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Introduction

Introduction and motivation

@ Scheduling applications onto parallel platforms:
difficult challenge
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@ Scheduling applications onto parallel platforms:
difficult challenge
@ Heterogeneous clusters, fully heterogeneous platforms:
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Introduction

Introduction and motivation

@ Scheduling applications onto parallel platforms:
difficult challenge

@ Heterogeneous clusters, fully heterogeneous platforms:
even more difficult!
dynamic platforms, change over time — uncertainties

@ Target platform
e more or less heterogeneity
o different communication models (overlap, one- vs multi-port)
e need to model uncertainties
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Introduction

Introduction and motivation

@ Scheduling applications onto parallel platforms:
difficult challenge

@ Heterogeneous clusters, fully heterogeneous platforms:
even more difficult!
dynamic platforms, change over time — uncertainties

@ Target platform
e more or less heterogeneity
o different communication models (overlap, one- vs multi-port)
e need to model uncertainties
@ Target application
o Workflow: several data sets are processed by a set of tasks
e Structured: independent tasks, linear chains, ...
e Simple applications, but already challenging

Scheduling simple applications onto dynamic platforms J
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Introduction

First problem: Multi-criteria scheduling of workflows

Workflow applications?

—O0—0—0—0—0—

Several consecutive data sets enter the application graph.
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First problem: Multi-criteria scheduling of workflows

Workflow applications?

—O0—0—0—0—0—

Several consecutive data sets enter the application graph.

Multi-criteria to optimize?
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Introduction

First problem: Multi-criteria scheduling of workflows

Workflow applications?

—O0—0—0—0—0—

Several consecutive data sets enter the application graph.

Multi-criteria to optimize?

Period P: time interval between the beginning of execution of two
consecutive data sets (inverse of throughput)
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Introduction

First problem: Multi-criteria scheduling of workflows

Workflow applications?

—O0—0—0—0—0—

Several consecutive data sets enter the application graph.

Multi-criteria to optimize?

Period P: time interval between the beginning of execution of two
consecutive data sets (inverse of throughput)

Latency £: maximal time elapsed between beginning and end of
execution of a data set
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Introduction

First problem: Multi-criteria scheduling of workflows

Workflow applications?

—O0—0—0—0—0—

Several consecutive data sets enter the application graph.

Multi-criteria to optimize?

Period P: time interval between the beginning of execution of two
consecutive data sets (inverse of throughput)

Latency £: maximal time elapsed between beginning and end of
execution of a data set

Reliability: inverse of F, probability of failure of the application
(i.e. some data sets will not be processed)
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Introduction

Second problem: Divisible workload with failures

@ Large divisible computational workload
@ Assemblage of p identical computers
@ Unrecoverable interruptions

@ A-priori knowledge of risk (failure probability)

Goal: maximize expected amount of work done J
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Introduction
Major contributions

@ Pb 1: Definition of workflow applications, computational
platforms and communication models, multi-criteria mappings
(including reliability issues)

= Examples to illustrate problem complexity
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Introduction
Major contributions

@ Pb 1: Definition of workflow applications, computational
platforms and communication models, multi-criteria mappings
(including reliability issues)

= Examples to illustrate problem complexity

@ Pb 2: Definition of the failure model, the expected amount of
work done, chunk sizes and replication
=- Optimality results for the one and two processor cases,
inherent difficulties of this problem
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Introduction
Major contributions

@ Pb 1: Definition of workflow applications, computational
platforms and communication models, multi-criteria mappings
(including reliability issues)

= Examples to illustrate problem complexity

@ Pb 2: Definition of the failure model, the expected amount of
work done, chunk sizes and replication
=- Optimality results for the one and two processor cases,
inherent difficulties of this problem

Illustration through two problems of our algorithms and techniques
to handle uncertainties
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Introduction
Major contributions

