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Introduction Problem 1 Problem 2 Conclusion

Introduction and motivation

Scheduling applications onto parallel platforms:
difficult challenge

Heterogeneous clusters, fully heterogeneous platforms:
even more difficult!
dynamic platforms, change over time → uncertainties

Target platform

more or less heterogeneity
different communication models (overlap, one- vs multi-port)
need to model uncertainties

Target application

Workflow: several data sets are processed by a set of tasks
Structured: independent tasks, linear chains, ...
Simple applications, but already challenging

Scheduling simple applications onto dynamic platforms
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First problem: Multi-criteria scheduling of workflows

Workflow applications?

Several consecutive data sets enter the application graph.

Multi-criteria to optimize?

Period P: time interval between the beginning of execution of two
consecutive data sets (inverse of throughput)

Latency L: maximal time elapsed between beginning and end of
execution of a data set

Reliability: inverse of F , probability of failure of the application
(i.e. some data sets will not be processed)
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Second problem: Divisible workload with failures

Large divisible computational workload

Assemblage of p identical computers

Unrecoverable interruptions

A-priori knowledge of risk (failure probability)

Goal: maximize expected amount of work done
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Major contributions

Pb 1: Definition of workflow applications, computational
platforms and communication models, multi-criteria mappings
(including reliability issues)
⇒ Examples to illustrate problem complexity

Pb 2: Definition of the failure model, the expected amount of
work done, chunk sizes and replication
⇒ Optimality results for the one and two processor cases,

inherent difficulties of this problem

Illustration through two problems of our algorithms and techniques
to handle uncertainties

Proactive methods: replication for reliability

Anne.Benoit@ens-lyon.fr ALEAE, April 1st, 2009 Algorithms to handle uncertainties 5/ 34



Introduction Problem 1 Problem 2 Conclusion

Major contributions

Pb 1: Definition of workflow applications, computational
platforms and communication models, multi-criteria mappings
(including reliability issues)
⇒ Examples to illustrate problem complexity

Pb 2: Definition of the failure model, the expected amount of
work done, chunk sizes and replication
⇒ Optimality results for the one and two processor cases,

inherent difficulties of this problem

Illustration through two problems of our algorithms and techniques
to handle uncertainties

Proactive methods: replication for reliability

Anne.Benoit@ens-lyon.fr ALEAE, April 1st, 2009 Algorithms to handle uncertainties 5/ 34



Introduction Problem 1 Problem 2 Conclusion

Major contributions

Pb 1: Definition of workflow applications, computational
platforms and communication models, multi-criteria mappings
(including reliability issues)
⇒ Examples to illustrate problem complexity

Pb 2: Definition of the failure model, the expected amount of
work done, chunk sizes and replication
⇒ Optimality results for the one and two processor cases,

inherent difficulties of this problem

Illustration through two problems of our algorithms and techniques
to handle uncertainties

Proactive methods: replication for reliability

Anne.Benoit@ens-lyon.fr ALEAE, April 1st, 2009 Algorithms to handle uncertainties 5/ 34



Introduction Problem 1 Problem 2 Conclusion

Major contributions

Pb 1: Definition of workflow applications, computational
platforms and communication models, multi-criteria mappings
(including reliability issues)
⇒ Examples to illustrate problem complexity

Pb 2: Definition of the failure model, the expected amount of
work done, chunk sizes and replication
⇒ Optimality results for the one and two processor cases,

inherent difficulties of this problem

Illustration through two problems of our algorithms and techniques
to handle uncertainties

Proactive methods: replication for reliability

Anne.Benoit@ens-lyon.fr ALEAE, April 1st, 2009 Algorithms to handle uncertainties 5/ 34



Introduction Problem 1 Problem 2 Conclusion

Outline

1 Problem 1

2 Problem 2

3 Conclusion
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Application model

Set of n application stages

Workflow: each data set must be processed by all stages

Computation cost of stage Si : wi

Dependencies between stages

S1

S2
S3

S4

Independent

S1 S2 S3 S4

Pipeline

(1)

