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[1 Maximum Edge-disjoint Paths Problem (MEDP)
[0 O(+/m)-approximation algorithm for MEDP

0 O(mY°~¢) inapproximability of MEDP

[1 Unsplittable Flow Problem (UFP)

[J O(+/m )-approximation algorithm for UFP

[1 O(1)-approximation for high-capacity UFP

[J O(1)-approximation for MEDP in meshes

L1 Further known results and some open problems



Motivation: Bandwidth Reservation in Networks

34 Mbps




The Maximum Edge-Disjoint Paths Problem (MEDP)

Instance:
[0 graph G = (V, E) with |V| = nand |E| =m
[0 multi-set 7 = {(s;,t;) | 1 < i < k} of requests

Solution:

[0 subset 7’ of 7 and assignment of edge-disjoint paths to requests in 7"’

Goal: maximize |7”|
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Example for MEDP

tl

s3

t2



sS2

sl

t3

Solution to Example
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Variants of MEDP

[1 undirected paths in undirected graphs

[1 directed paths in directed graphs

(this is the hardest variant in general!)




Definition: Approximation Algorithms for MEDP

OPT denotes the cardinality of an optimal solution.

An algorithm for MEDP is a p-approximation algorithm if it
[1 runsin polynomial time

and

(] always outputs a solution 7/ with |Z/| > %.
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Complexity and Inapproximability of MEDP

polynomial for chains, rings and stars
polynomial for undirected trees, APX-hard for bidirected trees
NP-hard for meshes (Kramer and van Leeuwen, 1984)

cannot be approximated within O(mO'5_&j ) for arbitrary directed graphs
unless P = NP (Guruswami et al., 1999).

polynomial for constant number of requests in undirected graphs
(Robertson and Seymour), but A/P-hard even for only two requests in

directed graphs (Fortune, Hopcroft, Wyllie, 1980)



The Shortest-Path-First Greedy Algorithm (SPFG)

T — 0,
while there exists a request in 7 that can still be routed do
(si, ti) — arequest in 7 that can be routed using the fewest edges;

route (;,t;) along a shortest path of available edges;
T — T'U {(Sz', ti)};
T — T\ A{(sists)};

Claim. SPFG is a v/m-approximation algorithm.



Analysis of SPFG (Kolliopoulos and Stein, 1998)

[1 Compare solution of SPFG to some optimal solution S™,

S*| = OPT.

[1 When SPFG accepts a request along a path p, remove all paths

intersecting p from S™.

Let m, < m be the number of edges used by paths in .S*.

[1 While SPFG accepts paths that are shorter than /m,, each accepted
path intersects at most ,/m,, paths from S*.

[1 When SPFG starts to consider paths of length at least /m,,

all remaining paths in S™* have length at least /m,, and there can be

at most m,/ /Mo, = /M of them.

[J Solution of SPFG contains at least OPT' /. /m,, paths.
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Analysis of SPFG (Version 2)

2
Claim. SPFG outputs a solution of size ¢ (OPT ) = () <OPT).

o

Proof. Assume SPFG accepts t paths p1, p2, ..., pt.
k; := number of paths removed from S™ because of p; (except p;)
L1 p; has length at least k;.

[1 The k; paths removed from S* because of p; have length at least &;

and use at least kf edges in total.

¢ ¢ 2 2
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O

(Cauchy-Schwarz)
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Inapproximability of MEDP

Theorem. MEDP in directed graphs is \VP-hard to approximate within
O(mP°¢). (Guruswami, Khanna, Rajaraman, Shepherd, Yannakakis, 1999)

Proof. By reduction from 2DIRPATH.

2DIRPATH:
Given: directed graph H = (V, A)

Question : are there 2 edge-disjoint

t2

paths from s1 to {1 and s9 to {97 t1
sl

2DIRPATH is NP-complete

S2
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[ Choose ¢ = | A|'/¢ for some constant € > 0.

[1 Apply construction for £ requests:

If H is a YES-instance, OPT = /.
If H is a NO-instance, OPT = 1.

