Complexity results
for throughput and latency optimization
of replicated and data-parallel workflows

Anne Benoit and Yves Robert

; GRAAL team, LIP
Ecole Normale Supérieure de Lyon

June 2007

Anne.Benoit@ens-lyon.fr June 2007 Workflows complexity results Alpage meeting 1/ 33

Introduction

Introduction and motivation

@ Mapping workflow applications onto parallel platforms

Anne.Benoit@ens-lyon.fr June 2007 Workflows complexity results Alpage meeting 2/ 33

Introduction

Introduction and motivation

@ Mapping workflow applications onto parallel platforms
Difficult challenge

Anne.Benoit@ens-lyon.fr June 2007 Workflows complexity results Alpage meeting 2/ 33

Introduction

Introduction and motivation

@ Mapping workflow applications onto parallel platforms
Difficult challenge

@ Heterogeneous clusters, fully heterogeneous platforms

Anne.Benoit@ens-lyon.fr June 2007 Workflows complexity results Alpage meeting 2/ 33

Introduction

Introduction and motivation

@ Mapping workflow applications onto parallel platforms
Difficult challenge

@ Heterogeneous clusters, fully heterogeneous platforms
Even more difficult!

Anne.Benoit@ens-lyon.fr June 2007 Workflows complexity results Alpage meeting 2/ 33

Introduction

Introduction and motivation

@ Mapping workflow applications onto parallel platforms
Difficult challenge

@ Heterogeneous clusters, fully heterogeneous platforms
Even more difficult!

@ Structured programming approach

Anne.Benoit@ens-lyon.fr June 2007 Workflows complexity results Alpage meeting 2/ 33

Introduction

Introduction and motivation

@ Mapping workflow applications onto parallel platforms
Difficult challenge

@ Heterogeneous clusters, fully heterogeneous platforms
Even more difficult!

@ Structured programming approach

o Easier to program (deadlocks, process starvation)
e Range of well-known paradigms (pipeline, farm)
e Algorithmic skeleton: help for mapping

Mapping pipeline and fork workflows

Anne.Benoit@ens-lyon.fr June 2007 Workflows complexity results Alpage meeting 2/ 33

Introduction
Rule of the game

@ Consecutive data-sets fed into the workflow
@ Period Tperiod = time interval between beginning of execution
of two consecutive data sets (throughput=1/Tperiod)

o Latency Tiatency(x) = time elapsed between beginning and
end of execution for a given data set x, and

Tlatency = MaXx 7_Iatency(X)

Anne.Benoit@ens-lyon.fr June 2007 Workflows complexity results Alpage meeting 3/ 33

Introduction

Rule of the game

@ Consecutive data-sets fed into the workflow

@ Period Tperiod = time interval between beginning of execution
of two consecutive data sets (throughput=1/Tperiod)

o Latency Tiatency(x) = time elapsed between beginning and
end of execution for a given data set x, and

Tlatency = MaXx 7_Iatency(X)

e Map each pipeline/fork stage on one or several processors

@ Goal: minimize Tyeriod OF Tiatency OF bi-criteria minimization

Anne.Benoit@ens-lyon.fr June 2007 Workflows complexity results Alpage meeting 3/ 33

Introduction
Replication and data-parallelism

Replicate stage Sk on Py,..., Pq

/ Spon Py:datasets1, 4,7, ...
vo. Sk-1 — Sk on Py datasets2,5,8, ... —— Ski1 ...
. Skon P;: datasets3,5,9,...

Anne.Benoit@ens-lyon.fr June 2007 Workflows complexity results Alpage meeting 4/ 33

Introduction
Replication and data-parallelism

Replicate stage Sk on Py,..., Pq

/ Spon Py:datasets1, 4,7, ...
vo. Sk-1 — Sk on Py datasets2,5,8, ... —— Ski1 ...