@ Pb 1: Definition of workflow applications, computational
platforms and communication models, multi-criteria mappings
(including reliability issues)

= Examples to illustrate problem complexity

@ Pb 2: Definition of the failure model, the expected amount of
work done, chunk sizes and replication
=- Optimality results for the one and two processor cases,
inherent difficulties of this problem

Illustration through two problems of our algorithms and techniques
to handle uncertainties

Proactive methods: replication for reliability
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Problem 1

Outline

© Problem 1
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Problem 1

Application model

@ Set of n application stages

@ Workflow: each data set must be processed by all stages
o Computation cost of stage S;: w;

@ Dependencies between stages

(1) (1)
(1) (1)

Independent Fork
@] (6) ) ()
@_> @ Sa General DAG
Pipeline
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Problem 1

Application model: communication costs

@ Two dependent stages S; — So:
data must be transferred from S; to S,

o Fixed data size 012, communication cost to pay only if 5 and
S, are mapped onto different processors
(i.e., red arrows in the example)

P3

DL CuONC,
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Problem 1
Platform model

@ p processors P,, 1 < u < p, fully interconnected
@ s, speed of processor P,
@ bidirectional link link, , : P, — P,, bandwidth b, ,

e f,: failure probability of processor P, (independent of the
duration of the application, meant to run for a long time -
cycle-stealing scenario)

@ Pj,: input data — P, output data
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Problem 1
Different platforms

Fully Homogeneous — Identical processors (s, = s) and links
(by,w = b): typical parallel machines

Communication Homogeneous — Different-speed processors
(sy # sv), identical links (b, , = b): networks of
workstations, clusters

Fully Heterogeneous — Fully heterogeneous architectures, s, # s,
and b, # by, hierarchical platforms, grids
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Problem 1
Different platforms

Fully Homogeneous — Identical processors (s, = s) and links
(by,w = b): typical parallel machines

Failure Homogeneous— Identically reliable processors (f, = f,)

Communication Homogeneous — Different-speed processors
(sy # sv), identical links (b, , = b): networks of
workstations, clusters

Fully Heterogeneous — Fully heterogeneous architectures, s, # s,
and b, # by, hierarchical platforms, grids

Failure Heterogeneous — Different failure probabilities (f, # f,)
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Problem 1

Platform model: communications

no overlap vs overlap

@ no overlap: at each time step, either computation or
communication
@ overlap: a processor can simultaneously compute and

communicate

P1, no overlap | comm

P2, overlap

time

\/
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Problem 1

Platform model: communications

one-port vs multi-port

@ one-port: each processor can either send or receive to/from a
single other processor any time-step it is communicating

@ bounded multi-port: simultaneous send and receive, but
bound on the total outgoing/incoming communication
(limitation of network card)

i EEE

P2

time
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Problem 1
Mapping strategies: rule of the game

@ Map each application stage onto one or more processors

e Goal: minimize period/latency and maximize reliability

@ Several mapping strategies

(s pe(s) e (e (5

The pipeline application
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Problem 1
Mapping strategies: rule of the game

@ Map each application stage onto one or more processors

e Goal: minimize period/latency and maximize reliability

@ Several mapping strategies

ONE-TO-ONE MAPPING
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Problem 1
Mapping strategies: rule of the game

@ Map each application stage onto one or more processors

e Goal: minimize period/latency and maximize reliability

@ Several mapping strategies

() e () e ()

INTERVAL MAPPING
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Problem 1
Mapping strategies: rule of the game

@ Map each application stage onto one or more processors

e Goal: minimize period/latency and maximize reliability

@ Several mapping strategies

() e ) e ()

GENERAL MAPPING
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Problem 1
Mapping strategies: rule of the game

@ Map each application stage onto one or more processors

e Goal: minimize period/latency and maximize reliability

@ Several mapping strategies

() e ) e ()

GENERAL MAPPING

@ Replication: independent sets of processors, instead of a single
processor as above
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Problem 1

