Models and problem

Fault Tolerant Scheduling of Precedence Task Graphs on Heterogeneous Platforms

Anne Benoit. Mourad Hakem and Yves Robert

LIP Laboratory - ENS Lyon - France

APDCM 2008 - Miami, Florida, USA

April 14, 2008

Introduction Models and problem Proposed algorithms Experimental results Conclusion

Motivation

Context

- General context of DAG scheduling (precedence task graphs)
- Goal: minimize the latency (makespan)
- Already a difficult challenge

Failures?

- Software is assumed to be reliable
- Only hardware failures of processors
- Faults are assumed to be fail-silent (fail-stop)

Constraints and objectives

- Precedence constraints between tasks: don't violate them
- Real time constraint: minimize the latency
- ullet Fault tolerance objective: tolerate at most arepsilon proc. failures

Introduction Models and problem Proposed algorithms Experimental results Conclusion

Motivation

Context

- General context of DAG scheduling (precedence task graphs)
- Goal: minimize the latency (makespan)
- Already a difficult challenge

Failures?

- Software is assumed to be reliable
- Only hardware failures of processors
- Faults are assumed to be fail-silent (fail-stop)

Constraints and objectives

- Precedence constraints between tasks: don't violate them
- Real time constraint: minimize the latency
- Fault tolerance objective: tolerate at most ε proc. failures

Introduction Models and problem Proposed algorithms Experimental results Conclusion

Motivation

Context

- General context of DAG scheduling (precedence task graphs)
- Goal: minimize the latency (makespan)
- Already a difficult challenge

Failures?

- Software is assumed to be reliable
- Only hardware failures of processors
- Faults are assumed to be fail-silent (fail-stop)

Constraints and objectives

- Precedence constraints between tasks: don't violate them
- Real time constraint: minimize the latency
- Fault tolerance objective: tolerate at most ε proc. failures

Problem and solutions

Introduction

Bi-criteria problem

Find a distributed schedule on heterogeneous platforms which minimizes latency \mathcal{L} while tolerating ε processor failures.

- Primary/Backup (passive replication)
 - all techniques in the literature assume only one proc. failure
 - requires fault detection mechanism
- Active replication
 - tolerates *multiple* processor failure
 - no fault detection mechanism
 - ... but communication and computation overhead
 - FTBAR algorithm, our approach (off-line scheduling)

Conclusion

Problem and solutions

Introduction

Bi-criteria problem

Find a distributed schedule on heterogeneous platforms which minimizes latency \mathcal{L} while tolerating ε processor failures.

- Primary/Backup (passive replication)
 - all techniques in the literature assume *only one* proc. failure
 - requires fault detection mechanism
- Active replication
 - tolerates multiple processor failure
 - no fault detection mechanism
 - ... but communication and computation overhead
 - FTBAR algorithm, our approach (off-line scheduling)

Problem and solutions

Introduction

Bi-criteria problem

Find a distributed schedule on heterogeneous platforms which minimizes latency \mathcal{L} while tolerating ε processor failures.

- Primary/Backup (passive replication)
 - all techniques in the literature assume *only one* proc. failure
 - requires fault detection mechanism
- Active replication
 - tolerates *multiple* processor failure
 - no fault detection mechanism
 - ... but communication and computation overhead
 - FTBAR algorithm, our approach (off-line scheduling)

Conclusion

Active

Basic definitions and notations

- Parallel application: DAG \rightarrow G = (V, E)
- $\Gamma^-(t)$, $\Gamma^+(t)$: set of predecessors and successors of t
- Free task: all predecessors are already scheduled
- Top level tl of a free task: computed from predecessors top levels (including communication)
- Bottom level $b\ell$ of a task: computed from
 - average computation time of the task
 - average communication cost to successors
 - bottom level of successors
- Task criticalness: task t with the highest priority: $t\ell(t) + b\ell(t)$