. Skon P;: datasets3,5,9,...
Data-parallelize stage Sy on Py,..., P,

Sk (w = 16) Pi(s1=2): eeeeecee
scee = Py(sp=1): eeee
ccee P3(s3=1): eeee

Anne.Benoit@ens-lyon.fr June 2007

Workflows complexity results Alpage meeting 4/ 33

Introduction
Major contributions

o Complexity results for throughput and latency optimization of
replicated and data-parallel workflows

Anne.Benoit@ens-lyon.fr June 2007 Workflows complexity results Alpage meeting 5/ 33

Introduction
Major contributions

o Complexity results for throughput and latency optimization of
replicated and data-parallel workflows

@ Theoretical approach to the problem

o definition of replication and data-parallelism
o formal definition of Tperiod @and Tiatency in €ach case

@ Problem complexity: focus on pipeline and fork workflows

Anne.Benoit@ens-lyon.fr June 2007 Workflows complexity results Alpage meeting 5/ 33

Introduction

Outline

@ Framework

© Working out an example
© The problem

@ Complexity results

© Conclusion

Anne.Benoit@ens-lyon.fr June 2007 Workflows complexity results Alpage meeting 6/ 33

Framework

Outline

© Framework

Anne.Benoit@ens-lyon. June 2007 Workflows complexity results Alpage meeting

Framework

Pipeline graphs

50 (51 5k 1 6k 5n
w1 W Wn

@ nstages Sk, 1 < k<n
o Si:
e receives input of size dx_1 from Sx_1

e performs w, computations
e outputs data of size dx to Ski1

Anne.Benoit@ens-lyon.fr June 2007 Workflows complexity results Alpage meeting 8/ 33

Framework

Fork graphs

@ n+ 1stages S, 0 < k<n
e Sp: root stage
e 51 to S, independent stages

@ A data set goes through stage Sy, then it can be executed
simultaneously for all other stages

Anne.Benoit@ens-lyon.fr June 2007 Workflows complexity results Alpage meeting 9/ 33

Framework

The platform

@ p processors P,, 1 < u < p, fully interconnected
@ s, speed of processor P,
@ bidirectional link link, , : P, — P,, bandwidth b, ,

@ one-port model: each processor can either send, receive or
compute at any time-step

Anne.Benoit@ens-lyon.fr June 2007 Workflows complexity results Alpage meeting

Framework
Different platforms

Fully Homogeneous — Identical processors (s, = s) and links
(by,, = b): typical parallel machines

Communication Homogeneous — Different-speed processors
(sy # sv), identical links (b, , = b): networks of
workstations, clusters

Fully Heterogeneous — Fully heterogeneous architectures, s, # s,
and b, # by, hierarchical platforms, grids

Anne.Benoit@ens-lyon.fr June 2007 Workflows complexity results Alpage meeting 11/ 33

Framework
Back to pipeline: mapping strategies

(s e(s) e e (5

The pipeline application

Anne.Benoit@ens-lyon.fr June 2007 Workflows complexity results Alpage meeting 12/ 33

Framework

Back to pipeline: mapping strategies

ONE-TO-ONE MAPPING

Anne.Benoit@ens-lyon.fr June 2007 Workflows complexity results Alpage meeting 12/ 33

Framework

Back to pipeline: mapping strategies

(58] e - (-

INTERVAL MAPPING

Anne.Benoit@ens-lyon.fr June 2007 Workflows complexity results Alpage meeting 12/ 33

Framework

Back to pipeline: mapping strategies

(58] e - (-

GENERAL MAPPING

Anne.Benoit@ens-lyon.fr June 2007 Workflows complexity results Alpage meeting 12/ 33

Framework

Back to pipeline: mapping strategies

INTERVAL MAPPING

In this work, INTERVAL MAPPING

Anne.Benoit@ens-lyon.fr June 2007 Workflows complexity results Alpage meeting 12/ 33

Framework
Chains-on-chains

Load-balance contiguous tasks

573 48138297 3523€6

Anne.Benoit@ens-lyon.fr June 2007 Workflows complexity results Alpage meeting 13/ 33

Framework
Chains-on-chains

Load-balance contiguous tasks
573 4813829735 23€6

With p = 4 identical processors?

Anne.Benoit@ens-lyon.fr June 2007 Workflows complexity results Alpage meeting 13/ 33

Framework
Chains-on-chains

Load-balance contiguous tasks
573 4813829735 23€6

With p = 4 identical processors?

