fail at some time during this process, the
node u fails as soon as v first appears in u.successor list. (If it fails later,
then u can propagate information about v backwards along the cycle.)
If v enters 2c2 log N successor lists, whp, at least 2c logN of those nodes
will never fail. Thus, since v enters another successor list in at most two
rounds, after at most 4c2 log N rounds v will be fully incorporated into
the cycle.

Now, there are at most 3c3 log N nodes in S’s appendages, and at least
one is fully incorporated into the cycle every 4c2 log N rounds. Therefore,
in 12c5 log2 N rounds, all nodes of S will have been fully incorporated into
the cycle, whp.

34

(ii.b) There were N nodes at time t0, and up to 3N/4 joins. Even if all N/4
failures were all of old nodes, at time t0 + 16c5 log2 N at least half of the
nodes existed at time t0.

(ii.c,iii.a,v) Immediate from the join and failure models.

(ii.d) After all middle-aged nodes have joined the network, the procedure
u.fix fingers() will fix each u.finger[i] to point to the first node follow-
ing u + 2i−1 on the cycle at the time. Whp, u.find successor(u + 2i−1)
requires 3c log N time: whp, the total number of times that the search
path from u will land on a middle-aged node (which may not have a finger
to halve the distance) is c log N , the total number of times that the search
path will attempt to move to a failed node is c logN , and the distance,
whp, halves only log N times before we reach the target node. (Whp, the
events of not being able to follow the distance-halving finger from two
consecutive nodes on the search path are independent, since, whp, the
step from u passes to at least the last c log N nodes in its successor list.
Whp, this next node thus has a different ith finger than u.)

Whp, node u has only c log N fingers, so fixing all of them requires
3c2 log2 N time after the 12c5 log2 N rounds that incorporate the middle-
aged nodes in the cycle, whp. So in 16c5 log2 N rounds, we are done.

(iii.b) By (∗), whp, at most c logN of the new nodes will fall into any sequence of
log N gaps. By (†), at most c logN appendages will join the appendages
in these gaps because of failures. So the total number of appendage nodes
in these gaps is at most c2 log N . By (ii.a), all non-new nodes in this
range are incorporated into the cycle, so only these c2 log N new nodes
are in appendages in these gaps. This range may now span more than
log N cycle nodes, but this only decreases the size of appendages.

(iv.a,c) Immediate from (§).

(iv.b) From Lemma 5.27, the probability of having c log N failed nodes in a
successor list only decreases via stabilize(). Whp, at most c log N of the
2c log N nodes in any original u.successor list fail during the whole process,
so, whp, only c log N of the entries in any successor list have failed.

6 Simulation and Experimental Results

In this section, we evaluate the Chord protocol by simulation. The simula-
tor uses the lookup algorithm in Figure ?? and a slightly older version of the
stabilization algorithms described in Section ??. We also report on some pre-
liminary experimental results from an operational Chord-based system running
on Internet hosts.

35

0

50

100

150

200

250

300

350

400

450

500

0 20 40 60 80 100

N
um

be
r

of
 k

ey
s

pe
r

no
de

Total number of keys (x 10,000)

1st and 99th percentiles

(a)

0

0.005

0.01

0.015

0.02

0.025

0 50 100 150 200 250 300 350 400 450 500

P
D

F

Number of keys per node

(b)

Figure 11: (a) The mean and 1st and 99th percentiles of the number of keys
stored per node in a 104 node network. (b) The probability density function
(PDF) of the number of keys per node. The total number of keys is 5 × 105.

6.1 Protocol Simulator

The Chord protocol can be implemented in an iterative or recursive style. In the
iterative style, a node resolving a lookup initiates all communication: it asks a
series of nodes for information from their finger tables, each time moving closer
on the Chord ring to the desired successor. In the recursive style, each inter-
mediate node forwards a request to the next node until it reaches the successor.
The simulator implements the protocols in an iterative style.