Basic definitions and notations

- Parallel application: DAG \rightarrow G = (V, E)
- $\Gamma^-(t)$, $\Gamma^+(t)$: set of predecessors and successors of t
- Free task: all predecessors are already scheduled
- Top level $t\ell$ of a free task: computed from predecessors top levels (including communication)
- Bottom level $b\ell$ of a task: computed from
 - average computation time of the task
 - average communication cost to successors
 - bottom level of successors
- Task criticalness: task t with the highest priority: $t\ell(t) + b\ell(t)$

Introduction

- Parallel application: DAG \rightarrow G = (V, E)
- $\Gamma^-(t)$, $\Gamma^+(t)$: set of predecessors and successors of t
- Free task: all predecessors are already scheduled
- Top level $t\ell$ of a free task: computed from predecessors top levels (including communication)
- Bottom level $b\ell$ of a task: computed from
 - average computation time of the task
 - average communication cost to successors
 - bottom level of successors
- Task criticalness: task t with the highest priority: $t\ell(t) + b\ell(t)$

Examples of top and bottom levels

Example: Homogeneous platforms

•
$$t\ell(t_4) = 9$$

•
$$b\ell(t_4) = 10$$

• Priority
$$(t_4) = 19$$

Principle

- Software solution
- Uses the active software replication scheme to mask failures
- Can tolerate a fixed number ε of arbitrary processor failures

$$\forall \ 1 \leq j \leq m, \quad \mathcal{F}(t, \mathcal{P}_j) = \\ \mathcal{E}(t, \mathcal{P}_j) + \max \left(\max_{t_* \in \Gamma^-(t)} \left\{ \min_{k=1}^{\varepsilon+1} \left\{ \mathcal{F}(t_*^k, \mathcal{P}(t_*^k)) + W(t_*^k, t) \right\} \right\}, r(\mathcal{P}_j) \right)$$

Principle

- Software solution
- Uses the active software replication scheme to mask failures
- Can tolerate a fixed number ε of arbitrary processor failures

$$\forall \ 1 \leq j \leq m, \quad \mathcal{F}(t, \mathcal{P}_j) = \\ \mathcal{E}(t, \mathcal{P}_j) + \max \left(\max_{t_* \in \Gamma^-(t)} \left\{ \min_{k=1}^{\varepsilon+1} \left\{ \mathcal{F}(t_*^k, \mathcal{P}(t_*^k)) + W(t_*^k, t) \right\} \right\}, r(\mathcal{P}_j) \right)$$

Principle

- Software solution
- Uses the active software replication scheme to mask failures
- Can tolerate a fixed number ε of arbitrary processor failures

- Select a critical free task t (keep ordered list)

$$\forall \ 1 \leq j \leq m, \quad \mathcal{F}(t, \mathcal{P}_j) = \\ \mathcal{E}(t, \mathcal{P}_j) + \max \left(\max_{t_* \in \Gamma^-(t)} \Big\{ \min_{k=1}^{\varepsilon+1} \big\{ \mathcal{F}(t_*^k, \mathcal{P}(t_*^k)) + W(t_*^k, t) \big\} \Big\}, r(\mathcal{P}_j) \right)$$

Principle

- Software solution
- Uses the active software replication scheme to mask failures
- Can tolerate a fixed number ε of arbitrary processor failures

- Select a critical free task t (keep ordered list)
- Simulate its mapping on all processors using equation:

$$orall \ 1 \leq j \leq m, \quad \mathcal{F}ig(t,\mathcal{P}_jig) = \\ \mathcal{E}(t,\mathcal{P}_j) + \max \left(\max_{t_* \in \Gamma^-(t)} \left\{ \min_{k=1}^{arepsilon+1} \left\{ \mathcal{F}(t_*^k,\mathcal{P}(t_*^k)) + W(t_*^k,t)
ight\}
ight\}, r(\mathcal{P}_j)
ight)$$

Principle

- Software solution
- Uses the active software replication scheme to mask failures
- Can tolerate a fixed number ε of arbitrary processor failures