5734|8138 29735236

7—period =20

Anne.Benoit@ens-lyon.fr June 2007 Workflows complexity results Alpage meeting 13/ 33

Framework
Chains-on-chains

Load-balance contiguous tasks
573 4813829735 23€6

With p = 4 identical processors?

5734|8138 29735236

Tperiod =20

NP-hard for different-speed processors, even without communications J

Anne.Benoit@ens-lyon.fr June 2007 Workflows complexity results Alpage meeting 13/ 33

Example

Outline

© Working out an example

Anne.Benoit@ens-lyon.fr June 2007 Workflows complexity results Alpage meeting 14/ 33

Example
Working out an example

ST - S - 8§ — 8
14 4 2 4

Interval mapping, 4 processors, s; =2 and sp =s3 =s4 =1

Optimal period?

Anne.Benoit@ens-lyon.fr June 2007 Workflows complexity results Alpage meeting 15/ 33

Example
Working out an example

ST - S - 8§ — 8
14 4 2 4

Interval mapping, 4 processors, s; =2 and sp =s3 =s4 =1

Optimal period?
Tperiod =7,8 — Py, 583 — P, S4 — P3 (Tlatency = 17)

Optimal latency?

Anne.Benoit@ens-lyon.fr June 2007 Workflows complexity results Alpage meeting 15/ 33

Example
Working out an example

ST - S - 8§ — 8
14 4 2 4

Interval mapping, 4 processors, s; =2 and sp =s3 =s4 =1

Optimal period?
Tperiod =7,8 — Py, 583 — P, S4 — P3 (Tlatency = 17)

Optimal latency?
Tlatency =12, 81528384 - Pl (Tperiod = 12)

Min. latency if Tperiod < 107

Anne.Benoit@ens-lyon.fr June 2007 Workflows complexity results Alpage meeting 15/ 33

Example
Working out an example

ST - S - 8§ — 8
14 4 2 4

Interval mapping, 4 processors, s; =2 and sp =s3 =s4 =1

Optimal period?
Tperiod =7,8 — Py, 583 — P, S4 — P3 (Tlatency = 17)

Optimal latency?
Tlatency =12, 81528384 - Pl (Tperiod = 12)

Min. latency if Tperiod < 107
Tlatency =14, 51583 — P1, S4 — P>

Anne.Benoit@ens-lyon.fr June 2007 Workflows complexity results Alpage meeting 15/ 33

Example
Example with replication and data-parallelism

S — S — & — &
14 4 2 4

Interval mapping, 4 processors, s; =2 and sp =s3 =s4 =1

Replicate interval [S,..S,] on Py,...,Pq

/S S,...S5,0on Py:datasets 1, 4,7, ...
.S — S,...S,0on Py datasets 2,5,8,... —— S ...
N Sy...S,on Ps: datasets 3,5,9,...
Tperiod = 5;:,7% and 7—Iatency =gx Tperiod

Anne.Benoit@ens-lyon.fr June 2007

Workflows complexity results Alpage meeting 16/ 33

Example
Example with replication and data-parallelism

ST — S - 8§ — &
14 4 2 4

Interval mapping, 4 processors, s; =2 and sp =s3 =s4 =1

Data Parallelize single stage Si on Py,..., P,

S (w =16) Pi(s1=2): eeeeecee
ceee = Py(sp=1): eeee
ceee P;(s3=1): eeee
Tperiod = %Si and Tlatency = 7_period

i=1

Anne.Benoit@ens-lyon.fr June 2007

Workflows complexity results Alpage meeting 16/ 33

Example
Example with replication and data-parallelism

ST — S - 8§ — &
14 4 2 4

Interval mapping, 4 processors, s; =2 and sp =s3 =s4 =1

Optimal period?

Anne.Benoit@ens-lyon.fr June 2007 Workflows complexity results Alpage meeting 16/ 33

Example
Example with replication and data-parallelism

ST — S - 8§ — &
14 4 2 4

Interval mapping, 4 processors, s; =2 and sp =s3 =s4 =1

Optimal period?

