
Meghdoot: Content-Based Publish/Subscribe
over P2P Networks�

Abhishek Gupta, Ozgur D. Sahin, Divyakant Agrawal, and Amr El Abbadi

Department of Computer Science
University of California at Santa Barbara

{abhishek,odsahin,agrawal,amr}@cs.ucsb.edu

Abstract. Publish/Subscribe systems have become a prevalent model
for delivering data from producers (publishers) to consumers (subscribers)
distributed across wide-area networks while decoupling the publishers
and the subscribers from each other. In this paper we present Meghdoot,
which adapts content-based publish/subscribe systems to Distributed
Hash Table based P2P networks in order to provide scalable content
delivery mechanisms while maintaining the decoupling between the pub-
lishers and the subscribers. Meghdoot is designed to adapt to highly
skewed data sets, which is typical of real applications. The experimental
results demonstrate that Meghdoot balances the load among the peers
and the design scales well with increasing number of peers, subscriptions
and events.

1 Introduction

Publish/Subscribe systems are used to deliver data events from publishers (data/
event producers) to subscribers (data/event consumers) in a decoupled fashion.
Publishers can be completely unaware of the subscribers and simply introduce
data events into the system. A data event specifies values for a set of attributes
associated with the event. Subscribers can register their interests with the system
in the form of subscriptions which act as filters that are used by the system to
deliver relevant events to the subscribers. Content-based subscriptions specify
the subscription based on attribute properties of the data events. The pub-
lish/subscribe system, or equivalently the publish/subscribe middleware, man-
ages the subscriptions and delivers the events to the matching subscriptions.

Publish/subscribe systems arise in many applications including online stock
quotes, Internet games, and sensor networks. In the stock quote application, for
example, the events are generated by various stock exchanges where trading oc-
curs. The events contain information about the open, close, low, and high values
of companies’ stocks at various times. The subscribers are clients interested in
trading, and they are usually interested in the values of the stocks they trade.
Another interesting example is IBM’s web service for information on events in
� This research was supported in parts by NSF grants EIA00-80134, IIS-0220152, and

IIS-0223022.

H.-A. Jacobsen (Ed.): Middleware 2004, LNCS 3231, pp. 254–273, 2004.
c© IFIP International Federation for Information Processing 2004

Meghdoot: Content-Based Publish/Subscribe over P2P Networks 255

the 2000 Olympics at Sydney. Users could query events in sports of their interest
or events relating to their countries by contacting the web service. According to
IBM [13], there were 11.3 billion hits to the web server. This number is expected
to grow higher in upcoming events. Users are interested in a notification service
that can allow them to track events of interest. The information for such events
can be distributed to users by utilizing a distributed publish/subscribe system.

Current solutions are either centralized or distributed. Centralized solutions
based on a DBMS use triggers [11, 6], which have an inherent scalability problem
as the number of events in the system increase. Specialized data structures have
been proposed to overcome these scalability problems [7]. However, to ensure
efficient processing, restrictions are placed on the types of subscriptions that
the system can support. Distributed solutions are usually restricted to specific
subject-based subscriptions [5, 31, 19] and hence do not support general content-
based subscriptions. Alternatively, routing trees [4, 2] are used to support mul-
ticast to prevent communication bottlenecks.

Peer-to-peer systems are particularly attractive for supporting publish/ sub-
scribe systems since they are flexible, modular, and scalable. In such systems,
peers are used both to store subscriptions and to route events to other peers
with relevant subscriptions. Peer-to-peer systems are very scalable since addi-
tional peers can contribute their machines, thus increasing the computational
and storage resources in the system. Traditionally, peer-to-peer systems were de-
signed to answer exact match queries. In this paper we present Meghdoot1, a P2P
based publish/subscribe system. Meghdoot uses a structured distributed hash
table [1] to determine where subscriptions are stored and how to route the events
to the subscriptions. Meghdoot is a scalable architecture for publish/subscribe
systems that applies a flexible model of content-based publish/subscribe systems
to structured P2P systems.

A particular challenge in peer-to-peer systems involves ensuring a uniform
distribution of load among the different peers in the system. Traditional peer-
to-peer systems are oblivious to the content of the data and hence use a uniform
hash function to distribute the data among the different peers. However, in
a content-based publish/subscribe system, we distribute the subscriptions and
events based on their content. Most real world datasets tend to be skewed and
hence will cause a non-uniform distribution of load on the peers. One important
innovation of Meghdoot is the alternative methods it uses to balance the load
among peers. Our experimental results clearly demonstrate that even when using
highly skewed real world datasets, the system ensures that no peer is unduly
loaded.

The rest of the paper is structured as follows. Section 2 presents a survey
of related work. Section 3 presents the basic design of our proposed approach.
This is followed by Section 4 which presents strategies for employing peers in the
system in a load balanced manner, and presents some optimizations. Section 5
presents the experimental setup and results. Section 6 concludes the paper.

1 The name Meghdoot originates from an ancient epic where clouds were used as
messengers.

256 Abhishek Gupta et al.

2 Related Work

Publish-subscribe systems are designed for disseminating information (events)
to a subset of the clients (subscribers) who are actually interested in this infor-
mation. The designs for publish/subscribe systems can be classified into two cat-
egories: Subject-based and Content-based. Subject-based publish/subscribe sys-
tems assign each event to one of a set of pre-defined subjects (also referred to as
topics, channels, or groups). The events themselves specify the topics that are
relevant to the event. A client subscribes to a set of subjects it is interested in
and is notified of all the events that are associated with these subjects. Examples
of these systems include research proposals ISIS [3], iBus [16] and commercial
products Tibco [26], and Vitria [28].

Content-based publish/subscribe systems allow more complex subscriptions
by enabling restrictions on the event content. A subscriber can specify multiple
predicates as a subscription and only those events whose content satisfies all the
predicates are notified to the subscriber. Subscriptions in these systems are more
expressive, but the systems are harder to implement. Examples of distributed
content-based systems include Elvin [22], Siena [4], and Gryphon [2]. Elvin uses
a central server which stores all the subscriptions and evaluates the subscrip-
tions affected by the events. Fabret et al. [7] proposed novel data structures and
application-specific caching policies and query processing in centralized systems
to support high rates of subscriptions and events in a content-based system.
For scalability purposes, subscriptions in this system must contain at least one
equality predicate. Other centralized approaches have been proposed for scal-
able matching of predicates in the context of database trigger processing [11]
and continuous queries [6]. Siena and Gryphon are distributed systems, in which
a network of broker nodes is created and the events are distributed within the
network.