- Select a critical free task t (keep ordered list)
- Simulate its mapping on all processors using equation:

$$orall \ 1 \leq j \leq m, \quad \mathcal{F}ig(t,\mathcal{P}_jig) = \\ \mathcal{E}(t,\mathcal{P}_j) + \max\left(\max_{t_* \in \Gamma^-(t)} \Big\{ \min_{k=1}^{arepsilon+1} ig\{\mathcal{F}(t_*^k,\mathcal{P}(t_*^k)) + W(t_*^k,t) ig\} \Big\}, r(\mathcal{P}_j)
ight)$$

- Keep $\varepsilon + 1$ processors allowing minimum finish time of t;

Models and problem

Principle

- Software solution
- Uses the active software replication scheme to mask failures
- Can tolerate a fixed number ε of arbitrary processor failures

- Select a critical free task t (keep ordered list)
- Simulate its mapping on all processors using equation:

$$egin{aligned} orall & 1 \leq j \leq m, \quad \mathcal{F}ig(t, \mathcal{P}_jig) = \ & \mathcal{E}ig(t, \mathcal{P}_jig) + \max\left(\max_{t_* \in \Gamma^-(t)} \Big\{\min_{k=1}^{arepsilon+1} ig\{\mathcal{F}ig(t_*^k, \mathcal{P}ig(t_*^k)ig) + Wig(t_*^k, tig)\Big\}\Big\}, r(\mathcal{P}_j) \end{aligned}$$

- Keep $\varepsilon + 1$ processors allowing minimum finish time of t;
- Schedule t^k , $1 \le k \le \varepsilon + 1$ on selected $\varepsilon + 1$ distinct proc.

Conclusion

FTSA Algorithm - Time and Bounds

Introduction

Time complexity of FTSA: $O(em^2 + v \log \omega)$ e: nb edges, m: nb procs, v: nb tasks, ω : graph width

FTSA Algorithm - Time and Bounds

Introduction

Time complexity of FTSA: $O(em^2 + v \log \omega)$ e: nb edges, m: nb procs, v: nb tasks, ω : graph width

$$\forall \ 1 \leq j \leq m, \quad \mathcal{F}(t, \mathcal{P}_j) \text{ computed as in the algorithm} \\ \rightarrow \mathcal{M}^* = \max_t \left\{ \min_{1 \leq k \leq s+1} \left\{ \mathcal{F}(t^k, \mathcal{P}(t^k)) \right\} \right\} \quad \text{first replica to complete}$$

FTSA Algorithm - Time and Bounds

Time complexity of FTSA: $O(em^2 + v \log \omega)$ e: nb edges, m: nb procs, v: nb tasks, ω : graph width

Lower Bound \mathcal{M}'

$$\begin{array}{ll} \forall \ 1 \leq j \leq \textit{m}, & \mathcal{F}(t,\mathcal{P}_{j}) \text{ computed as in the algorithm} \\ \rightarrow \mathcal{M}^{*} = \max_{t} \left\{ \min_{1 \leq k \leq \varepsilon+1} \left\{ \mathcal{F}(t^{k},\mathcal{P}(t^{k}) \right\} \right\} & \text{first replica to complete} \end{array}$$

Lower Bound \mathcal{M}

$$\begin{aligned} &\forall \ 1 \leq j \leq \textit{m}, \quad \mathcal{F}(t,\mathcal{P}_{j}) = \\ &\mathcal{E}(t,\mathcal{P}_{j}) + \max \left(\max_{t_{*} \in \Gamma^{-}(t)} \left\{ \min_{1 \leq k \leq \varepsilon + 1} \left\{ \mathcal{F}(t_{*}^{k},\mathcal{P}(t_{*}^{k})) + W(t_{*}^{k},t) \right\} \right\}, r(\mathcal{P}_{j}) \right) \\ &\rightarrow \mathcal{M}^{*} = \max_{t} \left\{ \min_{1 \leq k \leq \varepsilon + 1} \left\{ \mathcal{F}(t^{k},\mathcal{P}(t^{k})) \right\} \right\} \end{aligned}$$

