
Approximation Algorithms for Path Problems
in Communication Networks

Thomas Erlebach (ETH Zürich)

➊ Maximum Edge-disjoint Paths Problem (MEDP)

➋ O(
√

m)-approximation algorithm for MEDP

➌ O(m0.5−ε) inapproximability of MEDP

➍ Unsplittable Flow Problem (UFP)

➎ O(
√

m)-approximation algorithm for UFP

➏ O(1)-approximation for high-capacity UFP

➐ O(1)-approximation for MEDP in meshes

➑ Further known results and some open problems

Motivation: Bandwidth Reservation in Networks

2.4 Gbps34 Mbps

155 Mbps

2

The Maximum Edge-Disjoint Paths Problem (MEDP)

Instance:

➱ graph G = (V,E) with |V | = n and |E| = m

➱ multi-set T = {(si, ti) | 1 ≤ i ≤ k} of requests

Solution:

➥ subset T ′ of T and assignment of edge-disjoint paths to requests in T ′

Goal: maximize |T ′|

3

Example for MEDP

s1

t1s2

t2

s3

t3

4

Solution to Example

s1

t1s2

t2

s3

t3

5

Variants of MEDP

★ undirected paths in undirected graphs

★ directed paths in directed graphs

(this is the hardest variant in general!)

★ directed paths in bidirected graphs

6

Definition: Approximation Algorithms for MEDP

OPT denotes the cardinality of an optimal solution.

An algorithm for MEDP is a ρ-approximation algorithm if it

☛ runs in polynomial time

and

☛ always outputs a solution T ′ with |T ′| ≥ OPT

ρ
.

7

Complexity and Inapproximability of MEDP

➢ polynomial for chains, rings and stars

➢ polynomial for undirected trees, APX-hard for bidirected trees

➢ NP-hard for meshes (Kramer and van Leeuwen, 1984)

➢ cannot be approximated within O(m0.5−ε) for arbitrary directed graphs

unless P = NP (Guruswami et al., 1999).

➢ polynomial for constant number of requests in undirected graphs

(Robertson and Seymour), butNP-hard even for only two requests in

directed graphs (Fortune, Hopcroft, Wyllie, 1980)

8

The Shortest-Path-First Greedy Algorithm (SPFG)

T ′ ← ∅;
while there exists a request in T that can still be routed do

(si, ti) = a request in T that can be routed using the fewest edges;

route (si, ti) along a shortest path of available edges;

T ′ ← T ′ ∪ {(si, ti)};
T ← T \ {(si, ti)};

od

Claim. SPFG is a
√

m-approximation algorithm.

9

Analysis of SPFG (Kolliopoulos and Stein, 1998)

➤ Compare solution of SPFG to some optimal solution S∗, |S∗| = OPT .

➤ When SPFG accepts a request along a path p, remove all paths

intersecting p from S∗.

Let mo ≤ m be the number of edges used by paths in S∗.

➙ While SPFG accepts paths that are shorter than
√

mo, each accepted

path intersects at most
√

mo paths from S∗.

➙ When SPFG starts to consider paths of length at least
√

mo,

all remaining paths in S∗ have length at least
√

mo and there can be

at most mo/
√

mo =
√

mo of them.

➥ Solution of SPFG contains at least OPT/
√

mo paths.

10

Analysis of SPFG (Version 2)

Claim. SPFG outputs a solution of size Ω
(

OPT
2

mo

)

= Ω

(

OPT
mo

OPT

)

.

Proof. Assume SPFG accepts t paths p1, p2, . . . , pt.

ki := number of paths removed from S∗ because of pi (except pi)

➠ pi has length at least ki.

➠ The ki paths removed from S∗ because of pi have length at least ki

and use at least k2
i edges in total.

➥ mo ≥
t∑

i=1

k2
i ≥

(∑t
i=1 ki

)2

t
≈ OPT

2

t

(Cauchy-

➞

Schwarz) 2

11

Inapproximability of MEDP

Theorem. MEDP in directed graphs isNP-hard to approximate within

O(m0.5−ε). (Guruswami, Khanna, Rajaraman, Shepherd, Yannakakis, 1999)

Proof. By reduction from 2DIRPATH.

2DIRPATH:

Given : directed graph H = (V,A)

Question : are there 2 edge-disjoint

paths from s1 to t1 and s2 to t2?

2DIRPATH isNP-complete

s1 t1

s2

t2

12

s1 s2 s3 s4 s5

t1

t2

t3

t4

t5

13

❶ Choose ` = |A|1/ε for some constant ε > 0.