(2)(3)(4)

(1) (1)

(1)

S1

S2

S3

S4

Fork

(2)

(1)

(1)

(1)

(1)
General DAG

S1

S2

S4

S5
(2)

(3)

(4)

(1)

S6

(1)
S3

(3)
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Application model: communication costs

Two dependent stages S1 → S2:
data must be transferred from S1 to S2

Fixed data size δ1,2, communication cost to pay only if S1 and
S2 are mapped onto different processors
(i.e., red arrows in the example)

S1 S2 S3 S4

P1
P2

P3
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Platform model

Pv

PoutPin

sv

Pu

su

bv ,out

bu,v

sin sout

bin,u

p processors Pu, 1 ≤ u ≤ p, fully interconnected

su: speed of processor Pu

bidirectional link linku,v : Pu → Pv , bandwidth bu,v

fu: failure probability of processor Pu (independent of the
duration of the application, meant to run for a long time -
cycle-stealing scenario)

Pin: input data – Pout : output data
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Different platforms

Fully Homogeneous – Identical processors (su = s) and links
(bu,v = b): typical parallel machines

Communication Homogeneous – Different-speed processors
(su 6= sv ), identical links (bu,v = b): networks of
workstations, clusters

Fully Heterogeneous – Fully heterogeneous architectures, su 6= sv

and bu,v 6= bu′,v ′ : hierarchical platforms, grids
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Different platforms

Fully Homogeneous – Identical processors (su = s) and links
(bu,v = b): typical parallel machines

Failure Homogeneous– Identically reliable processors (fu = fv )

Communication Homogeneous – Different-speed processors
(su 6= sv ), identical links (bu,v = b): networks of
workstations, clusters

Fully Heterogeneous – Fully heterogeneous architectures, su 6= sv

and bu,v 6= bu′,v ′ : hierarchical platforms, grids

Failure Heterogeneous – Different failure probabilities (fu 6= fv )
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Platform model: communications

no overlap vs overlap

no overlap: at each time step, either computation or
communication

overlap: a processor can simultaneously compute and
communicate

comm comp comm comp

comm comm

comp comp

time

P1, no overlap

P2, overlap
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Platform model: communications

one-port vs multi-port

one-port: each processor can either send or receive to/from a
single other processor any time-step it is communicating

bounded multi-port: simultaneous send and receive, but
bound on the total outgoing/incoming communication
(limitation of network card)

i5
c4

i1 c1

c1
time

o1

i1 o1

P1

P2

i2 c2 o2

i2 c2 o2

o3

i3
c2

o1

P1

P2

i6
c5
o4

i4
c3

o2

S1 S2

P1 P2
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Mapping strategies: rule of the game

Map each application stage onto one or more processors

Goal: minimize period/latency and maximize reliability

Several mapping strategies

... ...S2 Sk SnS1

The pipeline application

Replication: independent sets of processors, instead of a single
processor as above
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Mapping strategies: rule of the game

Map each application stage onto one or more processors

Goal: minimize period/latency and maximize reliability

Several mapping strategies

... ...S2 Sk SnS1

One-to-one Mapping

Replication: independent sets of processors, instead of a single
processor as above
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Mapping strategies: rule of the game

Map each application stage onto one or more processors

Goal: minimize period/latency and maximize reliability

Several mapping strategies

... ...S2 Sk SnS1

Interval Mapping

Replication: independent sets of processors, instead of a single
processor as above
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Mapping: replication and stage types

Monolithic stages: must be mapped on one single processor
since computation for a data set may depend on result of
previous computation

Dealable stages: can be replicated on several processors, but
not parallel, i.e. a data set must be entirely processed on a
single processor

Data-parallel stages: inherently parallel stages, one data set
can be computed in parallel by several processors

Replication for reliability (also called duplication): one data
set is processed several times on different processors.
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Mapping: objective function?

Mono-criterion

Minimize period P (inverse of throughput)
Minimize latency L (time to process a data set)
Minimize application failure probability F
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Mapping: objective function?