6.2 Load Balance

We first consider the ability of consistent hashing to allocate keys to nodes
evenly. In a network with N nodes and K keys we would like the distribution
of keys to nodes to be tight around N/K.

We consider a network consisting of 104 nodes, and vary the total number
of keys from 105 to 106 in increments of 105. For each value, we repeat the
experiment 20 times. Figure 11(a) plots the mean and the 1st and 99th per-
centiles of the number of keys per node. The number of keys per node exhibits
large variations that increase linearly with the number of keys. For example,
in all cases some nodes store no keys. To clarify this, Figure 11(b) plots the
probability density function (PDF) of the number of keys per node when there
are 5 × 105 keys stored in the network. The maximum number of nodes stored
by any node in this case is 457, or 9.1× the mean value. For comparison, the
99th percentile is 4.6× the mean value.

One reason for these variations is that node identifiers do not uniformly cover
the entire identifier space. If we divide the identifier space in N equal-sized bins,
where N is the number of nodes, then we might hope to see one node in each

36

0

50

100

150

200

250

300

350

400

450

500

1 10

N
um

be
r

of
 k

ey
s

pe
r

re
al

 n
od

e

Number of virtual nodes per real node

1st and 99th percentiles

Figure 12: The 1st and the 99th percentiles of the number of keys per node as
a function of virtual nodes mapped to a real node. The network has 104 real
nodes and stores 106 keys.

bin. But in fact, the probability that a particular bin does not contain any node
is (1 − 1/N)N . For large values of N this approaches e−1 = 0.368.

As we discussed earlier, the consistent hashing paper solves this problem
by associating keys with virtual nodes, and mapping multiple virtual nodes
(with unrelated identifiers) to each real node. Intuitively, this will provide a
more uniform coverage of the identifier space. For example, if we allocate log N
randomly chosen virtual nodes to each real node, with high probability each of
the N bins will contain O(log N) nodes [16]. We note that this does not affect the
worst-case query path length, which now becomes O(log(N log N)) = O(log N).

To verify this hypothesis, we perform an experiment in which we allocate
r virtual nodes to each real node. In this case keys are associated to virtual
nodes instead of real nodes. We consider again a network with 104 real nodes
and 106 keys. Figure 12 shows the 1st and 99th percentiles for r = 1, 2, 5, 10,
and 20, respectively. As expected, the 99th percentile decreases, while the 1st
percentile increases with the number of virtual nodes, r. In particular, the 99th
percentile decreases from 4.8× to 1.6× the mean value, while the 1st percentile
increases from 0 to 0.5× the mean value. Thus, adding virtual nodes as an
indirection layer can significantly improve load balance. The tradeoff is that
routing table space usage will increase as each actual node now needs r times
as much space to store the finger tables for its virtual nodes. However, we
believe that this increase can be easily accommodated in practice. For example,
assuming a network with N = 106 nodes, and assuming r = log N , each node
has to maintain a table with only log2 N ' 400 entries.

6.3 Path Length

The performance of any routing protocol depends heavily on the length of the
path between two arbitrary nodes in the network. In the context of Chord,

37

0

2

4

6

8

10

12

1 10 100 1000 10000 100000

P
at

h
le

ng
th

Number of nodes

1st and 99th percentiles

(a)

0

0.05

0.1

0.15

0.2

0.25

0 2 4 6 8 10 12

P
D

F

Path length

(b)

Figure 13: (a) The path length as a function of network size. (b) The PDF of
the path length in the case of a 212 node network.

we define the path length as the number of nodes traversed during a lookup
operation. From Theorem 4.2, with high probability, the length of the path
to resolve a query is O(log N), where N is the total number of nodes in the
network.

To understand Chord’s routing performance in practice, we simulated a net-
work with N = 2k nodes, storing 100× 2k keys in all. We varied k from 3 to 14
and conducted a separate experiment for each value. Each node in an experi-
ment picked a random set of keys to query from the system, and we measured
the path length required to resolve each query.