P2P systems have emerged as a popular technique for exchanging informa-
tion among a set of distributed peers. Initial approaches used a centralized index
and/or flooding for locating objects in the system (e.g. Gnutella [9], Napster [15],
KaZaA [14]). Advanced P2P systems provide more efficient lookups using struc-
ture in the logical overlay network formed by the peers. They implement a hash
table functionality distributed over the peers, and are referred to as Distributed
Hash Tables (DHT’s). CAN [18], Chord [23], Pastry [20], and Tapestry [30] are
different examples of DHT’s. Most P2P systems were designed for locating in-
formation based on exact names, e.g. names of files. However, recently several
proposals have been made to extend P2P functionality to more complex queries,
e.g., range queries [10, 21], joins [12], SQL [27], XML [8], etc.

Several application level multicast systems have been proposed employing an
underlying DHT, and can be easily adapted for subject-based publish/subscribe.
These systems inherit the scalability and fault tolerance properties from the un-
derlying DHT structure. Scribe [5] is built on top of Pastry [20]. Scribe assigns
a unique groupId to each topic and the node whose nodeId is numerically clos-
est to the groupId becomes the rendezvous point for this topic. For each topic,
a multicast tree, that is rooted at the rendezvous point, is created by com-

Meghdoot: Content-Based Publish/Subscribe over P2P Networks 257

bining the paths from each subscriber to the rendezvous point. The messages
(events) associated with the group (subject) are disseminated along the corre-
sponding multicast tree starting from the root. A Pastry [20] based P2P overlay
is used in [17] to provide support for a type based publish/subscribe system
using similar rendezvous mechanism as Scribe [5]. The P2P overlay is also used
by [17] for installing content based filters close to the publishers. Bayeux [31]
uses Tapestry [30] as the underlying structure. Similar to Scribe, each group is
associated with a root node based on its unique ID and a multicast tree rooted
at that node is used for data dissemination. CAN-based multicast [19] is an ap-
plication level multicast system based on CAN. Unlike the approaches above,
CAN multicast does not build a distribution tree for each group. Instead, the
members of a group form a separate group specific CAN and the multicasting is
achieved by flooding over this separate CAN.

Our work implements a content-based publish-subscribe system over a DHT
based on CAN [18]. There are several similar efforts [25, 24]. Terpstra et al. [25]
partition the event space among the peers in the system. Chord [23] is used to
broadcast events and subscriptions to all nodes in the system. These broadcasts
are attenuated by filters installed at peer nodes due to the subscriptions stored
in the system. This approach may require all peers in the system to be contacted
to install a subscription. Unlike Terpstra et al., in our solution subscriptions are
installed by routing through O(dN

1
d) peers, where N is the number of peers

in the system and d is the dimensionality of the logical DHT space. Tam et
al. [24] extend an existing subject-based system (Scribe [5]). Ordered collections
of a set of selected attributes are used for indexing subscriptions into a subject-
based publish/subscribe system. Thus a subscription can be submitted into the
system only if it specifies all attribute values for at least one of the indices.
The domains of attribute values are partitioned into intervals. If a subscription
specifies a range over some attribute, it is decomposed into subparts according to
the domain intervals. Meghdoot is a content-based publish/subscribe system that
imposes no restrictions on the subscriptions or the events. It provides scalability
by leveraging the P2P design, thus allowing flexible addition of peers into the
system to match the demand. It uses innovative load distribution techniques to
maintain the load balance in presence of highly skewed real world data.

3 Meghdoot Design
In this section, we start with a description of the schema and the representation
of the events and the subscriptions in the system. Next, we describe the storage
model for subscriptions and the event delivery mechanism.

3.1 Publish/Subscribe Model in Meghdoot

We consider a content-based publish/subscribe system with multiple attributes.
The model and definitions are based on the model proposed by Fabret et al. [7].
The schema for the system can be described as: S = {A1, A2, . . . , An}, where each
Ai corresponds to an attribute. Each attribute has a name, type and domain,
and can be described by the tuple {Name: Type, Min, Max}. The attributes

258 Abhishek Gupta et al.

are identified by their unique names. The data types we consider are integer,
floating point and character strings. The values Min and Max describe the range
of domain values taken by the given attribute. All the peers participating in the
publish/subscribe system use the same schema S.

A subscription is a conjunction of predicates over one or more attributes.
Each predicate specifies a constant value (using =) or a range (using <, >,≤,≥)
for an attribute. If a subscription needs to specify multiple predicates over the
same attribute, we can model such a subscription as a combination of multiple
subscriptions, each of which specifies one continuous range over the attribute.
For simplicity of presentation, henceforth, we assume each subscription specifies
a continuous range over an attribute. An example subscription is S = (A1 ≥ v1)∧
(v2 ≤ A3 ≤ v3). An event is a set of equalities over the attributes in the schema.
Therefore, an event can be represented as e = {A1 = c1, A2 = c2, . . . , An = cn}.
In general, events may specify values for a subset of the attributes.

An event e matches a subscription S if each predicate of S is satisfied by
the value of the corresponding attribute specified by the event e. The pub-
lish/subscribe system is required to store the subscriptions specified by the users
and given an event, find all subscriptions matching the event and deliver the
event to the subscribers.

The schema based clustering algorithms in [7] require that there be at least
one equality predicate in each subscription. Applications may be interested in
range predicates over all attributes specified in a subscription. For example, a
subscription in the case of a stock quotes application can ask for all quotes where
the volume of trade is greater than 100,000 on any day, without specifying any
equality predicate. An event at the end of a day needs to specify values for stock
name, its open, high, low and close values, and the volume of trade in that day.
Our model is general and does not restrict the subscriptions and allows them to
specify ranges over all attributes or a subset.

3.2 Logical Space Construction

In this section, we describe the construction of the logical space used for main-
taining the distributed hash table. Given a schema S = {A1, A2, . . . , An} with n
attributes, we create a cartesian space with 2n dimensions. The mapping for the
construction of the logical space as described below has been adapted from Sahin
et al. [21]. Attribute Ai with domain range [Li, Hi] corresponds to dimensions
2i− 1 and 2i of the cartesian space. Intuitively, the predicates of a subscription
specify ranges of interest over the attributes, and the ranges are represented by a
point in the logical space. The start of the range over the ith attribute is mapped
to dimension 2i − 1 corresponding to attribute Ai, and the end of the range is
mapped to the dimension 2i. Therefore the domain of the 2i − 1 and 2i axes
in the cartesian space is bounded by [Li, Hi]. This logical space is partitioned
among the peers present in the system, and each peer is responsible for one of
the partitions. The partitions are referred to as zones, and if a peer is responsible
for a partition, we say the peer owns the zone.

