ISRN INRIA/RR--5772--FR+ENG

N 0249-6399

ZIINRIA

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

SuB-2-SuB: Self-Organizing Content-Based Publish
and Subscribe for Dynamic and Large Scale
Collaborative Networks

Spyros Voulgaris T — Etienne Riviere £ — Anne-Marie Kermarrec ¥ — Maarten van Steen 1
T Vrije Universiteit, Amsterdam, The Netherlands {spyros,steen}@cs.vu.nl

1 IRISA/INRIA, Rennes, France {eriviere,akermarr}@irisa.fr

N° 5772
Décembre 2005

Théme NUM

apport

derecherche

% I N RIA

RENNEsS

SUB-2-SUB: Self-Organizing Content-Based Publish and
Subscribe for Dynamic and Large Scale Collaborative
Networks

Spyros Voulgarisﬁ 1, Etienne Riviére* I, Anne-Marie Kermarrec i,
Maarten van Steen f
T Vrije Universiteit, Amsterdam, The Netherlands {spyros,steen}@cs.vu.nl
T IRISA /INRIA, Rennes, France {eriviere,akermarr}@irisa.fr

Théme NUM — Systémes numériques
Projet Paris

Rapport de recherche n° 5772 — Décembre 2005 — [0 pages

Abstract: In this paper, we address the problem of constructing scalable content-based
publish/subscribe systems. Publish/subscribe systems are asynchronous event-notification
systems in which a published event is forwarded to exactly those nodes that have previously
subscribed for that event. Subscriptions can range from a simple specification of merely the
type of an event to a specification of the value ranges that an event’s attributes can have.
Notably the latter poses potential scalability problems.

Structured peer-to-peer systems can provide scalable solutions to publish/subscribe sys-
tems with simple subscription patterns. For complex subscription types their applicability
is less obvious. In this paper, we present SUB-2-SUB, a collaborative self-organizing pub-
lish/subscribe system deploying an unstructured overlay network. SUB-2-SUB relies on an
epidemic-based algorithm in which peers continuously exchange subscription information to
get clustered to similar peers. In contrast to many existing approaches, SUB-2-SUB supports
both value-based and interval-based subscriptions.

Simulations of SUB-2-SUB on synthetic and reusable workloads convey its good proper-
ties in terms of routing efficiency, fairness, accuracy and efficiency.

Key-words: Content-based publish/subscribe, Peer-to-Peer, Distributed Systems, Mid-
dleware

* Spyros Voulgaris and Etienne Riviére research activities are partially funded by a Van Gogh grant for
european collaborations from Egide.

Unité de recherche INRIA Rennes

SUB-2-SUB : publication/abonnement fondée sur le
contenu mis en ceuvre par un réseau pair-a-pair
auto-organisant pour les systémes large échelle et
dynamiques

Résumé : Ce rapport s’intéresse a la construction de systémes de publication/abonnement
fondés sur le contenu des événements, qui répondent au probléme de passage & 1’échelle.
Les systémes de publication/abonnement sont des systémes de communication asynchrones
fondés sur des événements. Les événements publiés sont transmis aux nceuds qui ont pré-
cedemment souscrit un abonnement pour ceux-ci, et uniquement & ces nceuds. Le type
d’abonnement peut s’étendre d’une simple spécification comme un type parmis un en-
semble de types prédéfinis & une spécification plus riche portant sur les plages de valeurs
admises pour un ensemble d’attributs décrivant ’événement. Particuliérement, ce dernier
type d’abonnement pose des problémes de passage & 1’échelle.

Les réseaux pair-a-pair structurés permettent des approches passant & 1’échelle pour les
systémes de publication/abonnement en présence d’ensembles d’abonnements simples. Pour
des ensembles d’abonnements plus complexes, leur application est moins directe et évidente.
Dans ce rapport, nous présentons SUB-2-SUB, un systéme de publication/abonnement pair-
a-pair collaboratif et auto-organisant, déployé sur un réseau logique non structuré. SUB-
2-SUB est fondé sur un protocole épidémique au sein duquel les pairs échangent continuel-
lement de 'information de maniére & &tre agrégés aux pairs présentant des intéréts (des
abonnements) similaires. Contrairement 4 une majorité d’approches existantes, SUB-2-SUB
supporte & la fois les abonnements fondés sur des valeurs exactes et ceux fondés sur des
plages de valeurs.