Mapping: replication and stage types

@ Monolithic stages: must be mapped on one single processor
since computation for a data set may depend on result of
previous computation

@ Dealable stages: can be replicated on several processors, but
not parallel, i.e. a data set must be entirely processed on a
single processor

@ Data-parallel stages: inherently parallel stages, one data set
can be computed in parallel by several processors
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Mapping: replication and stage types

@ Monolithic stages: must be mapped on one single processor
since computation for a data set may depend on result of
previous computation

@ Dealable stages: can be replicated on several processors, but
not parallel, i.e. a data set must be entirely processed on a
single processor

@ Data-parallel stages: inherently parallel stages, one data set
can be computed in parallel by several processors

@ Replication for reliability (also called duplication): one data
set is processed several times on different processors.

Anne.Benoit@ens-lyon.fr ALEAE, April 1st, 2009 Algorithms to handle uncertainties



Problem 1
Mapping: objective function?

Mono-criterion

@ Minimize period P (inverse of throughput)
@ Minimize latency £ (time to process a data set)
@ Minimize application failure probability F
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Problem 1
Mapping: objective function?

Mono-criterion

Minimize period P (inverse of throughput)
Minimize latency £ (time to process a data set)
Minimize application failure probability F

Multi-criteria

@ How to define it?
Minimize a.P + 3.L + v.F7?
Values which are not comparable
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Problem 1
Mapping: objective function?

Mono-criterion
e Minimize period P (inverse of throughput)

@ Minimize latency £ (time to process a data set)
@ Minimize application failure probability F

Multi-criteria
@ How to define it?
Minimize o.P 4+ 3.L 4+ v.F7?
@ Values which are not comparable

@ Minimize P for a fixed latency and failure
@ Minimize L for a fixed period and failure
@ Minimize F for a fixed period and latency
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Problem 1
Mapping: objective function?

Mono-criterion

Minimize period P (inverse of throughput)
Minimize latency £ (time to process a data set)
Minimize application failure probability F

Bi-criteria

Period and Latency:
Minimize P for a fixed latency
Minimize L for a fixed period

@ And so on...
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Problem 1
An example of formal definitions

@ Pipeline application, m intervals

@ Period/Latency/Reliability problem with replication only for
reliability (monolithic stages)
F=1- ] a- J] )
1<j<m u€alloc(j)

Worst-case period and latency: one-port without overlap

dj—1 ey Wi 0;

P = max  max el 5 + == Z bj
1<j<m u€alloc(j min s )

v) vealloc(j—1) " u vealloc(j+1) %Y
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Problem 1
An example of formal definitions

@ Pipeline application, m intervals

@ Period/Latency/Reliability problem with replication only for
reliability (monolithic stages)
F=1-JJ a- ] )
1<j<m u€alloc(j)

Worst-case period and latency: one-port without overlap

5 S w; o;
plno)  max  max i b T =g Z b ’
<j<m u€alloc(j) veal?gl(r}—l) v,u Su vealloc(j+1) Y

L= Z b(.so + Z max.) T+ Z béj

uealloc(1) ™Y 1<j<m vealloc(j+1) "
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Problem 1
An example of formal definitions

@ Pipeline application, m intervals

@ Period/Latency/Reliability problem with replication only for
reliability (monolithic stages)
=1- [ a- I )
1<j<m u€alloc(j)

Worst-case period and latency: multi-port with overlap

51 Dicy Wi 5;
PY) = max max max - , ) E J
1<<m  u€ealloc(j) min by, Su by

vealloc(j—1)

vealloc(j+1)
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Problem 1
An example of formal definitions

@ Pipeline application, m intervals

@ Period/Latency/Reliability problem with replication only for
reliability (monolithic stages)
F=1- ] a- ] )
1<j<m u€alloc(j)