(] Resulting graph has m = ©(£?|A|) = ©(£*%¢) edges.

1

(] approximating MEDP with ratio £ = m 2+ = m%5~¢ is N’P-hard. O
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The Unsplittable Flow Problem (UFP)

Instance:

[0 graph G = (V, E) with edge capacities u(e) € R

O multi-set 7 = {(s;,t;,d;, 1) | 1 < i < k} of requests
d; = demand of request ¢

r; = profit of request 7

Solution;

[0 subset 7’ of T and assignment of paths to requests in 7"’

such that no edge capacity is exceeded

Goal: maximize the total profit ) . 7;
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d1=3
d2=4
d3=1

Example of unsplittable flow
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Variants of UFP

Umin = MINimum edge capcity

dmax = largest demand

[1 Classical UFP: dpax < Umin

[1 any request can be routed through any edge

[1 Extended UFP: d,,.x can be arbitrary

[1it may be impossible to route some requests through certain edges
[1 Bounded UFP: dpax < %umin
[] at least K requests can be routed through any edge

17



An Approximation Algorithm for Classical UFP

(Azar and Regeyv, 2001)
[1 Separate the big requests and the small requests.

Partition 7 into 77 and 75:
[1 77 consists of requests with d; < %umin

[1 75 consists of requests with d; > %umin
[] Compute solutions for 77 and 75 separately.
[1 Output the better of the two solutions.

[1 This loses at most a factor of 2 in the approximation ratio.
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[ 1 Consider the gained profit relative to the added load.

For request j and a path P from s; to t; define:

F(j,P):

Idea: Accept request j if F'(j, P) is above some threshold «.

We have;

T'min . 'maxUmax
Omin - — < F(],P) < —. Omax

n dmin

[ Try all powers of 2 between 2108 @minl gng 21108 amax| 55 possible

values for the threshold o, and take the best solution.
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[1 Algorithm for set S (either S = 77 or S = 715) and threshold «.

for 3 € .S in order of non-increasing % do
J
if 3 valid path P from s, to ¢; with F'(j, P) > a then
accept request 7 and route it on path F;

else

reject request 7;

Path P is valid for request j if it can be routed along P without violating any

edge capacity.
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Analysis of the algorithm

[1 Consider optimal solution Q for 71 (or for 75)
[ 2 := path assigned to request j € Q
[1 Consider distribution of F'(j, ;) for j € Q:

number of paths 4

in Q with
F(]? QJ) =«

values of « tried by algorithm A A A AO/

N LOJ |"'ra

1
Qlow I |
I 1
Ohigh

Consider o with (O}, ) = %T(Q) and 7( Opign ) > %T(Q).

Claim. For o = o the algorithm yields an O(1/m)-approximation.
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P := set of requests routed by the algorithm (when called with Z; and o)

Eheavy := edges with load > i at the end of the algorithm

Case 1: |Epeavy| > v/m.

Can show: r(Qlow) < 2ma
1
r(P) > 1 vma!'

Case 2! |Epeavy| < v/m.

Canshow: 7(Qpigh \P) < 4vm-7(P)
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Making the algorithm strongly polynomial

The running-time of the algorithm is polynomial, but depends on the

logarithm of numbers in the input: log = maxfmax valyes of o are tested.

min’dmin

Recall that k£ := number of requests.

O ifu(e) > k- dmax, setu(e) = k - dpax

L] throw away requests with 7; < Ly nax [ we get fmax < L

k min

[ treat “tiny” requests (with dj < %umin) separately

[] Resulting algorithm has ratio O(1/m ) and is strongly polynomial.
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Further Results for Unsplittable Flow

(Azar and Regeyv, 2001)

[ ] Extended UFP:
[ approximation ratio O (\/m . log (2 4+ & *?X) )

m
Umin

(1 m!~¢-inapproximability for directed graphs

[] m0'5_€\/Uog ‘Z;ﬂij -inapproximability for directed graphs

[1 Bounded UFP (dpax < %umin):

[ approximation ratio O (K - nl/K) for K > 2 (works also on-line!)
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The High-Capacity Case of Unsplittable Flow

(Guruswami et al., 1999)
[l Formulate UFP as an Integer Linear Program (ILP).