Des résultats de simulation de SUB-2-SUB obtenus grace & l'utilisation d’ensembles
d’abonnements synthétiques et réutilisables montrent ses bonnes propriétés en terme d’efficacité
du routage, d’équité de charge entre les participants, de taux de succés et de résilience au
dynamisme.

Mots-clés : Publication/Abonnement, Pair-a-Pair, Systémes distribués, Intergiciel

SUB-2-SuB: Content-Based Publish € Subscribe for Large Scale Networks 3

1 Introduction

Publish/subscribe is an appealing paradigm for distributed and selective content delivery
systems. In Publish/subscribe, subscribers express their interest in data by registering sub-
scriptions with the system, in order to be notified of any forthcoming events (issued by
publishers) matching their subscription. In topic-based publish/subscribe systems, events
and subscriptions are associated with a topic name. In content-based publish/subscribe
systems, events and subscriptions are represented by arbitrary predicates on attributes. A
subscription either specifies an ezact value (a = 2), or covers a value range (a € [2,7]).

Peer-to-peer (P2P) systems have been identified as the key to scalability and their self-
organizing properties make them natural candidates for large-scale publish/subscribe sys-
tems design. Several efficient implementations of P2P topic-based publish /subscribe systems
have been proposed [B, 2]. Unfortunately, it is not obvious how to devise a scalable P2P
solution for content-based publish/subscribe systems.

Structured P2P overlays [8, [7, 9] have often been favored over unstructured ones to im-
plement content-based publish/subscribe systems. The idea is to map the attribute space of
the latter to the identifier space of the former. At one extreme, each attribute is associated
with one specific peer. Although this provides efficient routing to interested subscribers,
peers hosting popular attributes are quickly overloaded. At the other end of the spectrum,
in an attempt to discretize the ranges of attributes, a peer is made responsible for a specific
(attribute, value) pair. In this case, attaining a scalable implementation for range subscrip-
tions becomes problematic.

In this paper, we step away from structured overlays and propose a fully decentralized
and self-organizing approach based on unstructured overlays to deal efficiently with both
exact and range subscriptions. Key to our approach, which is called SUB-2-SUB, is that
subscribers to the same events are automatically clustered. SUB-2-SUB leverages the over-
lapping intervals of range subscriptions and creates an unstructured overlay reflecting the
structure of the attribute space and that of the set of subscriptions. Once subscriptions
are clustered, events are directly posted to the proper cluster where they are efficiently
disseminated.

A key issue is that SUB-2-SUB is highly reactive to changes in the set of subscriptions.
To this end, it deploys an epidemic algorithm to continuously cluster subscribers. Epidemic
protocols have proved to converge quickly and to produce failure-resistant overlays. Each
peer knows about a few other peers, comprising its view. Periodically, a peer exchanges its
view with a selected peer, and subsequently each of them updates its view.

In SUB-2-SUB updating the view is based on a proximity metric in the attribute space.
In the resulting overlay, subscribers are therefore clustered according to the similarity in
their subscriptions. A similar process is followed to navigate publishers to clusters of match-
ing subscriptions. Publishers progress greedily across the network according to the same
algorithm and proximity metric, eventually reaching the cluster that contains exactly the
subscribers which the event should be delivered to. Moreover, within such a cluster, sub-
scribers are loosely organized into a distributed data structure that enables efficient event
dissemination.

RR n° 5772

4 Voulgaris, Riviére, Kermarrec € van Steen

The rest of the paper is organized as follows. In Section [A we present the system model,
followed by the principles underlying SUB-2-SUB in Section Bl The core epidemic algorithm
to build a publish/subscribe overlay is presented in Bl Section [l presents the simulation
results of the system against synthetic and reusable workloads. We then present some
related work and conclude.

2 System model

A multitude of publish/subscribe systems have been proposed in the literature. Not all
of them, however, refer to the same problem. In this paper, we consider content-based
publish/subscribe systems where subscribers express their interests through predicates over
attributes. In our model, events and subscriptions are associated with one or more attributes
and their corresponding values. Subscribers define their interests by means of desired at-
tribute values. A subscription associates with each attribute either a discrete value or an
interval. We call the former, discrete and the latter range subscriptions in the rest of this
paper. We consider a conjunctive (AND-based) subscription model in which all of the at-
tributes’ conditions should be met for an event to match a subscription.