Meghdoot: Content-Based Publish/Subscribe over P2P Networks 259

7

1 H1

L1

H1

1

2

3

4

5

6

L

(a) 2d-cartesian space

L

L

L

H

H

1 1

1

1 L

H

H

2

2

2

2

(b) 4d-cartesian space

Fig. 1. Logical space construction.

The peers maintain a multidimensional Distributed Hash Table (DHT) as
described in CAN [18]. Each peer maintains information about the coordinates
of its own zone. In addition, the peers store coordinate information of their
neighboring zones as well as the IP addresses of the peers owning those zones.
This information is used for the purposes of routing in the overlay network
formed by the peers.

Figure 1 shows examples of the cartesian space. Figure 1(a) is the logical
cartesian space for the case when the schema has only one attribute. The bounds
of both axes in this case correspond to the bounds [L1, H1] of the attribute. The
rectangular regions form a partitioning of the space. Each rectangle is a zone
and is owned by a peer in the system. Figure 1(b) is an example logical cartesian
space when the schema has two attributes. The first two dimensions in the figure
are bounded by the domain [L1, H1] of the first attribute, whereas the next two
dimensions are bounded by the domain [L2, H2] of the second attribute.

3.3 Subscription Installation

A user can specify a subscription S by defining the ranges or values over one
or more attributes in the schema. A subscription S can be expressed in the
following format:
S = (l1 ≤ A1 ≤ h1) ∧ (l2 ≤ A2 ≤ h2) ∧ . . . ∧ (ln ≤ An ≤ hn).
If the subscription is interested in a specific value v of an attribute Ai then both
li and hi are set to v. If the subscription S does not specify any range over an
attribute Ai then li and hi are considered to be the boundaries Li and Hi of the
domain of Ai. The subscription S is mapped to the point 〈l1, h1, l2, h2, . . . , ln, hn〉
in the 2n-dimensional space which is referred to as the subscription point. Note
that all subscriptions are stored in the upper left side of the diagonal hyperplane.
This is due to the fact that the coordinate value of the (2i − 1)th dimension is
smaller than or equal to the (2i)th dimension for a subscription point since they
correspond to the start and end values of the range over the ith attribute. The
zones in the bottom right of the diagonal hyperplane are primarily used for
routing purposes. Later, we utilize these zones for fault tolerance.

260 Abhishek Gupta et al.

When a user wishes to subscribe for some events, the user submits the
subscription to a peer in the system. The origin peer Po maps the subscrip-
tion to its corresponding subscription point in the 2n-dimensional space. The
peer whose zone contains this point is referred to as the target peer Pt. Po

needs to route the subscription to the peer Pt. In order to route the sub-
scription, Po selects one of its neighbors, which has the closest Euclidean dis-
tance in the 2n-dimensional space to the subscription point, and forwards the
subscription to it. This process of forwarding is repeated until the subscrip-
tion reaches the peer Pt. This process of routing the subscription to the peer

L1 H1

L1

H1

P Pot

S

Fig. 2. Routing a subscription to
its destination for installation.

responsible for managing it takes O(dN
1
d)

overlay hops [18] on average, where N is the
number of peers in the system and d is the
dimensionality of the cartesian space. When
Pt receives the subscription, it stores the sub-
scription along with an identifier (e.g. IP ad-
dress, user name, e-mail, etc.). Figure 2 shows
an example routing path for a subscription in
the case of a single attribute schema. The sub-
scription is finally stored in the target zone
and the subscription point is marked S.

3.4 Event Delivery

When an event is introduced into the system, Meghdoot is required to find all
the matching subscriptions installed in the system, and deliver the event to the
subscribers. Consider an event e = {A1 = c1, A2 = c2, . . . , An = cn}. The event
e is mapped to the point 〈c11, c12, c21, c22, . . . , cn1, cn2〉 in the 2n-dimensional
space, and is referred to as an event point. If the event specifies a value v for the
ith attribute then ci1 = ci2 = v, otherwise ci1 = Li and ci2 = Hi. Note that the
event points lie on the diagonal hyperplane of the space if all the attribute values
are specified. A subscription S = (l1 ≤ A1 ≤ h1) ∧ (l2 ≤ A2 ≤ h2) ∧ . . . ∧ (ln ≤
An ≤ hn) is affected by the event e if the following property holds:

∀i ∈ {1, 2, . . . , n} li ≤ ci1 ∧ ci2 ≤ hi

The shaded area in Figure 3 shows the region of event points in a 2d cartesian
space corresponding to a single attribute schema that can affect a subscription S,
because all the event points in the shaded region will satisfy the above property.

The shaded region in Figure 4 shows the region of subscription points of
all subscriptions affected by an event e. In the 2n-dimensional space, event e
mapping to the point 〈c11, c12, c21, c22, . . . , cn1, cn2〉 affects the hyper rectangular
region defined by the following points:

〈L1, c11, L2, c21, . . . , Ln, cn1〉 and 〈c12, H1, c22, H2, . . . , cn2, Hn〉.
When an event is introduced in the system at a peer Po, it maps the event to

the corresponding event point and routes the event to the peer Pt which contains
the event point. Figure 4 shows the routing path of an event e from Po to Pt

and the region of affected subscriptions of e in a 2d space. The event is then
propagated starting from Pt to all peers which are in the region affected by

Meghdoot: Content-Based Publish/Subscribe over P2P Networks 261

1 H1

L1

H1

L

S

Fig. 3. Region of events affecting a
subscription S = 〈l1, h1〉.

L1 H1

L1

H1
P

P

o

t(L , c)1 11

(c , H)12 1

S

e

Fig. 4. Region of subscriptions affected
by an event e = 〈c1, c1〉.

the event. Pt sends the event to its immediate neighbors in the affected region,
which in turn propagate the event to their neighbors in the affected region. This
process repeats until all peers in the affected region have been notified of the
event. The basic algorithm for event delivery is given below.