Figure 13(a) plots the mean, and the 1st and 99th percentiles of path length
as a function of k. As expected, the mean path length increases logarithmically
with the number of nodes, as do the 1st and 99th percentiles. Figure 13(b) plots
the PDF of the path length for a network with 212 nodes (k = 12).

Figure 13(a) shows that the path length is about 1
2 log2 N . The reason for

the 1
2 is as follows. Consider some random node and a random query. Let the

distance in identifier space be considered in binary representation. The most
significant (say ith) bit of this distance can be corrected to 0 by following the
node’s ith finger. If the next significant bit of the distance is 1, it too needs
to be corrected by following a finger, but if it is 0, then no i − 1st finger is
followed—instead, we move on the the i − 2nd bit. In general, the number of
fingers we need to follow will be the number of ones in the binary representation
of the distance from node to query. Since the distance is random, we expect
half the log N bits to be ones.

6.4 Simultaneous Node Failures

In this experiment, we evaluate the ability of Chord to regain consistency after
a large percentage of nodes fail simultaneously. We consider again a 104 node

38

0

0.05

0.1

0.15

0.2

0.25

0 0.05 0.1 0.15 0.2

F
ai

le
d

Lo
ok

up
s

(F
ra

ct
io

n
of

 T
ot

al
)

Failed Nodes (Fraction of Total)

95% confidence interval

Figure 14: The fraction of lookups that fail as a function of the fraction of nodes
that fail.

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0 0.02 0.04 0.06 0.08 0.1

F
ai

le
d

Lo
ok

up
s

(F
ra

ct
io

n
of

 T
ot

al
)

Node Fail/Join Rate (Per Second)

95% confidence interval

Figure 15: The fraction of lookups that fail as a function of the rate (over time)
at which nodes fail and join. Only failures caused by Chord state inconsistency
are included, not failures due to lost keys.

network that stores 106 keys, and randomly select a fraction p of nodes that fail.
After the failures occur, we wait for the network to finish stabilizing, and then
measure the fraction of keys that could not be looked up correctly. A correct
lookup of a key is one that finds the node that was originally responsible for
the key, before the failures; this corresponds to a system that stores values with
keys but does not replicate the values or recover them after failures.

Figure 14 plots the mean lookup failure rate and the 95% confidence interval
as a function of p. The lookup failure rate is almost exactly p. Since this is
just the fraction of keys expected to be lost due to the failure of the responsible
nodes, we conclude that there is no significant lookup failure in the Chord
network. For example, if the Chord network had partitioned in two equal-sized
halves, we would expect one-half of the requests to fail because the querier and
target would be in different partitions half the time. Our results do not show

39

this, suggesting that Chord is robust in the face of multiple simultaneous node
failures.

6.5 Lookups During Stabilization

A lookup issued after some failures but before stabilization has completed may
fail for two reasons. First, the node responsible for the key may have failed.
Second, some nodes’ finger tables and predecessor pointers may be inconsistent
due to concurrent joins and node failures. This section evaluates the impact of
continuous joins and failures on lookups.

In this experiment, a lookup is considered to have succeeded if it reaches
the current successor of the desired key. This is slightly optimistic: in a real
system, there might be periods of time in which the real successor of a key has
not yet acquired the data associated with the key from the previous successor.
However, this method allows us to focus on Chord’s ability to perform lookups,
rather than on the higher-layer software’s ability to maintain consistency of its
own data. Any query failure will be the result of inconsistencies in Chord. In
addition, the simulator does not retry queries: if a query is forwarded to a node
that is down, the query simply fails. Thus, the results given in this section
can be viewed as the worst-case scenario for the query failures induced by state
inconsistency.

Because the primary source of inconsistencies is nodes joining and leaving,
and because the main mechanism to resolve these inconsistencies is the stabilize
protocol, Chord’s performance will be sensitive to the frequency of node joins
and leaves versus the frequency at which the stabilization protocol is invoked.