The attribute space is composed of N floating-point attributes and supports subscriptions
on both discrete attribute values and ranges. More formally, we assume a fixed number,
N, of attributes, Ay,..., Ax, with values in IR (the set of real numbers). Attributes can
alternatively be assigned values of any type that can be directly mapped to IR, such as
integers, enumerations, boolean values, or character arrays.

Subscriptions are conjunctions of predicates on one or more attributes. A predicate
can denote either an exact value (e.g., A; = v), or a continuous range of values (e.g.,
A; € [VUmin, Umaz])- A subscription can have at most one predicate per attribute. Multiple
exact values or multiple non-continuous subranges on a single attribute can be modeled as
multiple separate subscriptions. Attributes not referred to in a subscription (wildcards) are
assumed to cover the whole attribute space, that is, their value is indifferent to the subscriber.
An example subscription for a 5-attribute system is (A2 =30 A Aj € [2.2,2.7]).

Events are N-sized vectors specifying exact values for all attributes, such as:

({A1, Aa, A3, A4, As} = {5, 30, —2.5, 20, 1.87}).

In the remainder of this paper, we will consider range subscriptions, i.e., subscriptions
composed of a set of predicates, each specifying a range of values. Exact-value predicates
are considered as a special, and simpler, case of a range subscription.

3 SuUB-2-SUB in a nutshell

SUB-2-SUB is an autonomous, self-organizing P2P event-notification system that supports
multi-attribute subscriptions. Autonomous implies that the dissemination of events to all
interested nodes is accomplished by the cooperation of interested nodes themselves, elim-
inating any dependency on relay servers or dedicated elements. Self-organizing refers to

INRIA

SUB-2-SuB: Content-Based Publish € Subscribe for Large Scale Networks 5

S/:_

Q — O TR

. Sk S
| i
. ! ¥ ! 4

| y anuanl

! 3

|
9 —

|

|

|

| -
Event 'e (a=10) Value of attribute a

Figure 1: A set of subscriptions and an event.

the fact that nodes organize themselves in a structure that enables their cooperation for
event dissemination in a completely decentralized manner. The self-organizing property of
SUB-2-SUB relies on the use of an epidemic algorithm to cluster similar peers. Its efficiency
relies on the fact that overlapping subscriptions are leveraged so that (i) only interested
subscribers are reached by an event and (7) subscribers do not miss any event matching
their subscription.

Epidemic-based clustering SUB-2-SUB forms an unstructured overlay network in which
each peer is associated with one subscription. SUB-2-SUB implements an epidemic algorithm
to automatically cluster similar subscriptions. Periodically, peers exchange information to
discover similar peers to form clusters with. Note that the resulting clusters do not have
explicit boundaries. Figure[ldepicts an example of a set of subscriptions for a single attribute
scheme. Each line represents a range subscription. The epidemic algorithm ensures that
peers are automatically clustered so that when an event specifying a value for attribute a
(e.g., e : {(a = 10) in Figure [is published, all interested subscribers (S,, S; and S; in
Figure) get it.

Organizing range subscriptions A key observation underlying SUB-2-SUB’s design is
that every subscription by peer 7 essentially specifies an N-dimensional subspace S; C R,
which we refer to as a hyperspace. As a consequence, we are interested only in those events
that fall into & = |J S;. The principle behind SUB-2-SUB is that we automatically partition
S into M disjoint hyperspaces S1, ..., Sy such that

V1i<m<M : [SpNS;i#0]=[SnC S

Furthermore, we demand that M is minimal: there is no partitioning with fewer parts that
can satisfy this constraint.

RR n° 5772

6 Voulgaris, Riviére, Kermarrec € van Steen

To this end, we let peers periodically exchange their subscriptions. If two peers ¢ and
J note that S;; = S; N S; # 0, they will record this fact and maintain references to each
other (how this is done is described below). For example in Figure[ll S, and S; satisfy the
above condition for a given range and get connected. When discovering a third peer k with
Sijk = SN S; NSy # 0, peers ¢, j and k will further organize into a structure associated
with S;j, such that an event e € S;j, will be efficiently disseminated to the three peers.
Both ¢ and j will still maintain references to each other, but now for the subspace S;; — S;j.
Figure [illustrates this process: when Sy joins the network it gets connected to S; for the
shaded range while S; and S; remain connected for the hatched range.

A publisher of an event e joins the overlay identically to subscribers, and will eventually
find the set S,, which e belongs to. At that point, e is disseminated to the members
associated with S,,,. Note that, provided S is indeed partitioned along the lines we just
described, e will reach only the nodes that are interested in it, and no other ones.