The algorithm Deliver Event is initiated at event e’s target peer, Pt, which
owns zone z. Lines 1-4 check for all affected subscriptions that are stored at zone z
and deliver the event to those subscriptions. Predicate matchedSubscription(S, e)
is true if the subscription point corresponding to subscription S is contained in
the affected region of event e within zone z. Lines 5-8 find all neighbors, n, of
zone z that are affected by event e and are in the upper left region of the zone
z itself. The predicate eventRegion(n, e) is true if the region of zone n inter-
sects with the affected region of event e. The predicate upperleftNeighbor(n, z)
evaluates to true if neighbor n lies in the upper left region of zone z. We use
the bottom right point of zone z as the reference point for the upper left region
of z to ensure that none of the affected neighbors are missed. For example, in
Figure 1(a) zones 1, 2, and 4 are in the upper left of zone 5, but zones 3, 6, and
7 are not. This predicate is required to prevent back propagation of events. In
Figure 5, all (dashed and solid) arrows represent the propagation of the event.
Predicate upperleftNeighbor(n, z) prevents messages from propagating in the
reverse order of the arrows. For example, it prevents zone z4 from sending a
message back to zones z1, z2, and z3.

The event propagation algorithm can be further optimized to prevent the
same event from being delivered to a zone by multiple neighbors. Figure 5 shows
only zones of interest for illustration and the dashed region is the region of
subscription points affected by event e. In the figure, zones z2 and z3 do not need
to send the event message to the zone z4 because zone z1 sends the message to
z4. These messages can be prevented in the following way. When propagating an
event to a neighbor zn, a zone z checks if any of its bottom right neighbors could
have already delivered the message to that neighbor, in which case it would not
propagate the event to that neighbor. In our implementation we also use this
optimization. Dashed arrows in Figure 5 are the duplicate messages that can be
avoided by this optimization.

262 Abhishek Gupta et al.

Algorithm: Deliver Event(z, e)
/* Executed at zone z for event e. */
1. for all subscriptions S stored at z
2. if (matchedSubscription(S, e))
3. notifySubscriber(S, e)
4. end for
5. for all neighbors n of z
6. if (eventRegion(n, e) ∧
7. upperleftNeighbor(n, z))
8. DeliverEvent(n, e)
9. end for

5

E

z z

z z z 123

4

Fig. 5. Preventing repetitive propagation.

3.5 Example Applications

In this section, we present some examples of applications that can be imple-
mented using Meghdoot. As an example consider an application where dis-
tributed sensors are used for gathering environmental parameters such as tem-
perature, humidity, illumination, etc. The sensors in various geographical lo-
cations send the measured data to their local base stations. Users can specify
continuous queries over the data, and these queries are stored at the base sta-
tions. This application can be modeled using Meghdoot where the base stations
form a P2P network. The user queries are stored as subscriptions on the base
stations and the sensor readings can be directed to all the affected queries using
the event delivery mechanism.

Meghdoot can also be utilized in critical systems for event monitoring appli-
cations, for example power distribution system. The power distribution system
consists of Power Stations which generate power which is sent to Transmis-
sion Substations. These transmission substations use high voltage transmission
lines to convey power to various Power Substations which are located in dif-
ferent geographical areas. The power substations step down the power voltage
and distribute it to the residential locations. The power system has sensors that
measure the amount of power generated (in MW), transmitted and consumed
(in KW) at various points in the system. Sensors also measure the voltage in the
transmission lines. Monitoring agents can specify continuous queries that detect
anomalies, like sudden drop in voltage over transmission lines or a trip in power
generation. This enables early detection of events that can lead to serious prob-
lems, e.g. power outages. According to a recent report, the August 14th 2003
blackout in the North East USA and Canada, the cause of the large scale failure
was due to lack of timely information about individual failures.

4 Peer Management in Meghdoot

In this section we discuss the mechanisms used by peers to join and leave the
system. We start with a description of how a peer joins the system. In the sim-
plest case, a new peer Pn can use the algorithm described in CAN [18] for joining

Meghdoot: Content-Based Publish/Subscribe over P2P Networks 263

the system. Peer Pn contacts some existing node Pe in the system and requests
Pe to locate a randomly generated point in the logical space. Once the peer Pt

whose zone contains the random point is located, Pn submits a join request to
Pt. The peer Pt then divides its zone space into two halves and assigns one half
to Pn. The two peers then update their neighbor information and also inform
the neighbors of the new zone coordinates. The CAN system [18] was originally
designed for storing files and multimedia objects with syntactic identifiers. To
distribute this information uniformly in the multidimensional identifier space, a
uniform hash function was used, thus ensuring a balanced load among the peers.
However, in a data-driven environment, as in our approach, the distribution of
the data among the peers is content-based. Hence, if a set of events are popular,
then the subscription distribution will be skewed in that region of the space.
This is due to the fact that Meghdoot uses the content of the subscriptions,
rather than a uniform hash function to place data on peers. Furthermore, un-
like a standard DHT based P2P system, in a publish/subscribe setting a data
event needs to be forwarded to all subscriptions interested in this event. Hence,
a direct application of the original CAN join procedure to a publish/subscribe
setting can lead to significant load imbalance among the peers. In this section,
we study the characteristics of load and develop strategies for load balancing.

4.1 Load Characteristics

The peers in the system need to store subscriptions associated with the sub-
scribers. In addition, they need to propagate the events to all peers in the af-
fected region. Therefore, load on a peer is due to both subscriptions and events,
and they have different characteristics, which we described below. Our proposed
strategies for admitting new peers in the system exploit these varying charac-
teristics.

Fig. 6. Splitting a zone divides sub-
scription load.

Subscription Load. When a user in-
stalls a subscription, the subscription is
mapped to its corresponding point, and
is stored at the peer which owns the zone
containing the subscription point. Thus a
zone owned by a peer can contain various
subscription points. Since the peer own-
ing the zone is responsible for delivering
the events it receives to the affected sub-
scriptions it stores, the load on the peer due to subscriptions is proportional to
the number of stored subscriptions in the zone. In particular, the load is reduced
on a peer, if the subscriptions in its zone are reduced. Therefore, the load due to
subscriptions on a peer can be reduced by dividing the spatial extent of a zone
so that the number of stored subscriptions is evenly divided with the joining
peer. Figure 6 shows an example in 2d space.

Event Load. An event generates load because it needs to be propagated to
all zones that are in the affected region of the zone. If a zone is loaded because

264 Abhishek Gupta et al.

it falls in the propagation path of too many events, splitting the zone in two
will not help, because the zone will still remain in the path of those events. For
example, in Figure 7(a), lets say that the zones owned by peer nodes N1, N2, and
N3 are in some event propagation path, and node N2 is overloaded due to event
propagation. If a new peer N4 joins the system and splits the zone owned by N2,
now both N2 and N4 are in the propagation path, and hence this splitting does
not reduce the load on N2. In order to reduce the load due to event propagation,
we need to create alternate propagation paths and select one of the available
paths to propagate each event. Thus, not every event will propagate through
the same set of nodes, and overload them. This can be achieved by replicating a
zone that is overloaded due to event propagation. In the context of P2P systems
partitioning is typically used for load distribution. Our approach is different, in
that, we are proposing replication for load distribution.