DP REP
S1 N P1Ps, 5838, . P3Py

14 4+42+4
Tperiod = max(ﬁ, gXJ{) =5, Tlatency = 14.67

Anne.Benoit@ens-lyon.fr June 2007 Workflows complexity results Alpage meeting 16/ 33

Example
Example with replication and data-parallelism

ST — S - 8§ — &
14 4 2 4

Interval mapping, 4 processors, s; =2 and sp =s3 =s4 =1

Optimal period?

DP REP
S1 N P1Ps, 5838, . P3Py

14 4+42+4
Tperiod = max(ﬁ, gXJ{) =5, Tlatency = 14.67

S1 If PaP3 Py, $38354 — Pr

Tperiod = max(1+114+1, 4248) = 5, Tiatency = 9.67 (optimal)

Anne.Benoit@ens-lyon.fr June 2007 Workflows complexity results Alpage meeting 16/ 33

The problem

Outline

© The problem

Anne.Benoit@ens-lyon.fr June 2007 Workflows complexity results Alpage meeting 17/ 33

The problem

INTERVAL MAPPING for pipeline graphs

@ Several consecutive stages onto the same processor
@ Increase computational load, reduce communications

Anne.Benoit@ens-lyon.fr June 2007 Workflows complexity results Alpage meeting 1

The problem
INTERVAL MAPPING for pipeline graphs

@ Several consecutive stages onto the same processor
@ Increase computational load, reduce communications
e Partition of [1..n] into m intervals |; = [d}, &j]
(With djgej 'FOr]_SjSm, di =1, c1’j+1:ej—|—1for
1<j<m-1ande,=n)

o Interval /; mapped onto processor Pyjioc(j)

Anne.Benoit@ens-lyon.fr June 2007 Workflows complexity results Alpage meeting 18/ 33

The problem
INTERVAL MAPPING for pipeline graphs

@ Several consecutive stages onto the same processor
@ Increase computational load, reduce communications
e Partition of [1..n] into m intervals |; = [d}, &j]
(With djgej 'FOr]_SjSm, di =1, c1’j+1:ej—|—1for
1<j<m-1ande,=n)

o Interval /; mapped onto processor Pyjioc(j)

J

e
5dj71 Z,J:dj Wi Oe:
+ +

Toeriod = MmMax
pene 1<j<m baIIoc(j—l),aIIoc(j) Salloc(j) balloc(j),alloc(j+1)

Anne.Benoit@ens-lyon.fr June 2007 Workflows complexity results Alpage meeting 18/ 33

The problem
INTERVAL MAPPING for pipeline graphs

@ Several consecutive stages onto the same processor
@ Increase computational load, reduce communications
e Partition of [1..n] into m intervals |; = [d}, &j]
(With djgej 'FOr]_SjSm, di =1, c1’j+1:ej—|—1for
1<j<m-1ande,=n)

o Interval /; mapped onto processor Pyjioc(j)

ej .
Tperiod = _max Og-1 + Lizg i + Je;
1<j<m balloc(j—l),alloc(j) Salloc(}) ba“OC(j),aIIoc(j+1)
€j .
Tiatency = Z 6dj_1 + Zi:dj Wi n (5ej
1520 | Paltoc(i—1) alloc(j) Salloc(j) Dalloc(j).alloc(j+1)

Anne.Benoit@ens-lyon.fr June 2007 Workflows complexity results Alpage meeting 18/ 33

The problem

Fork graphs

@ map any partition of the graph onto the processors
@ q intervals, g <p
@ first interval: Sy and possibly 81 to Sk

@ next intervals of independent stages

Anne.Benoit@ens-lyon.fr June 2007 Workflows complexity results Alpage meeting 19/ 33

The problem

Fork graphs

map any partition of the graph onto the processors
q intervals, g < p
first interval: Sp and possibly S1 to Sk

next intervals of independent stages

Tperiod =7

Anne.Benoit@ens-lyon.fr June 2007 Workflows complexity results Alpage meeting 19/ 33

The problem

Fork graphs

@ map any partition of the graph onto the processors
@ g intervals, g <p

o first interval: Sp and possibly &1 to Sk

°

next intervals of independent stages

° Tperiod =7
@ depends on the com model: is it possible to start com as soon
as &g is done? Which order for com?