This way of matching a publisher to the relevant subscribers is primarily elegant, but
not necessarily efficient. To achieve higher efficiency, we further organize nodes associated
with S, in a ring, as we will see in the following section.

4 Epidemic-based publish/subscribe

Let NV, denote the set of peers associated with S,,. The major issue that SUB-2-SUB needs
to solve is to ensure that each peer i is contained in exactly those sets N, for which S,,
intersects with S;: [i € Np»] < [Sm N S; # 0]. To this end, we let each peer i maintain
a reference to another node j if S; and S; intersect, and such that this intersection is not
yet fully covered by the subscription of another node to which i has a reference. Initially,
i’s goal is to make sure that its entire subscription S; is covered (unless there are parts for
which it is truly the only subscriber). The principal idea is that when an event e € S; N S,
is published, either i passes the event on to j or vice versa. As a consequence, we also need
to ensure that all peers interested in e are one way or another directly or indirectly linked
to each other. To this end, those peers are organized into a ring-like structure, described
below.

4.1 Building the overlay

We let nodes self-organize into bidirectional rings that represent the sets N, mentioned
above. Each node is equipped with a random sequence ID uniformly drawn from a large
identifier space. If node ¢ discovers that node j covers part of its subscription, it will keep
a reference to j. However, as soon as another node k is discovered that covers the same or
larger area, but with a sequence ID that lies between that of ¢ and j (using cyclic arithmetic),
i will trade the reference to j for that of k. The use of (random) identifiers allows for a
deterministic organization of peers so that the event-spreading algorithm is sure to reach all
interested subscribers.

INRIA

SUB-2-SuB: Content-Based Publish € Subscribe for Large Scale Networks 7

— — I T — .
a ~ —_ / _ - N - —_
- " —— 1N N
Q - —_—
5 — —_ -
- T
Q - - — i
w2 _ - L 2 _ —_
— /i - e -
Attribute value Attribute value Attribute value
(a) Random (b) Overlapping interest (c) Ring

Figure 2: Each subscriber maintains three sets of links. From left to right : random links,
overlapping interests links, and ring links. Shaded areas denote where links of the respective
type are appropriate for this subscriber.

Of course, maintaining a ring allows only for a linear dissemination speed. To improve on
this, each node also maintains links to randomly chosen peers. When an event e € S, needs
to be disseminated, not only is it sent along the ring for N,,, it is also sent to randomly
chosen peers that have interest in e as well. Effectively, this short-cuts the ring. By its
recursive nature, this forwarding requires only a logarithmic number of steps.

Finally, to actually discover nodes, we deploy an epidemic protocol by which a node
maintains a list of randomly selected neighbors (its view), and regularly exchanges views
with other peers.

These observations lead to three different types of links. Random links, i.e., links to
randomly selected peers in the overlay, are needed to discover nodes. Querlapping-interest
links reflect the similarities between subscriptions and are used to send published events to
random other interested peers (and to speed up event dissemination). Finally, ring links are
used to build a ring of nodes for each set N,,. Figure Bl depicts these three types of links,
for a set of subscriptions over one attribute.

For each type of link, a peer maintains a separate view with its own associated protocol.

Random links Several approaches may be used to randomly sample peers in an unstruc-
tured peer-to-peer overlay [6]. In SUB-2-SUB we use CycCLON [II], an epidemic protocol
that has shown to produce overlays that strongly resemble random graphs [6].

Overlapping-interest links Such links are maintained using a proximity-based epidemic
protocol, here we use VICINITY [I2]. The basic idea of proximity-based epidemic protocols
is that peers, upon epidemic view exchanges, keep links to the closest nodes according to a
given proximity metric (here proximity refers to a distance in the attribute space). In SUB-
2-SUB proximity is defined as 0 if two nodes have overlapping interests and otherwise as the
Euclidean distance in the respective hyperspaces that represent two nodes’ subscriptions.

RR n° 5772

8 Voulgaris, Riviére, Kermarrec € van Steen

function select peers for node j
var space: HyperSpace
var nodes, selected: set of Node init ()
nodes «— ll.wiew + [2.view + [3.view
for direction in {ascending,descending}
space «— j.space
foreach N € nodes from j.id by direction
if N.space intersects space then
space < space — N.space
selected — selected + {N'}
end if
end foreach
end for

Figure 3: Pseudocode for selecting peers.