E E

N

N

N

1

2

3

N

N

N

N

1

2

3

4

(a) Splitting does not divide event
propagation load.

1

N N N1 2 3

N

N2

4

N3
N

(b) Replicating a zone divides propaga-
tion load.

Fig. 7. Event propagation load.

Figure 7(b) shows how this will be implemented. The straight line on top rep-
resents the original situation along a propagation path. The black dots represent
the peers owning the zones in the path. Peer N2 in the center was overloaded
due to event propagation. When a new peer N4 wishes to join the system, it
can replicate the exact zone as peer N2 along with all its subscriptions. The
neighbors N1 and N3 need to store the IP addresses of both peers N2 and N4

associated with the zone coordinates. Effectively the neighbors have two paths
to propagate the event through the replicated zone. When a neighbor needs to
propagate an event to the zone, it picks one replica peer out of the list of replicas
for the zone in a round robin fashion. This will distribute the propagation load
on the old peer responsible for the zone.

4.2 Peer Join

When a new peer Pn wishes to join the system, it contacts a known peer Pe

in the system. Pe tries to locate a heavily loaded peer in the system. After Pe

finds a heavily loaded peer Ph, it forwards Pn to Ph. In order to locate a heavily
loaded peer, each peer in the system maintains information about its current

Meghdoot: Content-Based Publish/Subscribe over P2P Networks 265

load as well as its neighbors’ load when it last heard from them. In addition,
each peer maintains an estimated list called loadedPeerList of k most heavily
loaded peers in the system that they ever heard about. The peers can decide a
local value of k depending on available memory.

Peers in the system periodically update their neighbors about their load
statistics. The peers also propagate their loadedPeerList to their neighbors. A
peer merges its loadedPeerList with the received list. When required to locate a
heavily loaded peer, the load information about the neighbors is utilized by the
peers to perform a distributed hill climbing algorithm to locate a local maxima.
The initiating peer sends a probe for a heavily loaded node to one of its neigh-
bors that has the heaviest load. The probe is forwarded to the heaviest loaded
neighbor by each receiving peer until it reaches a peer which has a load higher
than any of its neighbors. This peer is referred to as a local maxima. The new
peer is notified of the heavily loaded peer.

When contacted by the new peer, the heavily loaded peer chooses to either
split its zone or replicate it based on its load conditions. If the peer is loaded
due to event propagation it hands over a copy of its zone to the new peer, thus
creating a replica of the zone. The neighbors are informed of the existence of this
new replica. If the peer is loaded because it is managing too many subscriptions,
it splits its zone in such a way that the two partitions have even distribution of
subscriptions between them, and hands over one partition to the new peer.

4.3 Peer Departure or Failure

When a peer wishes to depart from the system, it first checks if there are any
replicas for its zone. If one or more replicas exist, it simply informs its replicas as
well as the neighbors of its decision to leave, and leaves the system. The neighbors
and replicas update their information. If there are no available replicas for a peer
leaving the system, it contacts its neighbors and finds a neighbor willing to take
over its zone. Then it transfers all its subscriptions to this neighbor and leaves
the system.

S’

1

L1

H1

L1

S

H

Fig. 8. Replicating subscriptions at
mirror image.

Since peers periodically send load mes-
sages to their neighbors, a neighbor that
discovers a failed peer needs to either take
up the zone of the failed peer or find some
other peer to hand over the zone. In the
case of failure, the information about the
subscriptions stored at the failed peer can
be lost, unless replicas exist due to event
load balancing. To avoid this problem, we
use the following replication scheme. As de-
scribed in Section 3.3, all subscriptions are
stored in the upper left side of the diago-
nal hyperplane. We exploit this property of
our design for fault tolerance. When installing a subscription at subscription
point 〈l1, h1, l2, h2, . . . , ln, hn〉, we also store a copy of the subscription at point

266 Abhishek Gupta et al.

〈h1, l1, h2, l2, . . . , hn, ln〉. This point is the reflection of the subscription point in
the diagonal hyperplane of the 2n-dimensional cartesian space. This is illustrated
by Figure 8 for a 2d space. The filled dots represent the subscription points and
the circles are their reflections in the diagonal. Therefore, if a peer fails and
there are no replicas for the zone, then the lost subscriptions can be recovered
by querying the reflection of the zone’s coordinates in the diagonal hyperplane.

If the reflection of a subscription point falls into the same zone, for example
subscription S in Figure 8 has its reflection S’ in the same zone, we move along
the increasing values of all odd dimensions until we find a neighbor zone with
higher odd dimensional coordinates, and store the copy at this zone. For example
S’ is actually stored in the zone to its right in the Figure 8. In case any of the
odd dimensional coordinates wrap around before reaching a neighboring zone,
we start again with the reflection point and move towards the decreasing even
dimensional coordinate values until we find a neighboring zone, and store the
copy there. In 2 dimensions, this is equivalent to first moving right and if no
neighbor is found, then moving down from the reflection point. If a zone splits,
it has to accordingly move the reflection subscriptions to the left or top neighbors.

5 Experimental Evaluation

In this section we evaluate Meghdoot using a model of stock quotes application.
We start the discussion by explaining the schema for the stock quotes application
and the datasets used for evaluation. Next, we present the evaluation results for
various metrics.

5.1 Experimental Setup

We developed a simulator of Meghdoot in C++. We used the simulator in con-
junction with a model of the stock quotes application with the following schema:

S =

{Date : STRING, 2/Jan/98, 31/Dec/02},
{Symbol : STRING, aaa, zzzzz},
{Open : FLOAT, 0, 500},
{High : FLOAT, 0, 500},
{Low : FLOAT, 0, 500},
{Close : FLOAT, 0, 500},
{Volume : INTEGER, 0, 310000000}

In the above schema, Symbol is the stock symbol for the corresponding company.
The symbols are character strings of lengths 3 to 5. Open and Close are the
opening and closing prices of the stock on a given day. High and Low are the
highest and lowest price values attained by the stock in the given day. Volume
is the total amount of trade in this stock on that day.

An example subscription in the stock market publish/subscribe system with
the above schema is: {Symbol = aapl ∧ High ≥ 45}, which subscribes for any
events for the stock of Apple when the high value of the stock is greater than or
equal to $45. An example event is {Date = 30/Jan/98, Symbol = aapl, Open =
18.31, High = 18.87, Low = 18.25, Close = 18.31, Volume = 1450600}.