Worst-case period and latency: multi-port with overlap

dj-1 Dicy Wi 5

Plv) — max max(j) max el — (R § s J
1<j<m u€alloc(j min v.u Sy ] uv
vealloc(j—1) vealloc(j+1)

L = the longest path of the mapping as without overlap, but does not
necessarily respect previous period

L = (2K 4+ 1).P, where K is the number of processor changes
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Problem 1

Complexity: working out examples

@ Mono-criterion reliability: replicate the whole pipeline as a
single interval on all processors

o Latency: one interval saves communication ©
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Problem 1

Complexity: working out examples

@ Mono-criterion reliability: replicate the whole pipeline as a
single interval on all processors

o Latency: one interval saves communication ©
@ Bi-criteria (reliability/latency) polynomial algorithm for

Communication Homogeneous-Failure Homogeneous
platforms
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Problem 1
Complexity: working out examples

@ Mono-criterion reliability: replicate the whole pipeline as a
single interval on all processors

o Latency: one interval saves communication ©

@ Bi-criteria (reliability/latency) polynomial algorithm for
Communication Homogeneous-Failure Homogeneous
platforms

@ Much more difficult with Failure Heterogeneous, open
complexity (see following example)
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Problem 1
Complexity: working out examples

@ Mono-criterion reliability: replicate the whole pipeline as a
single interval on all processors

o Latency: one interval saves communication ©

@ Bi-criteria (reliability/latency) polynomial algorithm for
Communication Homogeneous-Failure Homogeneous
platforms

@ Much more difficult with Failure Heterogeneous, open
complexity (see following example)

And think about adding replication for period into the story...
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Problem 1

Bi-criteria reliability/latency - Interval mapping

Minimize F with fixed latency
Communication homogeneous - Failure heterogeneous

Fixed latency: 22 s=1,f=0.1

—
10 1 0

N N ) -

B hh s = 100
B B 703
hh
hh
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Problem 1

Bi-criteria reliability/latency - Interval mapping

Minimize F with fixed latency
Communication homogeneous - Failure heterogeneous

Fixed latency: 22 s=1,f=0.1

10 1 0 —
hh s =100
Eos B 1038
Eo Eoem
Eo Eoem

10+ 101 > 22
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Problem 1

Bi-criteria reliability/latency - Interval mapping

Minimize F with fixed latency
Communication homogeneous - Failure heterogeneous

Fixed latency: 22 s=1,f=0.1
10 1 0 = '
EP [ W— —
h h s =100
20 4+ 101/100 < 22 B B -0
F=(1-(1-08%) =064 o Fo
h h
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Problem 1

Bi-criteria reliability/latency - Interval mapping

Minimize F with fixed latency
Communication homogeneous - Failure heterogeneous

Fixed latency: 22 s=1,f=0.1
10 1 0 5 '
e B .
B B 703
e B
e B

30 + 101/100 > 22
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Problem 1

Bi-criteria reliability/latency - Interval mapping

Minimize F with fixed latency
Communication homogeneous - Failure heterogeneous

Fixed latency: 22 s=1,f=0.1

hh s = 100

10+1/1+10x 1+ 100/100 = 22 B B -0
F:1-(1-01)x(1-0.8%) <0.2 | e
s s
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Problem 1

Bi-criteria reliability/latency - Interval mapping

Minimize F with fixed latency
Communication homogeneous - Failure heterogeneous

Fixed latency: 22 s=1,f=0.1

hh s = 100

10+1/1+10x 1+ 100/100 = 22 B B -0
F:1-(1-01)x(1-0.8%) <0.2 | e
s s

Open complexity
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Problem 1

Bi-criteria reliability/latency - Interval mapping

Minimize F with fixed latency
Communication homogeneous - Failure heterogeneous

Fixed latency: 22 s=1,f=0.1

10 1 0
@ e
h h s = 100
10 +1/1+10 x 14 100/100 = 22 B B =08
F:1-(1-0.1)x(1-0.81) < 0.2 | Sy S

hh

Open complexity
Impact of communication model on period and latency?
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Problem 1
Latency - No replication, different comm. models

1 4 4 1
— 81 — 82 — 83 — 84

2 1 3 4

l»—\

2 processors of speed 1
With overlap: optimal period?
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Problem 1
Latency - No replication, different comm. models

1 4 4 1
— 81 — 82 — 83 — 84

2 1 3 4

l»—\

2 processors of speed 1
With overlap: optimal period?