In this experiment, key lookups are generated according to a Poisson process
at a rate of one per second. Joins and failures are modeled by a Poisson process
with the mean arrival rate of R. Each node runs the stabilization routines at
randomized intervals averaging 30 seconds; unlike the routines in Figure 6, the
simulator updates all finger table entries on every invocation. The network
starts with 500 nodes.

Figure 15 plots the average failure rates and confidence intervals. A node
failure rate of 0.01 corresponds to one node joining and leaving every 100 seconds
on average. For comparison, recall that each node invokes the stabilize protocol
once every 30 seconds. In other words, the graph x axis ranges from a rate of 1
failure per 3 stabilization steps to a rate of 3 failures per one stabilization step.
The results presented in Figure 15 are averaged over approximately two hours
of simulated time. The confidence intervals are computed over 10 independent
runs.

The results of figure 15 can be explained roughly as follows. The simulation
has 500 nodes, meaning lookup path lengths average around 5. A lookup fails if
its finger path encounters a failed node. If k nodes fail, the probability that one
of them is on the finger path is roughly 5k/500, or k/100. This would suggest a
failure rate of about 3% if we have 3 failures between stabilizations. The graph
shows results in this ball-park, but slightly worse since it might take more than
one stabilization to completely clear out a failed node.

40

0

100

200

300

400

500

600

700

0 20 40 60 80 100 120 140 160 180 200

Lo
ok

up
 L

at
en

cy
 (

m
s)

Number of Nodes

5th, 50th, and 95th percentiles

Figure 16: Lookup latency on the Internet prototype, as a function of the total
number of nodes. Each of the ten physical sites runs multiple independent copies
of the Chord node software.

6.6 Experimental Results

This section presents latency measurements obtained from a prototype imple-
mentation of Chord deployed on the Internet. The Chord nodes are at ten sites
on a subset of the RON test-bed in the United States [1], in California, Colorado,
Massachusetts, New York, North Carolina, and Pennsylvania. The Chord soft-
ware runs on UNIX, uses 160-bit keys obtained from the SHA-1 cryptographic
hash function, and uses TCP to communicate between nodes. Chord runs in
the iterative style. These Chord nodes are part of an experimental distributed
file system [7], though this section considers only the Chord component of the
system.

Figure 16 shows the measured latency of Chord lookups over a range of
numbers of nodes. Experiments with a number of nodes larger than ten are
conducted by running multiple independent copies of the Chord software at
each site. This is different from running O(log N) virtual nodes at each site
to provide good load balance; rather, the intention is to measure how well our
implementation scales even though we do not have more than a small number
of deployed nodes.

For each number of nodes shown in Figure 16, each physical site issues
16 Chord lookups for randomly chosen keys one-by-one. The graph plots the
median, the 5th, and the 95th percentile of lookup latency. The median latency
ranges from 180 to 285 ms, depending on number of nodes. For the case of
180 nodes, a typical lookup involves five two-way message exchanges: four for
the Chord lookup, and a final message to the successor node. Typical round-
trip delays between sites are 60 milliseconds (as measured by ping). Thus the
expected lookup time for 180 nodes is about 300 milliseconds, which is close to
the measured median of 285. The low 5th percentile latencies are caused by
lookups for keys close (in ID space) to the querying node and by query hops
that remain local to the physical site. The high 95th percentiles are caused by

41

lookups whose hops follow high delay paths.
The lesson from Figure 16 is that lookup latency grows slowly with the total

number of nodes, confirming the simulation results that demonstrate Chord’s
scalability.

7 Future Work

Based on our experience with the prototype mentioned in Section 6.6, we would
like to improve the Chord design in the following areas.