Anne.Benoit@ens-lyon.fr June 2007 Workflows complexity results Alpage meeting 19/ 33

The problem

Fork graphs

@ map any partition of the graph onto the processors
@ g intervals, g <p

o first interval: Sp and possibly &1 to Sk

°

next intervals of independent stages

@ Informally: Toeriog = max time needed by processor to
receive data, compute, output result

Anne.Benoit@ens-lyon.fr June 2007 Workflows complexity results Alpage meeting 19/ 33

The problem
Fork graphs

map any partition of the graph onto the processors
q intervals, g < p
first interval: Sg and possibly S to Sk

next intervals of independent stages

@ Informally: Tpherioq = max time needed by processor to
receive data, compute, output result

® Tiatency = time elapsed between data set input to Sp until last
computation for this data set is completed

Anne.Benoit@ens-lyon.fr June 2007 Workflows complexity results Alpage meeting 19/ 33

The problem
Fork graphs

map any partition of the graph onto the processors
q intervals, g < p
first interval: Sp and possibly S1 to Sk

next intervals of independent stages

o Informally: Tpheriod = max time needed by processor to
receive data, compute, output result

@ Tjatency = time elapsed between data set input to Sp until last
computation for this data set is completed

@ Simpler model for formal analysis

Anne.Benoit@ens-lyon.fr June 2007 Workflows complexity results Alpage meeting 19/ 33

The problem

Back to a simpler problem

No communication costs nor overheads

Anne.Benoit@ens-lyon.fr June 2007 Workflows complexity results Alpage meeting 2

The problem

Back to a simpler problem

@ No communication costs nor overheads

o Cost to execute S; on P, alone:

Wi
sy
°
°
°

Anne.Benoit@ens-lyon.fr June 2007 Workflows complexity results Alpage meeting 2

The problem

Back to a simpler problem

@ No communication costs nor overheads

o Cost to execute S; on P, alone: ¥

o Cost to data-parallelize [S;, Sj] (i = j for pipeline; 0 < i < j or
i =j =0 for fork) on k processors Pq,, ..., Pg,:

J

o=i We
~k _
ZU:l Squ

Cost = Tperiod Of assigned processors
Cost = delay to traverse the interval

Anne.Benoit@ens-lyon.fr June 2007 Workflows complexity results Alpage meeting 20/ 33

The problem

Back to a simpler problem

No communication costs nor overheads
Cost to execute S; on P, alone: %
u

Cost to data-parallelize

Cost to replicate [S;,S;] on k processors Pg,. .., Pg,:

Doy We

k x minlgugk Squ

Cost = Tperiod Of assigned processors
Delay to traverse the interval = time needed by slowest
processor: _

D i We

minlgugk Squ

tmax -

Anne.Benoit@ens-lyon.fr June 2007 Workflows complexity results Alpage meeting 2

The problem
Back to a simpler problem

No communication costs nor overheads

Wi

Cost to execute S; on P, alone:

o
o
o Cost to data-parallelize
o Cost to replicate

o

With these formulas: easy to compute Tperiog for both graphs,
and Tiatency for pipeline graphs

Anne.Benoit@ens-lyon.fr June 2007 Workflows complexity results Alpage meeting 20/

The problem
Latency for a fork?

@ partition of stages into g sets Z, (1 < r < q <p)
@ Sp € Iy, to k processors Pg,, ..., Pqg,

Anne.Benoit@ens-lyon.fr June 2007 Workflows complexity results Alpage meeting 21/ 33

The problem
Latency for a fork?

@ partition of stages into g sets Z, (1 < r < q <p)
@ Sp € Iy, to k processors Pg,, ..., Pqg,
@ tmax(r) = delay of r-th set (1 < r < q), computed as before

@ flexible com model: computations of Z,, r > 2, start as soon
as computation of Sy is completed.