P=5 &8 — P, 58— P
Perfect load-balancing both for computation and comm.

Optimal latency?
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Problem 1
Latency - No replication, different comm. models

1 4 4 1
— 81 — 82 — 83 — 84

2 1 3 4

l»—\

2 processors of speed 1
With overlap: optimal period?

P=5 &8 — P, 58— P»

Perfect load-balancing both for computation and comm.
Optimal latency?

With only one processor, £ = 12

No internal communication to pay
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Problem 1
Latency - No replication, different comm. models

1 4 4 1
— 81 — 82 — 83 — 84

2 1 3 4

l»—\

2 processors of speed 1
With overlap: optimal period?
P =5 &85 — P, S8 — P
Perfect load-balancing both for computation and comm.

Optimal latency?
Same mapping as above: £ = 21 with no period constraint

P = 21, no conflicts
Pn— P |0 0 0
P 12 12/12 13 14
P — Py 3456 15
P, — Py 891011
P, 7 16 17 18 19
P2 — Pout 20
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Problem 1

Latency - No replication, different comm. models

1 4
— 81 — 82

2 1

2 processors of speed 1

With overlap: optimal period?
P=5 &8 — P, 58— P
Perfect load-balancing both for computation and comm.
Optimal latency? with P =57
Progress step-by-step in the pipeline — no conflicts

K = 4 processor changes, £L = (2K +1).P = 9P =45

in— Py
Py
Py — P
P, — P
P

P, — out

Anne.Benoit@ens-lyon.fr

period k

ds(k)
ds(k*l)’ dS(k75)
dS(k_Z), ds(k—6)

ds(k—4)
ds(k73)' ds(k77)

ds(k78)

ALEAE, April 1st, 2009

4 1

3

period kK + 1

ds(k+1)
ds(k) | ds(k—4)

— 83 —

l»—\

Ss
4

period k + 2

ds(k+2)
ds(ld»l)Y ds(k73)
ds(k) | ds(k—4)

ds(k—Z)
ds(k*l)v dS(k75)

ds(k—6)

Algorithms to handle uncertainties




Problem 1
Latency - No replication, different comm. models

1 4 4 1
— 81 — 82 — 83 — 84

2 1 3 4

l»—\

2 processors of speed 1

With no overlap: optimal period and latency?
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Problem 1
Latency - No replication, different comm. models

1 4 4 1
— 81 — 82 — 83 — 84

2 1 3 4

l»—\

2 processors of speed 1

With no overlap: optimal period and latency?

General mappings too difficult to handle:
restrict to interval mappings
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Problem 1

Latency - No replication, different comm. models

Ls 2 s 4 os Lo,
2 1 3 4

2 processors of speed 1

l»—\

With no overlap: optimal period and latency?

General mappings too difficult to handle:
restrict to interval mappings

7) =8: 813283 — P1, 84 — P2
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Problem 1
Latency - No replication, different comm. models

1 4 4 1
— 81 — 82 — 83 — 84

2 1 3 4

l»—\

2 processors of speed 1

With no overlap: optimal period and latency?