Chord currently has no specific mechanism to heal partitioned rings; such
rings could appear locally consistent to the stabilization procedure. One way
to check global consistency is for each node n to periodically ask other nodes
to do a Chord lookup for n; if the lookup does not yield node n, there may be
a partition. This will only detect partitions whose nodes know of each other.
One way to obtain this knowledge is for every node to know of the same small
set of initial nodes. Another approach might be for nodes to maintain long-
term memory of a random set of nodes they have encountered in the past; if
a partition forms, the random sets in one partition are likely to include nodes
from the other partition.

A malicious or buggy set of Chord participants could present an incorrect
view of the Chord ring. Assuming that the data Chord is being used to locate
is cryptographically authenticated, this is a threat to availability of data rather
than to authenticity. The same approach used above to detect partitions could
help victims realize that they are not seeing a globally consistent view of the
Chord ring.

An attacker could target a particular data item by inserting a node into the
Chord ring with an ID immediately following the item’s key, and having the
node return errors when asked to retrieve the data. Requiring (and checking)
that nodes use IDs derived from the SHA-1 hash of their IP addresses makes
this attack harder.

Even log N messages per lookup may be too many for some applications
of Chord, especially if each message must be sent to a random Internet host.
Instead of placing its fingers at distances that are all powers of 2, Chord could
easily be changed to place its fingers at distances that are all integer powers
of 1 + 1/d. Under such a scheme, a single routing hop could decrease the
distance to a query to 1/(1 + d) of the original distance, meaning that log1+d N
hops would suffice. However, the number of fingers needed would increase to
log N/(log(1 + 1/d) ≈ O(d log N).

A different approach to improving lookup latency might be to use server
selection. Each finger table entry could point to the first k nodes in that entry’s
interval on the ID ring, and a node could measure the network delay to each of
the k nodes. The k nodes are generally equivalent for purposes of lookup, so a
node could forward lookups to the one with lowest delay. This approach would
be most effective with recursive Chord lookups, in which the node measuring
the delays is also the node forwarding the lookup.

42

8 Conclusion

Many distributed peer-to-peer applications need to determine the node that
stores a data item. The Chord protocol solves this challenging problem in
decentralized manner. It offers a powerful primitive: given a key, it determines
the node responsible for storing the key’s value, and does so efficiently. In the
steady state, in an N -node network, each node maintains routing information
for only about O(log N) other nodes, and resolves all lookups via O(log N)
messages to other nodes.

Attractive features of Chord include its simplicity, provable correctness, and
provable performance even in the face of concurrent node arrivals and depar-
tures. It continues to function correctly, albeit at degraded performance, when
a node’s information is only partially correct. Our theoretical analysis, simula-
tions, and experimental results confirm that Chord scales well with the number
of nodes, recovers from large numbers of simultaneous node failures and joins,
and answers most lookups correctly even during recovery.

We believe that Chord will be a valuable component for peer-to-peer, large-
scale distributed applications such as cooperative file sharing, time-shared avail-
able storage systems, distributed indices for document and service discovery, and
large-scale distributed computing platforms.

Acknowledgments

We thank David Andersen for setting up the testbed used in the measurements
of the Chord prototype described in Section 6.6.

References

[1] Andersen, D. Resilient overlay networks. Master’s thesis, Department of EECS,
MIT, May 2001. http://nms.lcs.mit.edu/projects/ron/.

[2] Bakker, A., Amade, E., Ballintijn, G., Kuz, I., Verkaik, P., van der

Wijk, I., van Steen, M., and Tanenbaum., A. The Globe distribution network.
In Proc. 2000 USENIX Annual Conf. (FREENIX Track) (San Diego, CA, June
2000), pp. 141–152.

[3] Chen, Y., Edler, J., Goldberg, A., Gottlieb, A., Sobti, S., and Yianilos,

P. A prototype implementation of archival intermemory. In Proceedings of the
4th ACM Conference on Digital libraries (Berkeley, CA, Aug. 1999), pp. 28–37.

[4] Clarke, I. A distributed decentralised information storage and retrieval system.
Master’s thesis, University of Edinburgh, 1999.