Formally, if S; = [Ii,r4] x - x [I%, %], then

N
d(i,5) = Z (min{ri, ch} — maz{l}, li})2
k=1

for peers ¢ and j with non-overlapping subscriptions S; and S;. In this way, each node builds
an ordered list of nodes with similar interests.

Ring links To maintain such links, periodically each peer i initiates a view exchange with
subscriber j, selected among #’s ring neighbors. In this case, i merges all its views (i.e.,
including the ones for the random and overlapping-interest links) into a single container.
It subsequently goes through the subscribers in this container in increasing sequence ID
order (and cycles when reaching the maximal sequence ID) and selects a subscriber only if it
intersects j’s interest space at some region not yet covered by already selected subscribers.
This process is then repeated, but now iterating in decreasing sequence ID order. Note that
in this way, we build a bidirectional ring. The selected subscribers are then sent to j, which
subsequently performs the same logic. The pseudocode for selecting ring links is shown in
Figure B

Note that ring links are indifferent to publishers. Indeed, publishers build views for only
random and overlapping-interest links, and gossip greedily (as fast as they can) to reach
any matching subscriber, independently of its sequence ID. As we will see in Section Bl
this permits them to find a matching subscriber in a very small number of steps. If more
steps than a small threshold elapse, they can safely assume that no subscriber in the whole
network is interested in their event(s).

INRIA

SUB-2-SuB: Content-Based Publish € Subscribe for Large Scale Networks 9

on reception of event e from node Ng,.. do
if e not already seen then
deliver(e) // deliver to application
if succ(e) # N, then send e to succ(e)
if pred(e) # Ny, then send e to pred(e)
shortcuts — owverlapping-interest links matching e
shortcuts «— shortcuts— Ng..—succ(e)—pred(e)
send e to r random subscribers from shortcuts
endif
end

Figure 4: Dissemination algorithm.

4.2 Spreading events

Given the dissemination overlay described above, publishing events is a simple task. All
a publisher has to do is locate any one matching subscriber for its potential event(s), and
deliver the event(s) to it. From that point on, dissemination is taken care of by the matching
subscribers themselves. Figure | depicts a set of subcriptions and the associated ring, for a
sample event value (only rings links are shown).

In particular, we assume that each node is running a simple dissemination algorithm
as a daemon thread listening to incoming events and forwarding them accordingly. The
dissemination algorithm is depicted by Figure Bl The daemon thread is activated when a
node receives an event. It first looks up the node’s recent event history. Previously seen
events are ignored. New events are delivered to the application, and subsequently forwarded
in two respects. First, an event is forwarded to the node’s two adjacent neighbors (if any)
along the event’s ring. Second, it is forwarded to a small number (typically only one or
two) of additional matching subscribers, by following random shortcuts in the event’s ring.
Obviously, a node does not send an event back along the same link it received it through.

Four facets of the dissemination algorithm are worth noting, namely its behavior with
respect to hit ratio, propagation speed, spam ratio, and load balancing.

Hit ratio and propagation delay are dealt with by ring links and random shortcuts,
respectively. Forwarding along ring links guarantees that events are sequentially propagated
to all corresponding matching subscribers, achieving a hit ratio of 100%. Random shortcuts
to matching subscribers are followed only to boost propagation speed. Indeed, following the
ring links alone requires linear time to cover all interested nodes. By each node forwarding
incoming events to as few as one random matching node, dissemination completes in close
to logarithmic time.

Spam is entirely out of the question in this dissemination algorithm. Clearly, no node
forwards an event to another node, unless the latter is interested in that event.

Finally, with respect to load balancing, two points are worth emphasizing. First, no
dissemination load is imposed on irrelevant subscribers. Second, load is evenly balanced

RR n° 5772

10 Voulgaris, Riviére, Kermarrec € van Steen

f‘

N

Sequence ID

v

Sample value

Attribute value

Figure 5: An event dissemination ring highlighted.

across matching subscribers, as each of them receives an event once or a few more times,
and upon first reception forwards it to the same small number of nodes: up to two adjacent
neighbors, and a few random ones.

5 Evaluation

In this section, we evaluate SUB-2-SUB by simulation under synthetic subscription work-
loads. We focus on four key issues: overlay construction, hit ratio, propagation speed,
and complexity for publisher and subscriber joins. Spam ratio is not considered, as it is
fundamentally eliminated by our design.