Mono-criterion

Minimize period P (inverse of throughput)
Minimize latency L (time to process a data set)
Minimize application failure probability F

Multi-criteria

How to define it?
Minimize α.P + β.L+ γ.F?
Values which are not comparable
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Mapping: objective function?

Mono-criterion

Minimize period P (inverse of throughput)
Minimize latency L (time to process a data set)
Minimize application failure probability F

Multi-criteria

How to define it?
Minimize α.P + β.L+ γ.F?
Values which are not comparable

Minimize P for a fixed latency and failure
Minimize L for a fixed period and failure
Minimize F for a fixed period and latency
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Introduction Problem 1 Problem 2 Conclusion

Mapping: objective function?

Mono-criterion

Minimize period P (inverse of throughput)
Minimize latency L (time to process a data set)
Minimize application failure probability F

Bi-criteria

Period and Latency:
Minimize P for a fixed latency
Minimize L for a fixed period

And so on...
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An example of formal definitions

Pipeline application, m intervals

Period/Latency/Reliability problem with replication only for
reliability (monolithic stages)

F = 1−
Y

1≤j≤m

(1−
Y

u∈alloc(j)

fu)

Worst-case period and latency: one-port without overlap

P(no) = max
1≤j≤m

max
u∈alloc(j)

 δj−1

min
v∈alloc(j−1)

bv ,u
+

∑
i∈Ij

wi

su
+

∑
v∈alloc(j+1)

δj

bu,v


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∑
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δj
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L =
∑

u∈alloc(1)

δ0

bin,u
+
∑

1≤j≤m

max
u∈alloc(j)


∑

i∈Ij
wi

su
+

∑
v∈alloc(j+1)

δj

bu,v
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F = 1−
Y

1≤j≤m

(1−
Y

u∈alloc(j)

fu)

Worst-case period and latency: multi-port with overlap

P(ov) = max
1≤j≤m

max
u∈alloc(j)

max
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min
v∈alloc(j−1)
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max
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
L = the longest path of the mapping as without overlap, but does not
necessarily respect previous period

L = (2K + 1).P, where K is the number of processor changes
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Complexity: working out examples

Mono-criterion reliability: replicate the whole pipeline as a
single interval on all processors

Latency: one interval saves communication ,

Bi-criteria (reliability/latency) polynomial algorithm for
Communication Homogeneous-Failure Homogeneous
platforms

Much more difficult with Failure Heterogeneous, open
complexity (see following example)

And think about adding replication for period into the story...
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Bi-criteria reliability/latency - Interval mapping

Minimize F with fixed latency
Communication homogeneous - Failure heterogeneous

Fixed latency: 22

10 1 0

w2 = 100w1 = 1

S1 S2

s = 100

f = 0.8

s = 1, f = 0.1

Open complexity
Impact of communication model on period and latency?
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Bi-criteria reliability/latency - Interval mapping

Minimize F with fixed latency
Communication homogeneous - Failure heterogeneous

Fixed latency: 22

10 1 0

w2 = 100w1 = 1

S1 S2

20 + 101/100 < 22
F = (1− (1− 0.82)) = 0.64

s = 100

f = 0.8

s = 1, f = 0.1

Open complexity
Impact of communication model on period and latency?
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f = 0.8
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Minimize F with fixed latency
Communication homogeneous - Failure heterogeneous

Fixed latency: 22

10 1 0

w2 = 100w1 = 1

S1 S2

10 + 1/1 + 10× 1 + 100/100 = 22
F : 1−(1−0.1)×(1−0.810) < 0.2

s = 100

f = 0.8

s = 1, f = 0.1

Open complexity
Impact of communication model on period and latency?
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Latency - No replication, different comm. models
1→ S1

4→ S2
4→ S3

1→ S4
1→

2 1 3 4

2 processors of speed 1
With overlap: optimal period?