[5] Clarke, I., Sandberg, O., Wiley, B., and Hong, T. W. Freenet: A dis-
tributed anonymous information storage and retrieval system. In Proceedings of
the ICSI Workshop on Design Issues in Anonymity and Unobservability (Berke-
ley, California, June 2000). http://freenet.sourceforge.net.

[6] Dabek, F., Brunskill, E., Kaashoek, M. F., Karger, D., Morris, R.,

Stoica, I., and Balakrishnan, H. Building peer-to-peer systems with Chord,

43

a distributed location service. In Proceedings of the 8th IEEE Workshop on Hot
Topics in Operating Systems (HotOS-VIII) (Elmau/Oberbayern, Germany, May
2001), pp. 71–76.

[7] Dabek, F., Kaashoek, M. F., Karger, D., Morris, R., and Stoica, I. Wide-
area cooperative storage with CFS. In Proceedings of the 18th ACM Symposium
on Operating Systems Principles (SOSP ’01) (To appear; Banff, Canada, Oct.
2001).

[8] Druschel, P., and Rowstron, A. Past: Persistent and anonymous storage in
a peer-to-peer networking environment. In Proceedings of the 8th IEEE Work-
shop on Hot Topics in Operating Systems (HotOS 2001) (Elmau/Oberbayern,
Germany, May 2001), pp. 65–70.

[9] FIPS 180-1. Secure Hash Standard. U.S. Department of Commerce/NIST, Na-
tional Technical Information Service, Springfield, VA, Apr. 1995.

[10] Gnutella. http://gnutella.wego.com/.

[11] Karger, D., Lehman, E., Leighton, F., Levine, M., Lewin, D., and Pani-

grahy, R. Consistent hashing and random trees: Distributed caching protocols
for relieving hot spots on the World Wide Web. In Proceedings of the 29th Annual
ACM Symposium on Theory of Computing (El Paso, TX, May 1997), pp. 654–663.

[12] Kubiatowicz, J., Bindel, D., Chen, Y., Czerwinski, S., Eaton, P., Geels,

D., Gummadi, R., Rhea, S., Weatherspoon, H., Weimer, W., Wells, C.,

and Zhao, B. OceanStore: An architecture for global-scale persistent storage. In
Proceeedings of the Ninth international Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS 2000) (Boston, MA,
November 2000), pp. 190–201.

[13] Lewin, D. Consistent hashing and random trees: Algorithms for caching in
distributed networks. Master’s thesis, Department of EECS, MIT, 1998. Available
at the MIT Library, http://thesis.mit.edu/.

[14] Li, J., Jannotti, J., De Couto, D., Karger, D., and Morris, R. A scal-
able location service for geographic ad hoc routing. In Proceedings of the 6th
ACM International Conference on Mobile Computing and Networking (Boston,
Massachusetts, August 2000), pp. 120–130.

[15] Mockapetris, P., and Dunlap, K. J. Development of the Domain Name
System. In Proc. ACM SIGCOMM (Stanford, CA, 1988), pp. 123–133.

[16] Motwani, R., and Raghavan, P. Randomized Algorithms. Cambridge Univer-
sity Press, New York, NY, 1995.

[17] Napster. http://www.napster.com/.

[18] Ohaha, Smart decentralized peer-to-peer sharing. http://www.ohaha.com/

design.html.

[19] Plaxton, C., Rajaraman, R., and Richa, A. Accessing nearby copies of
replicated objects in a distributed environment. In Proceedings of the ACM SPAA
(Newport, Rhode Island, June 1997), pp. 311–320.

[20] Ratnasamy, S., Francis, P., Handley, M., Karp, R., and Shenker, S. A
scalable content-addressable network. In Proc. ACM SIGCOMM (San Diego,
CA, August 2001), pp. 161–172.

44

[21] van Steen, M., Hauck, F., Ballintijn, G., and Tanenbaum, A. Algorithmic
design of the Globe wide-area location service. The Computer Journal 41, 5
(1998), 297–310.

45