We built and evaluated SUB-2-SUB on PeerSim[I], an open source Java simulation frame-
work for P2P protocols.

Experimental setup In lack of real-world subscription datasets, we generated synthetic
ones as follows. N-attribute subscriptions were represented as N ranges in [0...1], one
for each attribute. A range’s center was chosen following the respective attribute’s interest
distribution. A range’s width was determined by the attribute’s width distribution.

In each experiment we applied the same interest distribution to all N attributes: either
uniform or power law. The former represents a natural unbiased workload. The latter,
known as Zipf, is admitted to be a good approximation of interest popularity and results in
subscription sets closer to expected social behavior, exhibiting popular and rare values. It
also results in more interesting experiments, as there is higher overlap around the “center”
of the interest space, and lower towards its edges, resulting in rings of various lengths. The

INRIA

SUB-2-SuB: Content-Based Publish € Subscribe for Large Scale Networks 11

100 100

80 80 HAHHHAHBHEEHEHEHHEREHEHHRHHH

60 60 ARy

40 %0 1 CHEHHEEEEEEEEEE R

20— H-HAHEHHHHEHEHHHRRHERHERRHHRHR B HAR

20 4 im! &0 ul wl &l st &l & &l &t &l ol &l 5t &l & &l &1 &l &l &l &

0 b PG ELRLELELER R EE LER omﬂ“”l‘l “““““““““““““
1 11 21 31 1 11 21 31
cycles (3 attributes, uniform distribution) cycles (3 attributes, power law distribution)

100 100

80 80

60 60

40 40— HHHEHERRRHERHRRER R

20 20

0 \\’L\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ 0 "H-H\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
1 1 21 31 1 1 21 3
cycles (5 attributes, uniform distribution) cycles (5 attributes, power law distribution)

Figure 6: Construction of the rings in time. Light bars show the percentage of ring links already
in place. Dark bars show the percentage of rings that are complete. 10K nodes.

width distribution was fixed to power law centered at 0, with o = 4, to account for both
wide range and (nearly) exact subscriptions.

In evaluating SUB-2-SUB we considered schemes of up to five attributes. The number of
subscribers was fixed to 10,000 for all experiments.

We tested each experiment’s effectiveness by observing the dissemination of 10,000 test
events. Test events were picked at random, ensuring each one had at least two matching
subscribers, to make dissemination meaningful.

Jump-starting SUB-2-SUB We first test our algorithm’s ability to jump-start a SUB-2-
SUB overlay from scratch. Nodes started gossiping at the same time, having been initiated
with a single random link in their CYCLON views, ensuring the overlay formed a connected
graph. We recorded the topology evolution by keeping statistics over the ring links associated
with each of the 10,000 test events.

Figure Bl shows the evolution of ring construction per cycle, for four experiments. We
can see that after 40 cycles, all rings are fully set up.

Having seen that rings are constructed in a small number of cycles in all cases, the
remaining evaluation concentrates on a single experiment, namely the one with three at-
tributes and power law interest distribution. This experiment is the most interesting for
testing event dissemination and propagation speed, as the rings it involves range from very

RR n° 5772

12 Voulgaris, Riviére, Kermarrec € van Steen

100

60 -

40 -

20 HHHHAEH

1 11 21 31
cycles

Figure 7: Event dissemination. Light bars show the hit ratio for non-complete dissemina-
tions. Dark bars show the percentage of disseminations that were complete (events delivered
to all their matching subscribers). 10K nodes; 3 attributes; power law interest distribution.

small (2 subscribers) to quite large (246 subscribers). In five-attribute schemes, rings are
trivially short (2-3 subscribers) due to the very large subscription space. (Fig. B(a)).

Event dissemination We apply the SUB-2-SUB dissemination algorithm by forwarding
an event to one random matching subscriber in addition to its two adjacent ones.

Figure [presents the performance of SUB-2-SUB with respect to event dissemination.
It is worth noting that, by comparison to Fig. B(upper-right), complete dissemination is
achieved even before all rings are in place. This comes as a result of (also) forwarding to
random overlapping links.

Propagation speed We now examine the speed, in terms of the number of hops at
which events spread. We are specifically interested in the number of hops for complete
dissemination, that is, the number of hops elapsed from the moment a publisher delivers an
event to some matching subscriber, until the event reaches the last one of them.