Anne.Benoit@ens-lyon.fr June 2007 Workflows complexity results Alpage meeting 21/ 33

The problem
Latency for a fork?

partition of stages into g sets Z, (1 <r < g <p)

So € 11, to k processors Pg,, ..., Pg,

tmax(r) = delay of r-th set (1 < r < g), computed as before
flexible com model: computations of Z,, r > 2, start as soon
as computation of Sy is completed.

sp = speed at which Sy is processed:

k . , .
® So =), 1Sq, if Zy is data-parallelized
® Sp = Miny<,<k Sq, if Z1 is replicated

Anne.Benoit@ens-lyon.fr June 2007 Workflows complexity results Alpage meeting 21/ 33

The problem
Latency for a fork?

partition of stages into g sets Z, (1 <r < g <p)

]

@ Sp € Iy, to k processors Pg,, ..., Pqg,

@ tmax(r) = delay of r-th set (1 < r < q), computed as before
]

flexible com model: computations of Z,, r > 2, start as soon
as computation of Sy is completed.

@ so = speed at which Sy is processed:
e 50 = 25:1 sq, if Z1 is data-parallelized
® Sp = Miny<,<k Sq, if Z1 is replicated

°

Wo
Tlatency = maxX <tmax(1) g + 2rgra<xq tmax()>

Anne.Benoit@ens-lyon.fr June 2007 Workflows complexity results Alpage meeting 21/ 33

The problem
Optimization problem

Given
@ an application graph (n-stage pipeline or (n + 1)-stage fork),
@ a target platform (Homogeneous with p identical processors
or Heterogeneous with p different-speed processors),

@ a mapping strategy with replication, and either with
data-parallelization or without,

@ an objective (period Tperiod OF latency Tiatency).

Anne.Benoit@ens-lyon.fr June 2007 Workflows complexity results Alpage meeting 22/

The problem
Optimization problem

Given
@ an application graph (n-stage pipeline or (n + 1)-stage fork),
@ a target platform (Homogeneous with p identical processors
or Heterogeneous with p different-speed processors),

@ a mapping strategy with replication, and either with
data-parallelization or without,

@ an objective (period Tperiod OF latency Tiatency).

determine an interval-based mapping that minimizes the objective

Anne.Benoit@ens-lyon.fr June 2007 Workflows complexity results Alpage meeting 22/

The problem
Optimization problem

Given
@ an application graph (n-stage pipeline or (n + 1)-stage fork),
@ a target platform (Homogeneous with p identical processors
or Heterogeneous with p different-speed processors),

@ a mapping strategy with replication, and either with
data-parallelization or without,

@ an objective (period Tperiod OF latency Tiatency).

determine an interval-based mapping that minimizes the objective
16 optimization problems

Anne.Benoit@ens-lyon.fr June 2007 Workflows complexity results Alpage meeting 22/

The problem

Bi-criteria optimization problem

@ given threshold period Pihreshold, determine mapping whose
period does not exceed Pipreshold and that minimizes Tjatency

@ given threshold latency Lipreshold, determine mapping whose
latency does not exceed Lipreshold and that minimizes Tperiod

Anne.Benoit@ens-lyon.fr June 2007 Workflows complexity results

Alpage meeting 23/ 33

Complexity

Outline

@ Complexity results

Anne.Benoit@ens-lyon. June 2007 Workflows complexity results Alpage meeting

Complexity
Complexity results

Without data-parallelism, Homogeneous platforms

’ Objective H period ‘ latency ‘ bi-criteria ‘
Hom. pipeline -
Het. pipeline Poly (str)
Hom. fork - Poly (DP)
Het. fork || Poly (str) NP-hard

Anne.Benoit@ens-lyon.fr June 2007 Workflows complexity results Alpage meeting 25/ 33

Complexity
Complexity results

With data-parallelism, Homogeneous platforms

’ Objective H period ‘ latency ‘ bi-criteria ‘
Hom. pipeline -
Het. pipeline Poly (DP)
Hom. fork - Poly (DP)
Het. fork || Poly (str) NP-hard

Anne.Benoit@ens-lyon.fr June 2007 Workflows complexity results Alpage meeting 25/ 33

Complexity
Complexity results

Without data-parallelism, Heterogeneous platforms

’ Objective H period ‘ latency ‘ bi-criteria ‘
Hom. pipeline Poly (*) - Poly (*)
Het. pipeline || NP-hard (**) | Poly (str) | NP-hard
Hom. fork Poly (*)
Het. fork | NP-hard | -