Meghdoot: Content-Based Publish/Subscribe over P2P Networks 267

The input sets for the simulations consist of subscriptions and events drawn
randomly. The subscriptions were generated using five template subscriptions. A
template was picked at random with probability p and parameterized to generate
a subscription. We assign general subscriptions low probabilities of occurrence.
The reason for this choice is that in a real application subscribers are usually
interested in specific events relevant to their narrow interests. Our standard sub-
scription set included 14,029 subscriptions, however, in some of the experiments
we increased the number of subscriptions to study the scalability of the system.
The templates along with their probability of occurrence are described below:

– {(Symbol = P1) ∧ (P2 ≤ Open ≤ P3)}. Notify events for stock P1 when its
open value is between P2 and P3. Probability = 20%.

– {(Symbol = P1) ∧ (Low ≤ P2)}. Notify events where a certain stock P1’s
value is less than or equal to P2. Probability = 35%.

– {(Symbol = P1) ∧ (High ≥ P2)}. Notify events where a certain stock P1’s
value is higher than or equal to P2. Probability = 35%.

– {(Symbol = P1) ∧ (Volume ≥ P2)}. Notify events where a certain stock P1
was traded more than or equal to P2. Probability = 5%.

– {Volume ≥ P1}. Notify if a stock is traded more than P1. Probability = 5%.

We have used two different sets of events. One of the event sets was cre-
ated synthetically by generating uniformly random values in the domains of the
attributes. This event set consists of 115,000 events (again in the scalability ex-
periments we varied the number of events). The other event set is the real stock
event data for 100 stocks. The data was obtained from Yahoo! Finance [29]
by downloading the stock events on a daily basis starting from 2/Jan/ 1998 to
31/Dec/2002. This event set contains 115,353 events. The real event set is highly
skewed because most of the stock prices ranged between the values of $10 to $30.
This is typical of real world datasets.

We evaluated the scalability of the system by running the simulation with
varying number of peers in the system. We performed measurements for 100,
1000 and 10,000 peers in the system. The simulations were initialized with one
peer in the system. A new peer joins the system after each simulation event with
a probability of 10%, until the total number of peers reaches the bound. We
measured the number of peers contacted to deliver each event. To evaluate the
load on the peers, we measured the total number of messages received by each
peer during the run of the simulation. This includes messages due to routing
of events and subscriptions, as well as messages due to propagation of events.
These experiments do not include peer failure.

In the following sections we present the results of the evaluation. First we
present the evaluation results for the scalability and load balancing of the system
for the synthetic and real event sets. Later, we analyze the effectiveness of zone
replication in the system.

268 Abhishek Gupta et al.

 0

 20

 40

 60

 80

 100

0-5 5-10 10-15 15-20 20-30 30-40 40-50 50-6060-100

P
er

ce
nt

ag
e

of
 E

ve
nt

s

Percentage of Peers Visited

100 peers
1000 peers

10,000 peers

(a) Synthetic Event Set

 0

 20

 40

 60

 80

 100

0-5 5-10 10-15 15-20 20-30 30-40 40-50 50-6060-100

P
er

ce
nt

ag
e

of
 E

ve
nt

s

Percentage of Peers Visited

100 peers
1000 peers

10,000 peers

(b) Real Event Set

Fig. 9. Scalability Performance of the System.

5.2 System Scalability

In this section we present the evaluation results for the scalability of the system
when the number of peers in the system is varied. We also analyzed the effect of
varying the number of subscriptions and the number of events on the system.

Figure 9 shows the distribution of the number of peers that were contacted in
order to deliver events to relevant subscriptions. The x-axis in the plot represents
the percentage of peers contacted to deliver an event out of the total number
of peers that were present in the system when the event was generated. The
buckets on the x-axis have been recalibrated because the values 60-100 on x-axis
had no data points, and the range 0-20 has been expanded.

Figure 9(a) shows the scalability of the system for the synthetic event set,
where the events are distributed uniformly in the domain. In the case of 100
peers, more than half of the events were delivered to all the relevant subscriptions
by contacting at most upto 5% of the peers only. For the case of 10,000 peers 95%
of the events were delivered to all affected subscriptions by contacting less than
5% of the peers. In fact, almost all the events were delivered by contacting less
than 10% of the peers. Overall, as the number of peers in the system increases,
the peers needed to be contacted for delivering events scales very well.

Figure 9(b) shows the results for the simulations with the real event set
which is highly skewed. Because of the skewed distribution of the event data,
more zones are created in the vicinity of event points which leads to a small
increase in the number of peers contacted to deliver events. Even with skewed
events, in the cases of 100 and 1000 peers, 85%-90% are delivered by contacting
at most 15% of the peers. For the experiment with 10,000 peers, almost all
events are delivered by contacting less than 10% of the peers and 97% of those
events contact less than 5% of the peers. This strengthens our conclusion that
Meghdoot scales very well as the number of peers in the system increase.

We performed an experiment with 10,000 peers in the system by varying
the number of subscriptions installed in the system from 25,000 to 150,000.
We used the synthetic event set for this experiment which contained 115,000
events. Figure 10 shows the results. In all cases more than 95% of the events are

Meghdoot: Content-Based Publish/Subscribe over P2P Networks 269

 0

 20

 40

 60

 80

 100

0-5 5-10 10-15 15-20 20-30 30-40 40-50 50-6060-100

P
er

ce
nt

ag
e

of
 E

ve
nt

s

Percentage of Peers Visited

25k
50k

100k
150k

Fig. 10. Effect of Varying the Number
of Subscriptions.

 0

 20

 40

 60

 80

 100

0-5 5-10 10-15 15-20 20-30 30-40 40-50 50-6060-100

P
er

ce
nt

ag
e

of
 E

ve
nt

s

Percentage of Peers Visited

200k
300k
400k
500k

Fig. 11. Effect of Varying the Number
of Events.

delivered by contacting less than 5% of the peers in the system. There is only a
marginal degradation in performance even as the number of subscriptions stored
in the system increases from 25,000 to 150,000 over 10,000 peers. This shows
that Meghdoot scales well as the number of installed subscriptions increases.

In another experiment we varied the number of events from 200,000 to
500,000. These simulations had 10,000 peers in the system and 50,000 subscrip-
tions. The events sets contained uniformly distributed events. Figure 11 shows
the results of the experiment. With 200,000 events in the system more than 75%
of the events are delivered by contacting at most 5% of the peers. For all cases,
at most 15% of the peers are contacted to deliver the events. The results are
very similar in all cases demonstrating that the system scales very well with the
number of events.