❷ Apply construction for ` requests:

s1 s2 s3 s4 s5

t1

t2

t3

t4

t5

︸ ︷︷ ︸

`






`

If H is a YES-instance, OPT = `.

If H is a NO-instance, OPT = 1.

➥ Resulting graph has m = Θ(`2|A|) = Θ(`2+ε) edges.

➥ approximating MEDP with ratio ` = m
1

2+ε = m0.5−ε′ isNP-hard. 2

14

The Unsplittable Flow Problem (UFP)

Instance:

➱ graph G = (V,E) with edge capacities u(e) ∈ R

➱ multi-set T = {(si, ti, di, ri) | 1 ≤ i ≤ k} of requests

di = demand of request i

ri = profit of request i

Solution:

➥ subset T ′ of T and assignment of paths to requests in T ′

such that no edge capacity is exceeded

Goal: maximize the total profit
∑

i∈T ′ ri

15

Example of unsplittable flow

s1

t1s2

t2

s3

t3

d1=3
d2=4

d3=1

8

3 4

6

2

2
4

2
1

4 u(e)=4

16

Variants of UFP

dmax = largest demand

umin = minimum edge capcity

➤ Classical UFP: dmax ≤ umin

➮ any request can be routed through any edge

➤ Extended UFP: dmax can be arbitrary

➮ it may be impossible to route some requests through certain edges

➤ Bounded UFP: dmax ≤ 1
K umin

➮ at least K requests can be routed through any edge

17

An Approximation Algorithm for Classical UFP
(Azar and Regev, 2001)

❶ Separate the big requests and the small requests.

Partition T into T1 and T2:

➝ T1 consists of requests with di ≤ 1
2umin

➝ T2 consists of requests with di > 1
2umin

➮ Compute solutions for T1 and T2 separately.

➮ Output the better of the two solutions.

➥ This loses at most a factor of 2 in the approximation ratio.

18

❷ Consider the gained profit relative to the added load.

For request j and a path P from sj to tj define:

F (j, P) =
rj

∑

e∈P
dj

u(e)

Idea: Accept request j if F (j, P) is above some threshold α.

We have:

αmin :=
rmin

n
≤ F (j, P) ≤ rmaxumax

dmin
=: αmax

➥ Try all powers of 2 between 2blog αminc and 2dlog αmaxe as possible

values for the threshold α, and take the best solution.

19

❸ Algorithm for set S (either S = T1 or S = T2) and threshold α.

for j ∈ S in order of non-increasing
rj

dj
do

if ∃ valid path P from sj to tj with F (j, P) > α then

accept request j and route it on path P ;

else

reject request j;

fi

od

Path P is valid for request j if it can be routed along P without violating any

edge capacity.

20

Analysis of the algorithm

➭ Consider optimal solutionQ for T1 (or for T2)

➭ Qj := path assigned to request j ∈ Q
➭ Consider distribution of F (j,Qj) for j ∈ Q:

α

F (j,Qj) = α

inQ with
number of paths

values of α tried by algorithm

Qhigh

Qlow

2α′α′

Consider α′ with r(Qlow) ≥ 1
2r(Q) and r(Qhigh) ≥ 1

2r(Q).

Claim. For α = α′ the algorithm yields an O(
√

m)-approximation.

21

P := set of requests routed by the algorithm (when called with Ti and α′)

Eheavy := edges with load≥ 1
4 at the end of the algorithm

Case 1: |Eheavy| ≥
√

m.

Can show: r(Qlow) ≤ 2mα′

r(P) ≥ 1

4

√
mα′

Case 2: |Eheavy| <
√

m.

Can show: r(Qhigh \ P) ≤ 4
√

m · r(P)

2

22

Making the algorithm strongly polynomial

The running-time of the algorithm is polynomial, but depends on the

logarithm of numbers in the input: log n·rmax·umax

rmin·dmin
values of α are tested.

Recall that k := number of requests.

➢ if u(e) > k · dmax, set u(e) = k · dmax

➢ throw away requests with rj < 1
krmax ➠ we get rmax

rmin
≤ k

➢ treat “tiny” requests (with dj ≤ 1
kumin) separately

➥ Resulting algorithm has ratio O(
√

m) and is strongly polynomial.

23

Further Results for Unsplittable Flow

(Azar and Regev, 2001)

➤ Extended UFP :

➭ approximation ratio O
(√

m · log
(

2 + dmax

umin

))

➭ m1−ε-inapproximability for directed graphs

➭ m0.5−ε
√

blog dmax

umin
c-inapproximability for directed graphs

➤ Bounded UFP (dmax ≤ 1
K umin):

➭ approximation ratio O(K · n1/K) for K ≥ 2 (works also on-line!)