Anne.Benoit@ens-lyon.fr ALEAE, April 1st, 2009 Algorithms to handle uncertainties 19/ 34



Introduction Problem 1 Problem 2 Conclusion

Latency - No replication, different comm. models
1→ S1

4→ S2
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1→ S4
1→

2 1 3 4

2 processors of speed 1
With overlap: optimal period?

P = 5, S1S3 → P1, S2S4 → P2

Perfect load-balancing both for computation and comm.
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Latency - No replication, different comm. models
1→ S1

4→ S2
4→ S3

1→ S4
1→

2 1 3 4

2 processors of speed 1
With overlap: optimal period?

P = 5, S1S3 → P1, S2S4 → P2

Perfect load-balancing both for computation and comm.

Optimal latency?

With only one processor, L = 12

No internal communication to pay
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Optimal latency?
Same mapping as above: L = 21 with no period constraint
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Pin → P1 0 0 0
P1 1 2 1 2/12 13 14
P1 → P2 3 4 5 6 15
P2 → P1 8 9 10 11
P2 7 16 17 18 19
P2 → Pout 20
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2 1 3 4

2 processors of speed 1
With overlap: optimal period?
P = 5, S1S3 → P1, S2S4 → P2

Perfect load-balancing both for computation and comm.

Optimal latency? with P = 5?
Progress step-by-step in the pipeline → no conflicts

K = 4 processor changes, L = (2K + 1).P = 9P = 45
. . . period k period k + 1 period k + 2 . . .

in → P1 . . . ds(k) ds(k+1) ds(k+2) . . .

P1 . . . ds(k−1), ds(k−5) ds(k), ds(k−4) ds(k+1), ds(k−3) . . .

P1 → P2 . . . ds(k−2), ds(k−6) ds(k−1), ds(k−5) ds(k), ds(k−4) . . .

P2 → P1 . . . ds(k−4) ds(k−3) ds(k−2) . . .

P2 . . . ds(k−3), ds(k−7) ds(k−2), ds(k−6) ds(k−1), ds(k−5) . . .

P2 → out . . . ds(k−8) ds(k−7) ds(k−6) . . .
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1→

2 1 3 4

2 processors of speed 1

With no overlap: optimal period and latency?

General mappings too difficult to handle:
restrict to interval mappings

P = 8: S1S2S3 → P1, S4 → P2

L = 12: S1S2S3S4 → P1
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Introduction Problem 1 Problem 2 Conclusion

Complexity results for Pb 1

F Failure-Hom. Failure-Het.

One-to-one polynomial NP-hard

Interval polynomial

General polynomial

L Fully Hom. Comm. Hom. Hetero.

no DP, One-to-one polynomial NP-hard

no DP, Interval polynomial NP-hard

no DP, General polynomial

with DP, no coms polynomial NP-hard

P Fully Hom. Comm. Hom. Hetero.

One-to-one polynomial polynomial, NP-hard (rep) NP-hard

Interval polynomial NP-hard NP-hard

General NP-hard
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Introduction Problem 1 Problem 2 Conclusion

Pb 2: Chunking

Large divisible computational workload, to execute on p
identical processors subject to unrecoverable interruptions

Sending each remote computer large amounts of work:
, decrease message packaging overhead
/ maximize vulnerability to interruption-induced losses

Sending each remote computer small amounts of work:
, minimize vulnerability to interruption-induced losses
/ maximize message packaging overhead
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Introduction Problem 1 Problem 2 Conclusion

Pb 2: Replication

Replicating tasks (same work sent to q ≥ 2 remote
computers):
, lessen vulnerability to interruption-induced losses
/ minimize opportunities for “parallelism” and productivity

Communication/control to/of remote computers costly
⇒ orchestrate task replication statically
/ duplicate work unnecessarily when few interruptions
, prevent server from becoming bottleneck
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Risk increases with time

A B C D

P1 1 2 3 4
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Introduction Problem 1 Problem 2 Conclusion

Interruption model

dPr =

{
κdt for t ∈ [0, 1/κ]

0 otherwise

Pr(w) = min

{
1,

∫ w

0
κdt

}
= min{1, κw}

Goal: maximize expected work production
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Introduction Problem 1 Problem 2 Conclusion