5.3 Load Distribution

We measure the load on a peer as the ratio of messages the peer receives to
the total number of messages processed in the system since the peer joined the
system. Figure 12 shows the load distribution on the peers in the system. The
peers were sorted in decreasing order of the load, and were grouped by their rank
into groups of size 10% each. The plot shows the average load on each group.

 0

 1

 2

 3

 4

 5

 6

0-10 10-20 20-30 30-40 40-50 50-60 60-70 70-80 80-90 90-100

P
er

ce
nt

ag
e

of
 M

es
sa

ge
s

R
ec

ei
ve

d

Peers Ranked by Message Load

100 peers
1000 peers

10,000 peers

(a) Synthetic Event Set

 0

 1

 2

 3

 4

 5

0-10 10-20 20-30 30-40 40-50 50-60 60-70 70-80 80-90 90-100

P
er

ce
nt

ag
e

of
 M

es
sa

ge
s

R
ec

ei
ve

d

Peers Ranked by Message Load

100 peers
1000 peers

10,000 peers

(b) Real Event Set

Fig. 12. Load Distribution in the System.

270 Abhishek Gupta et al.

Figure 12(a) shows the load distribution in the system for the synthetic event
set where the events are distributed uniformly. Even in the case of 100 peers the
maximum load is only 5.35% of the messages, which is very good. In the case
of 10,000 peers the load is very evenly distributed among all the peers in the
system. As the number of peers increase in the system, the load is evenly shared
by the new peers. This shows that our load balancing schemes are quite effective.

Figure 12(b) shows the load distribution over the peers for the real event set
which is highly skewed. In the case of 100 peers, the maximally loaded peers
handle less than 5% of the total messages. As the number of peers increases,
the load is well distributed among the new joining peers. The trend of load
distribution is very similar to the case of uniformly distributed events. Therefore,
our load balancing strategies are very effective and adapt very well dynamically
to the distribution of subscriptions and events.

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

0-10 10-20 20-30 30-40 40-50 50-60 60-70 70-80 80-9090-100

P
er

ce
nt

ag
e

of
 M

es
sa

ge
s

R
ec

ei
ve

d

Peers Ranked by Message Load

25k
50k

100k
150k

Fig. 13. Effect of Varying the Number
of Subscriptions on Load Distribution.

 0

 0.02

 0.04

 0.06

 0.08

 0.1

0-10 10-20 20-30 30-40 40-50 50-60 60-70 70-80 80-9090-100

P
er

ce
nt

ag
e

of
 M

es
sa

ge
s

R
ec

ei
ve

d

Peers Ranked by Message Load

200k
300k
400k
500k

Fig. 14. Effect of Varying the Number of
Events on Load Distribution.

Figure 13 shows the load distribution in the system when we varied the
number of stored subscriptions. This experiment had 10,000 peers and used
the synthetic event set with 115,000 events. Even the most heavily loaded peers
received only about 0.123% of the total messages generated in the system. When
the number of stored subscriptions increases, the number of messages generated
increases, but as is evident from the graph, this load is evenly distributed among
the available peers. The load distribution in a 10,000 peer system when the
number of events is varied from 200,000 to 500,000 is shown in Figure 14. There
were 50,000 subscriptions in this experiment. The distribution of the load among
the peers in the system remains quite stable with the growing number of events.

5.4 Replication of Zones

The system replicates zones that are overloaded due to event propagation as a
mechanism to handle load. This has proved to be a very effective strategy as
is evident from the previous analysis. In this section, we analyze the effect the
distribution of events has on the degree of replication in the system.

Meghdoot: Content-Based Publish/Subscribe over P2P Networks 271

Table 1. Number of Unique Zones.

#peers Synthetic Events Real Events

100 76 73
1000 652 470
10,000 9622 9323

Table 1 summarizes the number of unique zones that were created during
the simulations with real and synthetic event sets with 14,029 subscriptions.
Each zone in the system has at least one peer associated with it. The remaining
peers are used for replication. Note that the number of peer nodes used for the
replication of existing zones is higher in all cases when the real event set is used.
This is the case because the real event set, as is typical of many real world
datasets, is very skewed and a lot of events are propagated through the same
zones which overloads them. Therefore, new joining peers are directed to those
zones and they are replicated to reduce the propagation load.

 1

 10

 100

 1000

 10000

 0 5 10 15 20

N
um

be
r

of
 Z

on
es

Number of Replicas

100 peers
1000 peers

10000 peers

(a) Synthetic Event Set

 1

 10

 100

 1000

 10000

 0 5 10 15 20 25 30

N
um

be
r

of
 Z

on
es

Number of Replicas

100 peers
1000 peers

10000 peers

(b) Real Event Set

Fig. 15. Replication of zones.

Figure 15 presents the distribution of the degree of replication in the system.
The x-axis is the degree of replication and the y-axis is the number of unique
zones that were replicated with that degree. The y-axis has been plotted on
logscale because of the large variation in the number of non-replicated zones
in the cases of different number of peers in the simulations. In Figure 15(a) for
10,000 peers, there was a zone which was replicated 20 times. From Figure 15(b),
we can see that one of the zones was replicated to a high degree of 27. As
mentioned earlier, in the real event set, most stock events had price values in
the range of $10-$30. Thus a large subset of the events map to the event points
that fall in a small number of zones. These zones therefore have a high degree
of replication to overcome the load generated by these events.

272 Abhishek Gupta et al.

6 Conclusions

We presented Meghdoot, a middleware for a content-based publish/subscribe
system, which leverages peer-to-peer based Distributed Hash Tables for scalable
dissemination of data events to subscribers distributed across the network. P2P
design offers the flexibility of incorporating additional resources, thus providing
performance scalability. Meghdoot imposes no restrictions over subscriptions and
allows them to be specified in terms of range predicates over all attributes in a
schema. Unlike most other P2P approaches, Meghdoot uses the semantics of the
subscriptions and the events to store subscriptions and deliver matching events
to them. Since real world datasets tend to be skewed, existing peer management
techniques fail to distribute load well among the peers. Hence, unlike previous
work, we use the characteristics of the load to determine how to distribute the
load. Subscription load leads to zone splitting, while event propagation load leads
to zone replication. We also exploit the underlying distributed hash structure to
replicate subscriptions for fault tolerance in an innovative and systematically
transparent way. Our extensive simulation experiments have verified the scala-
bility and load balancing aspects of Meghdoot. In particular, the experiments
show that the design scales very well upto thousands of peers in the system and
can handle large numbers of subscriptions and events. They also demonstrate
that both zone replication and splitting techniques are very effective in evenly
distributing the load among the peers in the system.