[1 Solve LP relaxation optimally.

[1 Use randomized rounding (Raghavan and Thompson, 1987)

to get an integer solution.

If dpax < C"f’()% for some sufficiently large constant ¢, then there is an

O(1)-approximation for UFP.
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An O(1)-Approximation Algorithm for Meshes

(Kleinberg and Tardos, 1995)

[1 Partition the mesh into submeshes of size v logn x v logn.
[] Choose random subset of submeshes with mutual distance > 2+ log n.

[1 Consider short requests and long requests separately and take the

better of the two solutions.
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The mesh:

Partitioning into submeshes:

HHEHEHEHHEEBEE
HEHBEHEH BB
iEEni RN niR R R
HHEHEHEHHEEBEE
HEHBEHEH BB
iEEni RN niR R R
HHEHEHEHHEEBEE

Randomly selected submeshes:

H | H B H B H
B HH|HH B EH|HE B ER|EH H
EH | B B EH|HE B ER|ED H
H | H B H B H
B HH|HH B EH|HE B ER|EH H
EH | B B EH|HE B ER|ED H
H | H B H B H

Simulated network  with edge capacities €2(log n):
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Handling of long requests (distance > 16 log n):
[1 Use randomized rounding in simulated network.

[1 Translate accepted paths back into the mesh.

Handling of short requests (distance < 16y log n):
[1 Apply algorithm recursively within selected submeshes.
[1 Long requests of recursive call are handled as above.

[1 Short requests of recursive call: brute-force.

[1 approximation ratio (1) for meshes
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Further Known Results (1)

[l MEDP in random graph G, ,, with average degree d > Inn:

w.h.p., can route all requests in any request set of cardinality O( log:l ~)
(Broder, Frieze, Suen and Upfal, 1994)

MEDP in random r-regular graph (r sufficiently large constant):

w.h.p., can route all requests in any request set of cardinality O( T O'g” n)
(Frieze and Zhao, 1999)

Edge-expansion 3(G) = SCVI-I|1§|Il<n/2 \5‘(5‘)‘

(] approximation ratio O (A?372 log? n) for UFP with uniform
capacities (Srinivasan, 1997; Kleinberg and Rubinfeld, 1996)

and max. degree A

[J ratio O(polylog n) for butterfly and related networks
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Further Known Results (2)

ratio (g + ¢) for MEDP in bidirected trees (E. and Jansen, 1998)
ratio O (1) for MEDP in complete graphs (E. and Vukadinovic, 2001)
ratio O(l) for MEDP in trees of rings (E., 2001)

Maximum path coloring
given W colors, can accept IV sets of edge-disjoint paths.
. : : 1
Reduction: ratio p for MEDP [ ratio T o—1/p <P T 1 for MaxPC
(Awerbuch et al., 1996)

Online algorithms  (preemptive/non-preemptive, deterministic/randomized)
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Problem Variants and Related Problems

Single-source unsplittable flow (Kolliopoulos & Stein, 1997,
Dinitz, Garg & Goemans, 1999; Skutella, 2000)

Integral splittable flow (Guruswami et al., 1999)
Bounded-length edge-disjoint paths (Guruswami et al., 1999)

Routing in rounds, path coloring, call scheduling, congestion minimization
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Some Open Problems

[1 (In-)approximability of MEDP in undirected graphs.
(Known: APX-hard, O(4/m )-approximation)

[1 (In-)approximability of half-disjoint paths problem or UFP with dpyax < u“2“n.
(Known: NP-hard, O(+/n)-approximation)

[1 Find better algorithms for MEDP and UFP in restricted classes of graphs
that include realistic topologies.

(For example: partial k-trees)
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