Free-initiation model (1/2)

Regimen Θ: allocate whole workload on a single computer

E (f)(jobdone,Θ) =

∫ ∞

0
Pr(jobdone ≥ u under Θ) du

Single chunk

E (f)(W ,Θ1) = W (1− Pr(W ))

Two chunks with ω1 + ω2 = W

E (f)(W ,Θ2) = ω1(1− Pr(ω1)) + ω2(1− Pr(ω1 + ω2))
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Introduction Problem 1 Problem 2 Conclusion

Free-initiation model (2/2)

With n chunks, maximize

E (f)(W , n) = ω1(1− Pr(ω1)) + ω2(1− Pr(ω1 + ω2))

· · ·+ ωn(1− Pr(ω1 + · · ·+ ωn))

where

ω1 > 0, ω2 > 0, . . . , ωn > 0

ω1 + ω2 + · · ·+ ωn≤W
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Introduction Problem 1 Problem 2 Conclusion

Charged-initiation model

E (c)(jobdone) =

∫ ∞

0
Pr(jobdone ≥ u + ε) du.

Single chunk

E (c)(W , 1) = W (1− Pr(W + ε))

Two chunks with ω1 + ω2 ≤W

E (c)(W , 2) = ω1(1− Pr(ω1 + ε)) + ω2(1− Pr(ω1 + ω2 + 2ε))
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Introduction Problem 1 Problem 2 Conclusion

Some results

Theorem: Relating the two models

E (f)(W , n) ≥ E (c)(W , n) ≥ E (f)(W , n)− nε

Theorem: Free initiation model, 1 processor
Optimal schedule to deploy W ∈ [0, 1

κ ] units of work in n chunks:
use identical chunks of size Z/n:

Z = min


W ,

n

n + 1

1

κ

ff
, E (f)(W , n) = Z − n + 1

2n
Z 2κ
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Introduction Problem 1 Problem 2 Conclusion

2 computers: general shape of optimal solution

−→
W1,2 W1,3

W2,3 W2,2 W2,1

W1,1

←−

Theorem
W1 and W 2 assigned workloads in optimal solution:

1. Either W1
⋂

W 2 = ∅ or W1
⋃

W 2 = W

2. P1 processes W1 \W 2 before W1
⋂

W 2

3. P1 and P2 process W1
⋂

W 2 in reverse order

/ Optimal out of reach even for 2 or 3 chunks per processor
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Introduction Problem 1 Problem 2 Conclusion

Lessons learnt from Problem 2

Probability law to model interruptions → problem rapidly
untractable

Difficult to decide the size of chunks

With more than one processor, difficult to decide which part
of the work should be replicated

Optimal out of reach: heuristics (structured solution), upper
and lower bounds, experiments

Proactive methods already turn out to be challenging, we did
not investigate reactive methods so far
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Related work

Problem 1:

Qishi Wu et al– Directed platform graphs (WAN); unbounded
multi-port with overlap; mono-criterion problems

Subhlok and Vondran– Pipeline on hom platforms: extended

Chains-to-chains– Heterogeneous, replicate/data-parallelize

Mapping pipelined computations onto clusters and grids– DAG
[Taura et al.], DataCutter [Saltz et al.]

Energy-aware mapping of pipelined computations– [Melhem et
al.], three-criteria optimization

Problem 2:

Landmark paper by Bhatt, Chung, Leighton & Rosenberg
on cycle stealing

Hardware failures
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Conclusion

Problem 1:

Definition of applications, platforms, multi-criteria mappings,
failure models

Working out examples to show insight of problem complexity,
full complexity study, linear program formulations (NP-hard
instances)

Practical side: Several polynomial heuristics and simulations,
JPEG application, good results of the heuristics (close to LP
solution)

Problem 2:

Turned out much more difficult than expected (, or /?)

Extension to resources with different risk functions

Extension to resources with different computation capacities

Master-slave approach with communication costs

Comparison with dynamic approaches
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