24

The High-Capacity Case of Unsplittable Flow

(Guruswami et al., 1999)

✰ Formulate UFP as an Integer Linear Program (ILP).

✰ Solve LP relaxation optimally.

✰ Use randomized rounding (Raghavan and Thompson, 1987)

to get an integer solution.

If dmax ≤ umin

c log m for some sufficiently large constant c, then there is an

O(1)-approximation for UFP.

25

An O(1)-Approximation Algorithm for Meshes

(Kleinberg and Tardos, 1995)

❶ Partition the mesh into submeshes of size γ log n× γ log n.

❷ Choose random subset of submeshes with mutual distance≥ 2γ log n.

❸ Consider short requests and long requests separately and take the

better of the two solutions.

26

The mesh:

Partitioning into submeshes:

Randomly selected submeshes:

Simulated network with edge capacities Ω(log n):

27

Handling of long requests (distance > 16γ log n):

☛ Use randomized rounding in simulated network.

☛ Translate accepted paths back into the mesh.

Handling of short requests (distance ≤ 16γ log n):

☛ Apply algorithm recursively within selected submeshes.

☛ Long requests of recursive call are handled as above.

☛ Short requests of recursive call: brute-force.

➥ approximation ratio O(1) for meshes

28

Further Known Results (1)

➠ MEDP in random graph Gn,p with average degree d ≥ lnn:

w.h.p., can route all requests in any request set of cardinality O(m
logd n)

(Broder, Frieze, Suen and Upfal, 1994)

➠ MEDP in random r-regular graph (r sufficiently large constant):

w.h.p., can route all requests in any request set of cardinality O(rn
logr n)

(Frieze and Zhao, 1999)

➠ Edge-expansion β(G) = min
S⊆V :|S|≤n/2

|δ(S)|
|S| and max. degree ∆

➥ approximation ratio O(∆2β−2 log3 n) for UFP with uniform

capacities (Srinivasan, 1997; Kleinberg and Rubinfeld, 1996)

➠ ratio O(polylog n) for butterfly and related networks

29

Further Known Results (2)

➠ ratio (5
3 + ε) for MEDP in bidirected trees (E. and Jansen, 1998)

➠ ratio O(1) for MEDP in complete graphs (E. and Vukadinović, 2001)

➠ ratio O(1) for MEDP in trees of rings (E., 2001)

➠ Maximum path coloring :

given W colors, can accept W sets of edge-disjoint paths.

Reduction: ratio ρ for MEDP ➨ ratio 1
1−e−1/ρ < ρ + 1 for MaxPC

(Awerbuch et al., 1996)

➠ Online algorithms (preemptive/non-preemptive, deterministic/randomized)

30

Problem Variants and Related Problems

➠ Single-source unsplittable flow (Kolliopoulos & Stein, 1997;

Dinitz, Garg & Goemans, 1999; Skutella, 2000)

➠ Integral splittable flow (Guruswami et al., 1999)

➠ Bounded-length edge-disjoint paths (Guruswami et al., 1999)

➠ Routing in rounds, path coloring, call scheduling, congestion minimization

31

Some Open Problems

★ (In-)approximability of MEDP in undirected graphs.

(Known: APX-hard, O(
√

m)-approximation)

★ (In-)approximability of half-disjoint paths problem or UFP with dmax ≤ umin

2 .

(Known: NP-hard, O(
√

n)-approximation)

★ Find better algorithms for MEDP and UFP in restricted classes of graphs

that include realistic topologies.

(For example: partial k-trees)

32

References

➠ Jon Kleinberg. Approximation Algorithms for Disjoint Paths Problems. PhD

Thesis, MIT, 1996.

➠ Stavros Kolliopoulos and Clifford Stein. Approximating Disjoint-Path

Problems Using Greedy Algorithms and Packing Integer Progr ams.

IPCO VI, 1998.

➠ Venkatesan Guruswami, Sanjeev Khanna, Rajmohan Rajaraman, Bruce

Shepherd, and Mihalis Yannakakis. Near-Optimal Hardness Results and

Approximation Algorithms for Edge-Disjoint Paths and Rela ted Problems.

STOC, 1999.

➠ Yossi Azar and Oded Regev. Strongly Polynomial Algorithms for the

Unsplittable Flow Problem. IPCO VIII, 2001.

➠ Jon Kleinberg and Eva Tardos. Disjoint paths in densely embedded graphs.

Proc. 36th FOCS, 1995.

33