Anne.Benoit@ens-lyon.fr June 2007 Workflows complexity results Alpage meeting 25/ 33

Complexity
Complexity results

With data-parallelism, Heterogeneous platforms

’ Objective H period ‘ latency | bi-criteria

Hom. pipeline NP-hard

Het. pipeline -
Hom. fork NP-hard
Het. fork -

Anne.Benoit@ens-lyon.fr June 2007 Workflows complexity results Alpage meeting 25/ 33

Complexity
Complexity results

Most interesting case:
Without data-parallelism, Heterogeneous platforms

’ Objective H period ‘ latency ‘ bi-criteria ‘
Hom. pipeline Poly (*) - Poly (*)
Het. pipeline || NP-hard (**) | Poly (str) | NP-hard
Hom. fork Poly (*)
Het. fork NP-hard ‘ -

Anne.Benoit@ens-lyon.fr June 2007 Workflows complexity results Alpage meeting 25/ 33

Complexity
No data-parallelism, Heterogeneous platforms

e For pipeline, minimizing the latency is straightforward:
map all stages on fastest proc

@ Minimizing the period is NP-hard (involved reduction similar
to the heterogeneous chain-to-chain one) for general pipeline

@ Homogeneous pipeline: all stages have same workload w:
in this case, polynomial complexity.

Anne.Benoit@ens-lyon.fr June 2007 Workflows complexity results Alpage meeting 26/ 33

Complexity
No data-parallelism, Heterogeneous platforms

e For pipeline, minimizing the latency is straightforward:
map all stages on fastest proc

@ Minimizing the period is NP-hard (involved reduction similar
to the heterogeneous chain-to-chain one) for general pipeline

@ Homogeneous pipeline: all stages have same workload w:
in this case, polynomial complexity.

@ Polynomial bi-criteria algorithm for homogeneous pipeline

Anne.Benoit@ens-lyon.fr June 2007 Workflows complexity results Alpage meeting 26/ 33

Complexity
Lemma: form of the solution

Pipeline, no data-parallelism, Heterogeneous platform

Lemma

If an optimal solution which minimizes pipeline period uses q
processors, consider q fastest processors P1, ..., P4, ordered by
non-decreasing speeds: sy < ... < 5.

There exists an optimal solution which replicates intervals of stages
onto k intervals of processors |, = [Py, Pe,], with 1 < r < k < g,
d=1e=q, ande +1=d,y1 forl <r < k.

Anne.Benoit@ens-lyon.fr June 2007 Workflows complexity results Alpage meeting 27/ 33

Complexity
Lemma: form of the solution

Pipeline, no data-parallelism, Heterogeneous platform

Lemma

If an optimal solution which minimizes pipeline period uses q
processors, consider q fastest processors P1, ..., P4, ordered by
non-decreasing speeds: sy < ... < 5.

There exists an optimal solution which replicates intervals of stages
onto k intervals of processors |, = [Py, Pe,], with 1 < r < k < g,
d=1e=q, ande +1=d,y1 forl <r < k.

Proof: exchange argument, which does not increase latency

Anne.Benoit@ens-lyon.fr June 2007 Workflows complexity results Alpage meeting 27/ 33

Complexity
Binary-search /Dynamic programming algorithm

Given latency L, given period K
Loop on number of processors g
Dynamic programming algorithm to minimize latency

Success if L is obtained

Anne.Benoit@ens-lyon.fr June 2007 Workflows complexity results Alpage meeting

Complexity
Binary-search /Dynamic programming algorithm

@ Given latency L, given period K

@ Loop on number of processors g

@ Dynamic programming algorithm to minimize latency
°

Success if L is obtained

Binary search on L to minimize latency for fixed period

Binary search on K to minimize period for fixed latency

Anne.Benoit@ens-lyon.fr June 2007 Workflows complexity results Alpage meeting

Complexity
Dynamic programming algorithm

e Compute L(n,1,q), where L(m,i,j) = minimum latency to
map m pipeline stages on processors P; to P;, while fitting in

period K.
Lm,ij)= min { 2 I gmye <K
1<m<m L(mvlvk)+ Lim—m' k+1,j) (2)
i<k<j
@ Case (1): replicating m stages onto processors P;, ..., P;

e Case (2): splitting the interval

Anne.Benoit@ens-lyon.fr June 2007 Workflows complexity results Alpage meeting 29/ 33