General mappings too difficult to handle:
restrict to interval mappings

77 =8: 813283 — P1, 84 — P2
L=12: 515535, — P;
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Problem 1

Complexity results for Pb 1

l F \ Failure-Hom. \ Failure-Het. ‘
One-to-one [ polynomial | NP-hard
Interval polynomial
General polynomial
L \ Fully Hom. \ Comm. Hom. \ Hetero. ‘
no DP, One-to-one polynomial NP-hard
no DP, Interval polynomial NP-hard
no DP, General polynomial
l with DP, no coms \ polynomial \ NP-hard ‘
l P \ Fully Hom. \ Comm. Hom. \ Hetero. ‘
One-to-one | polynomial | polynomial, NP-hard (rep) | NP-hard
Interval polynomial NP-hard NP-hard
General NP-hard
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Problem 2

Outline

© Problem 2

Anne.Benoit@ens-lyon.fr ALEAE, April 1st, 2009 Algorithms to handle uncertainties



Problem 2

Pb 2: Chunking

@ Large divisible computational workload, to execute on p
identical processors subject to unrecoverable interruptions
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Problem 2

Pb 2: Chunking

@ Large divisible computational workload, to execute on p
identical processors subject to unrecoverable interruptions

@ Sending each remote computer large amounts of work:
© decrease message packaging overhead
® maximize vulnerability to interruption-induced losses
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Problem 2

Pb 2: Chunking

@ Large divisible computational workload, to execute on p
identical processors subject to unrecoverable interruptions

@ Sending each remote computer large amounts of work:
© decrease message packaging overhead
® maximize vulnerability to interruption-induced losses

@ Sending each remote computer small amounts of work:
© minimize vulnerability to interruption-induced losses
® maximize message packaging overhead
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Problem 2

Pb 2: Replication

@ Replicating tasks (same work sent to g > 2 remote
computers):
© lessen vulnerability to interruption-induced losses
® minimize opportunities for “parallelism” and productivity
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Problem 2

Pb 2: Replication

@ Replicating tasks (same work sent to g > 2 remote
computers):
© lessen vulnerability to interruption-induced losses
® minimize opportunities for “parallelism” and productivity

e Communication/control to/of remote computers costly
= orchestrate task replication statically
@ duplicate work unnecessarily when few interruptions
© prevent server from becoming bottleneck
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Problem 2

Risk increases with time

(Al [B] [c] [D]

P1 1 2 3 4
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Problem 2
Risk increases with time

(Al [B] [c] [D]

Py 1 2 3 4
P>
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Problem 2
Risk increases with time

(Al [B] [c] [D]

P1 1 2 3
P> 4 3 2 1
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Problem 2
Risk increases with time

(Al [B] [c] [D]

Py 1 2 3
P> 4 3 2 1
P3
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Problem 2
Risk increases with time

(Al [B] [c] [D]

P1 1 2 3
P> 4 3 2
Ps 4 3 2 1

=
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Problem 2
Risk increases with time

(Al [B] [c] [D]

P1 1 2 3
P> 4 3 2 1
Ps 4 3 2 1

P1 1 2 3 4
P 4 3 1
Ps 3 2 4 1

N
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Problem 2
Interruption model

dpr — kdt for te [0,1/K]
0  otherwise

Pr(w) = min{l, /Owndt} — min{L, kw}
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Problem 2
Interruption model

dpr — kdt for te [0,1/K]
0  otherwise

Pr(w) = min{l, /Owndt} — min{L, kw}

Goal: maximize expected work production J
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Problem 2

Free-initiation model (1/2)

Regimen ©: allocate whole workload on a single computer

E® (jobdone, ©) = / Pr(jobdone > u under ©) du
0
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Problem 2

Free-initiation model (1/2)

Regimen ©: allocate whole workload on a single computer

E® (jobdone, ©) = / Pr(jobdone > u under ©) du
0

Single chunk

EOw,e,) = w1 - Pr(W))
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Problem 2

Free-initiation model (1/2)

Regimen ©: allocate whole workload on a single computer

E® (jobdone, ©) = / Pr(jobdone > u under ©) du
0

Single chunk

EOw,e,) = w1 - Pr(W))