References

1. H. Balakrishnan, M. F. Kaashoek, D. Karger, R. Morris, and I. Stoica. Looking
up data in P2P systems. Communications of the ACM, 46(2):43–48, Feb. 2003.

2. G. Banavar, T. Chandra, B. Mukherjee, J. Nagarajarao, R. E. Strom, and D. C.
Sturman. An efficient multicast protocol for content-based publish-subscribe sys-
tems. In Proceedings of the 19th ICDCS, pages 262–272, 1999.

3. K. P. Birman. The process group approach to reliable distributed computing.
Communications of the ACM, 36(12):36–53, Dec. 1993.

4. A. Carzaniga, D. S. Rosenblum, and A. L. Wolf. Design and evaluation of a
wide-area event notification service. ACM Transactions on Computer Systems,
19(3):332–383, 2001.

5. M. Castro, P. Druschel, A. Kermarrec, and A. Rowstron. SCRIBE: A large-scale
and decentralized application-level multicast infrastructure. IEEE Journal on Se-
lected Areas in Communications, 20(8):100–110, 2002.

6. J. Chen, D. J. DeWitt, F. Tian, and Y. Wang. NiagaraCQ: A scalable continuous
query system for internet databases. In Proceedings of the 2000 ACM SIGMOD,
pages 379–390, 2000.

7. F. Fabret, H. A. Jacobsen, F. Llirbat, J. Pereira, K. A. Ross, and D. Shasha.
Filtering algorithms and implementation for very fast publish/subscribe systems.
SIGMOD Record, 30(2):115–126, 2001.

8. L. Galanis, Y. Wang, S. R. Jeffery, and D. J. DeWitt. Locating data sources in
large distributed systems. In Proceedings of the 29th VLDB, pages 874–885, 2003.

9. Gnutella. http://gnutella.wego.com/.

Meghdoot: Content-Based Publish/Subscribe over P2P Networks 273

10. A. Gupta, D. Agrawal, and A. El Abbadi. Approximate range selection queries in
peer-to-peer systems. In Proceedings of the 1st CIDR, pages 141–151, 2003.

11. E. N. Hanson, C. Carnes, L. Huang, M. Konyala, L. Noronha, S. Parthasarathy,
J. B. Park, and A. Vernon. Scalable trigger processing. In Proceedings of the 15th
ICDE, pages 266–275, 1999.

12. M. Harren, J. M. Hellerstein, R. Huebsch, B. T. Loo, S. Shenker, and I. Stoica.
Complex queries in DHT-based peer-to-peer networks. In Proceedings of the first
International Workshop on Peer-to-Peer Systems, pages 242–250, 2002.

13. IBM News. http://www.ibm.com/ibm/history/history/year 2000.html.
14. KaZaA. http://www.kazaa.com/.
15. Napster. http://www.napster.com/.
16. B. Oki, M. Pfluegl, A. Siegel, and D. Skeen. The information bus: an architecture

for extensible distributed systems. In Proceedings of the fourteenth ACM SOSP,
pages 58–68, 1993.

17. P. R. Pietzuch and J. Bacon. Peer-to-peer overlay broker networks in an event-
based middleware. In Proceedings of the 2nd DEBS, pages 1–8, 2003.

18. S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker. A scalable content-
addressable network. In Proceedings of the 2001 ACM SIGCOMM, pages 161–172.

19. S. Ratnasamy, M. Handley, R. Karp, and S. Shenker. Application-level multi-
cast using content-addressable networks. In Proceedings of the 3rd International
Workshop of NGC, volume 2233, pages 14–29. LNCS, Springer, 2001.

20. A. Rowstron and P. Druschel. Pastry: Scalable, distributed object location and
routing for large-scale peer-to-peer systems. In IFIP/ACM Middleware 2001.

21. O. D. Sahin, A. Gupta, D. Agrawal, and A. El Abbadi. A peer-to-peer framework
for caching range queries. In Proceedings of the 20th ICDE, pages 165–176, 2004.

22. B. Segall and D. Arnold. Elvin has left the building: A publish/subscribe notifica-
tion service with quenching. In Proceedings of AUUG, 1997.

23. I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrishnan. Chord: A
scalable peer-to-peer lookup service for internet applications. In Proceedings of the
2001 ACM SIGCOMM, pages 149–160.

24. D. Tam, R. Azimi, and H.-A. Jacobsen. Building content-based publish/subscribe
systems with distributed hash tables. In Proceedings of International Workshop
on Databases, Information Systems and Peer-to-Peer Computing, 2003.

25. W. W. Terpstra, S. Behnel, L. Fiege, A. Zeidler, and A. P. Buchmann. A peer-
to-peer approach to content-based publish/subscribe. In Proceeding of the Second
DEBS, 2003.

26. Tibco. http://www.tibco.com/.
27. P. Triantafillou and T. Pitoura. Towards a unifying framework for complex query

processing over structured peer-to-peer data networks. In Fist International work-
shop DBISP2P 2003, pages 169–183.

28. Vitria. http://www.vitria.com/.
29. Yahoo! Finance. http://finance.yahoo.com/.
30. Y. B. Zhao, J. Kubiatowicz, and A. Joseph. Tapestry: An infrastructure for fault-

tolerant wide-area location and routing. Technical Report UCB/CSD-01-1141,
University of California at Berkeley, 2001.

31. S. Q. Zhuang, B. Y. Zhao, A. D. Joseph, R. H. Katz, and J. D. Kubiatowicz.
Bayeux: an architecture for scalable and fault-tolerant wide-area data dissemina-
tion. In Proceedings of the 11th ACM NOSSDAV, pages 11–20, 2001.

	1 Introduction
	2 Related Work
	3 Meghdoot Design
	3.1 Publish/Subscribe Model in Meghdoot
	3.2 Logical Space Construction
	3.3 Subscription Installation
	3.4 Event Delivery
	3.5 Example Applications

	4 Peer Management in Meghdoot
	4.1 Load Characteristics
	4.2 Peer Join
	4.3 Peer Departure or Failure

	5 Experimental Evaluation
	5.1 Experimental Setup
	5.2 System Scalability
	5.3 Load Distribution
	5.4 Replication of Zones

	6 Conclusions
	References