Complexity
Dynamic programming algorithm

e Compute L(n,1,q), where L(m,i,j) = minimum latency to
map m pipeline stages on processors P; to P;, while fitting in

period K.
N _ mw o f MW < K (1)
! _ S; (Jf’)'sl' -
(m, i,J) 1§‘;1',“< m { L(m' i k) + L(m—m' k+1,j) (2)
i<k<j

Initialization:

Yoif A <K
L(]-, Ia.l) = { Si ! (J_I)‘Si -

+o00 otherwise

3

woogf MW K
L(m,i,i):{ s s =

+o00 otherwise

Anne.Benoit@ens-lyon.fr June 2007 Workflows complexity results Alpage meeting 29/ 33

Complexity
Dynamic programming algorithm

e Compute L(n,1,q), where L(m,i,j) = minimum latency to
map m pipeline stages on processors P; to P;, while fitting in

period K.
.. . mw - jf A <K (1)
L(m,i,j)= min Si CoU=Dsi =]
(J) 1§m’< m { L(mlvlvk)+L(m—m,ak+1v./) (2)
i<k<j

o Complexity of the dynamic programming: O(n2.p*)
@ Number of iterations of the binary search formally bounded,
very small number of iterations in practice.

Anne.Benoit@ens-lyon.fr June 2007 Workflows complexity results Alpage meeting 29/ 33

Conclusion

Outline

© Conclusion

Anne.Benoit@ens-lyon. June 2007 Workflows complexity results Alpage meeting 30/

Conclusion
Related work

Subhlok and Vondran— Extension of their work (pipeline on hom
platforms)

Chains-to-chains— In our work possibility to replicate or
data-parallelize

Mapping pipelined computations onto clusters and grids— DAG
[Taura et al.], DataCutter [Saltz et al]

Energy-aware mapping of pipelined computations [Melhem et al],
three-criteria optimization

Mapping pipelined computations onto special-purpose architectures—
FPGA arrays [Fabiani et al.]. Fault-tolerance for
embedded systems [Zhu et al.]

Mapping skeletons onto clusters and grids— Use of stochastic
process algebra [Benoit et al.]

Anne.Benoit@ens-lyon.fr June 2007 Workflows complexity results Alpage meeting 31/ 33

Conclusion
Conclusion

@ Mapping structured workflow applications onto computational
platforms, with replication and data-parallelism

@ Complexity of the most tractable instances — insight of the
combinatorial nature of the problem

@ Pipeline and fork graphs, extension to fork-join

@ Homogeneous and Heterogeneous platforms with no
communications

@ Minimizing period or latency, and bi-criteria optimization
problems

Anne.Benoit@ens-lyon.fr June 2007 Workflows complexity results Alpage meeting 32/ 33

Conclusion
Conclusion

@ Mapping structured workflow applications onto computational
platforms, with replication and data-parallelism

@ Complexity of the most tractable instances — insight of the
combinatorial nature of the problem

@ Pipeline and fork graphs, extension to fork-join

@ Homogeneous and Heterogeneous platforms with no
communications

@ Minimizing period or latency, and bi-criteria optimization
problems

@ Solid theoretical foundation for study of single/bi-criteria
mappings, with possibility to replicate and data-parallelize
application stages

Anne.Benoit@ens-lyon.fr June 2007 Workflows complexity results Alpage meeting 32/ 33

Conclusion

Future work

Short term

Select polynomial instances of the problem and
assess complexity when adding communication
@ Design heuristics to solve combinatorial
instances of the problem
Longer term
@ Heuristics based on our polynomial algorithms
for general application graphs structured as
combinations of pipeline and fork kernels
@ Real experiments on heterogeneous clusters
e Comparison of effective performance against
theoretical performance

Anne.Benoit@ens-lyon.fr June 2007 Workflows complexity results Alpage meeting 3!

	Introduction
	Framework
	Working out an example
	The problem
	Complexity results
	Conclusion