Figure B(b) shows the number of dissemination hops as a function of the number of
subscribers matching the respective events. Clearly, the number of hops increases with
the number of matching subscribers. However, as a result of short-cutting the rings in
disseminating events, this relation is of logarithmic fashion.

INRIA

SUB-2-SuB: Content-Based Publish € Subscribe for Large Scale Networks 13

10000
i S 16
i 5 att | E
> 5 attr, power law £
1000 > P £
o 5 ‘ 3 attr, uniform g
E 100 ’: 3 Q gt
b % 3 attr, power law @
Ry) [=3 6
. Il
8 o 4
H . X '9 2 “;‘V‘
. le 5‘at}r, urnform ‘ § o l 3 attr, power law_
0 50 100 150 200 250 < 0 50 100 150 200 250
(a) ring length (b) ring length

Figure 8: (a) Distribution of ring lengths. (b) Hops to complete event dissemination, as
a function of the number of matching subscribers (ring length). 10K nodes; 3 attributes;
power law interest distribution.

Single joins Jump-starting SUB-2-SUB consists a worst case scenario, as the whole overlay
starts from a completely non-clustered state. We now take a look at the other end of the
spectrum, measuring the speed of single node joins to an already converged overlay.

Starting from the converged state of our experiments, each subscriber (and links to it)
was individually removed to let it join again. The number of cycles it took to re-establish
all ring links of the rejoined subscriber to its neighbors and vice versa, gives the distribution
shown in Figure @

For publishers, on the other hand, joining is a simpler task, as they are only interested
in reaching any matching subscriber, independently of its sequence IDs. Figure @ also shows
the distribution of cycles it takes publishers to join, starting from a random node. It is worth
noting that all 10,000 publishers we tested joined in five or less cycles. This is important,
as a publisher can safely assume there is no subscriber matching its event(s) after a low
threshold of cycles (i.e., in the order of 10 or 20).

6 Related work and Conclusions

Scalability of peer-to-peer systems makes them natural candidates to implement large-scale
publish/subscribe systems. In this paper, we presented the design and evaluation of SUB-2-
SUB, a scalable, self-organizing peer-to-peer approach for content-based publish /subscribe in
collaborative environments. SUB-2-SUB deploys an unstructured overlay where subscribers
are clustered in efficient dissemination structures, based on shared interests. To the best
of our knowledge, SUB-2-SUB is the first attempt to build publish/subscribe overlays using
epidemic-based algorithms, thus exploiting their ability to handle dynamic environments.

RR n° 5772

14 Voulgaris, Riviére, Kermarrec € van Steen

1000 F——mr— w w w 10000
7 100 ¢ 0 1000 ¢
0] @
° =
o o
c <
+* 10 + ** 100 ¢
1 : : ‘ NI 10 e
0 10 20 30 40 50 60 0123 45¢6 738

cycles for SUBSCRIBER joins # cycles for PUBLISHER joins

Figure 9: Cycles it takes subscribers and publishers to join.

Unlike SUB-2-SUB, previous peer-to-peer approaches for content-based publish /subscribe
have mainly focused on structured overlays. Among them, Meghdoot [5] uses an extension
of the CAN DHT [7]. It maps subscriptions to a 2 x k-Euclidean space, where k is the
number of attributes. Each attribute is represented by two dimensions, corresponding to its
minimum and maximum allowed values respectively, allowing for range subscriptions. Unlike
SUB-2-SUB’s autonomous and self-contained operation, Meghdoot employs a separate set
of dedicated nodes for storing subscriptions and disseminating events. Meghdoot deals
with sparse interest distribution with CAN zone replication, which may be computationally
expensive to maintain in highly populated parts of the space. Terpstra et al. [10] proposed
to leverage the properties of the Chord DHT [9] to implement an event filtering system.
Distributed nodes are dynamic brokers organized in a graph. They use subscription merging
and covering to provide scalability, acting similarly to traditional content-based filtering
systems based on a dedicated set of brokers. However, such a set of brokers may be hard to
maintain efficiently in highly dynamic environments. Finally, Costa et al. proposed to use
epidemic-based algorithms to enhance reliability of existing publish/subscribe systems [4].

We conclude that SUB-2-SUB is an appealing alternative to existing solutions for content-
based publish/subscribe. It offers a scalable, autonomous, and self-organizing system, com-
bining the resilience of epidemic-based overlays with the expressiveness of the content-based
model.