Two chunks with wy +wy = W

ED(W,0,) = wi(1 — Pr(w1)) + wa(l — Pr(wi 4 w»))
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Problem 2

Free-initiation model (2/2)

With n chunks, maximize

E®OW, n) = wi(1 = Pr(w1)) + wa(l — Pr(wi + wy))
coo wp(l = Pr(ws + - +wp))

where

w1 >0, wp>0,..., wp, >0

w1+w2+~-+wn§W
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Problem 2
Charged-initiation model

E®©)(jobdone) = / Pr(jobdone > u +¢) du.
0
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Problem 2
Charged-initiation model

E®©)(jobdone) = / Pr(jobdone > u +¢) du.
0

Single chunk

ECO(W,1) =W (1 - Pr(W +¢))
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Problem 2
Charged-initiation model

E®©)(jobdone) = / Pr(jobdone > u +¢) du.
0

Single chunk

ECO(W,1) =W (1 - Pr(W +¢))

Two chunks with w1 +wy, < W

EC(W,2) =wi(1 — Pr(wy +¢)) 4+ wa(l — Pr(wi 4 wa + 2¢))
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Problem 2
Some results

Theorem: Relating the two models
EOW,n) > ECW,n) > EOW,n) - ne

Theorem: Free initiation model, 1 processor

Optimal schedule to deploy W € [0, %] units of work in n chunks:
use identical chunks of size Z/n:

_n 1
"n+1k

n+122K/
n

Z = min{W } EOw,n) = 7z -
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Problem 2
2 computers: general shape of optimal solution

Was Wao Wai

Theorem
Wi and W2 assigned workloads in optimal solution:

e 1. Either Wy W2=0o0or WL JW2=W
@ 2. Py processes Wi \ W2 before Wy [ W2
@ 3. P; and P, process Wy () W2 in reverse order
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Problem 2
2 computers: general shape of optimal solution

Was Wao Wai

Theorem
Wi and W2 assigned workloads in optimal solution:

e 1. Either Wy W2=0o0or WL JW2=W
@ 2. Py processes Wi \ W2 before Wy [ W2
@ 3. P; and P, process Wy () W2 in reverse order

® Optimal out of reach even for 2 or 3 chunks per processor
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Problem 2
Lessons learnt from Problem 2

@ Probability law to model interruptions — problem rapidly
untractable

o Difficult to decide the size of chunks

@ With more than one processor, difficult to decide which part
of the work should be replicated

e Optimal out of reach: heuristics (structured solution), upper
and lower bounds, experiments

@ Proactive methods already turn out to be challenging, we did
not investigate reactive methods so far
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Conclusion

Outline

© Conclusion
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Conclusion
Related work

Problem 1:

Qishi Wu et al- Directed platform graphs (WAN); unbounded
multi-port with overlap; mono-criterion problems

Subhlok and Vondran— Pipeline on hom platforms: extended
Chains-to-chains— Heterogeneous, replicate/data-parallelize

Mapping pipelined computations onto clusters and grids— DAG
[Taura et al.], DataCutter [Saltz et al ]

Energy-aware mapping of pipelined computations— [Melhem et
al.], three-criteria optimization

Problem 2:

@ Landmark paper by Bhatt, Chung, Leighton & Rosenberg
on cycle stealing

@ Hardware failures
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Conclusion
Conclusion

Problem 1:
@ Definition of applications, platforms, multi-criteria mappings,
failure models

@ Working out examples to show insight of problem complexity,
full complexity study, linear program formulations (NP-hard
instances)

@ Practical side: Several polynomial heuristics and simulations,
JPEG application, good results of the heuristics (close to LP
solution)

Problem 2:
o Turned out much more difficult than expected (© or ®7?)
@ Extension to resources with different risk functions
@ Extension to resources with different computation capacities
@ Master-slave approach with communication costs
e Comparison with dynamic approaches
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