References

[1] peersim. http://peersim.sourceforge.net.

[2] Suman Banerjee, Bobby Bhattacharjee, and Christopher Kommareddy. Scalable appli-
cation layer multicast. In SIGCOMM 02, pages 205-217, Pittsburgh, PA, 2002.

INRIA

SUB-2-SuB: Content-Based Publish € Subscribe for Large Scale Networks 15

[3] Miguel Castro, Peter Druschel, Anne-Marie Kermarrec, and Antony Rowstron.
SCRIBE: A Large-scale and Decentralized Publish-Subscribe Infrastructure. IEEFE
JSAC, 20(8), October 2002.

[4] Paolo Costa, Matteo Migliavacca, Gian Pietro Picco, and Gianpaolo Cugola. Introduc-
ing Reliability in Content-Based Publish-Subscribe through Epidemic Algorithms. In
DEBS, pages 1-8, San Diego, CA, 2003.

[5] Abhishek Gupta, Ozgur D. Sahin, Divyakant Agrawal, and Amr El Abbadi. Meghdoot:
Content-Based Publish/Subscribe over P2P Networks. In Middleware, pages 254-273,
Toronto, Canada, 2004.

[6] Mark Jelasity, Rachid Guerraoui, Anne-Marie Kermarrec, and Maarten van Steen. The
Peer Sampling Service: Experimental Evaluation of Unstructured Gossip-Based Imple-
mentations. In Middleware, pages 79-98, Toronto, Canada, 2004.

[7] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker. A Scalable Content-
Addressable Network. In SIGCOMM, pages 161-172, San Diego, CA, August 2001.

[8] A. Rowstron and P. Druschel. Pastry: Scalable, Distributed Object Location and
Routing for Large-Scale Peer-to-Peer Systems. In Middleware, Heidelberg, Germany,
2001.

[9] Ion Stoica, Robert Morris, David Liben-Nowell, David R. Karger, M. Frans Kaashoek,
Frank Dabek, and Hari Balakrishnan. Chord: A Scalable Peer-to-peer Lookup Protocol
for Internet Applications. ACM/IEEE Trans. Netw., 11(1):17-32, February 2003.

[10] Wesley W. Terpstra, Stefan Behnel, Ludger Fiege, Andreas Zeidler, and Alejandro P.
Buchmann. A Peer-to-Peer Approach to Content-Based Publish/Subscribe. In DEBS,
pages 1-8, San Diego, CA, 2003.

[11] Spyros Voulgaris, Daniela Gavidia, and Maarten van Steen. CYCLON: Inexpensive
membership management for unstructured P2P overlays. J. Network Syst. Mgmt.,
13(2), 2005.

[12] Spyros Voulgaris and Maarten van Steen. Epidemic-style Management of Semantic
Overlays for Content-Based Searching. In EuroPar, Lisboa, Portugal, September 2005.

Contents

[L_Introduction 3
2 System model 4
B_SuB-2-SuB in a nutshell 4

RR n° 5772

16

Voulgaris, Riviére, Kermarrec € van Steen

INRIA

/<

Unité de recherche INRIA Rennes
IRISA, Campus universitaire de Beaulieu - 35042 Rennes Cedex (France)

Unité de recherche INRIA Futurs : Parc Club Orsay Université - ZAC des Vignes
4, rue Jacques Monod - 91893 ORSAY Cedex (France)
Unité de recherche INRIA Lorraine : LORIA, Technopble de Nancy-Brabois - Campus scientifique
615, rue du Jardin Botanique - BP 101 - 54602 Villers-lés-Nancy Cedex (France)
Unité de recherche INRIA Rhone-Alpes : 655, avenue de I’Europe - 38334 Montbonnot Saint-Ismier (France)
Unité de recherche INRIA Rocquencourt : Domaine de Voluceau - Rocquencourt - BP 105 - 78153 Le Chesnay Cedex (France)
Unité de recherche INRIA Sophia Antipolis : 2004, route des Lucioles - BP 93 - 06902 Sophia Antipolis Cedex (France)

Editeur
INRIA - Domaine de Voluceau - Rocquencourt, BP 105 - 78153 Le Chesnay Cedex (France)
http:/ /www.inria.fr

ISSN 0249-6399

	Introduction
	System model
	Sub-2-Sub in a nutshell
	Epidemic-based publish/subscribe
	Building the overlay
	Spreading events

	Evaluation
	Related work and Conclusions