FTSA Algorithm - Time and Bounds

Time complexity of FTSA: $O(em^2 + v \log \omega)$ e: nb edges, m: nb procs, v: nb tasks, ω : graph width

Lower Bound \mathcal{M}^i

$$\begin{array}{l} \forall \ 1 \leq j \leq \textit{m}, \quad \mathcal{F}(t,\mathcal{P}_{j}) \text{ computed as in the algorithm} \\ \rightarrow \mathcal{M}^{*} = \max_{t} \left\{ \min_{1 \leq k \leq \varepsilon+1} \left\{ \mathcal{F}(t^{k},\mathcal{P}(t^{k}) \right\} \right\} \quad \text{first replica to complete} \end{array}$$

Upper Bound \mathcal{M}

$$\forall \ 1 \leq j \leq \textit{m}, \quad \mathcal{F}(t, \mathcal{P}_j) = \\ \mathcal{E}(t, \mathcal{P}_j) + \max \left(\max_{t_* \in \Gamma^-(t)} \left\{ \max_{1 \leq k \leq \varepsilon + 1} \left\{ \mathcal{F}(t_*^k, \mathcal{P}(t_*^k)) + W(t_*^k, t) \right\} \right\}, r(\mathcal{P}_j) \right) \\ \rightarrow \mathcal{M} = \max_{t} \left\{ \max_{1 \leq k \leq \varepsilon + 1} \left\{ \mathcal{F}(t^k, \mathcal{P}(t^k)) \right\} \right\} \quad \text{longest possible execution time}$$

FTSA Algorithm - Properties

Property 1: Space exclusion

For an active replication scheme, a task $t \in G$ is guaranteed to execute in the presence of ε failures if and only if $\mathcal{P}(t^k) \neq \mathcal{P}(t^{k'}), 1 \leq k, k' \leq \varepsilon + 1$

Property 2

The latency achieved by FTSA is $\mathcal{L} \leq \mathcal{M}$ despite ε failures

Theorem

If at most arepsilon failures occur in the system, then the schedule remains valid

All to all mapping communications

FTSA Algorithm - Properties

Introduction

Property 1: Space exclusion

For an active replication scheme, a task $t \in G$ is guaranteed to execute in the presence of ε failures if and only if $\mathcal{P}(t^k) \neq \mathcal{P}(t^{k'}), 1 \leq k, k' \leq \varepsilon + 1$

Property 2: Achieved latency

The latency achieved by FTSA is $\mathcal{L} \leq \mathcal{M}$ despite ε failures

Theorem

If at most arepsilon failures occur in the system, then the schedule remains valid

All to all mapping communications

Models and problem Proposed algorithms Experimental results Conclusion

FTSA Algorithm - Properties

Introduction

Property 1: Space exclusion

For an active replication scheme, a task $t \in G$ is guaranteed to execute in the presence of ε failures if and only if $\mathcal{P}(t^k) \neq \mathcal{P}(t^{k'}), 1 \leq k, k' \leq \varepsilon + 1$

Property 2: Achieved latency

The latency achieved by FTSA is $\mathcal{L} \leq \mathcal{M}$ despite ε failures

Theorem: Fault tolerant schedule

If at most ε failures occur in the system, then the schedule remains valid

All to all mapping communications

Communication overhead reduction and MC-FTSA algorithm

MC-FTSA Algorithm

Idea: Try to decrease communication overhead from $e(\varepsilon+1)^2$ down to at most $e(\varepsilon+1)$

- consider mapping returned by FTSA
- enforce internal communication
- greedily select the edges in non decreasing weights order

Experimental results

Aim

- Evaluation of FTSA and MC-FTSA performance
- Comparison with FTBAR heuristic [Girault et al'04] (integrated in SynDex: Synchronized Distributed Executive)
- ullet Comparison with fault-free schedule (arepsilon=0)

Simulation parameters

- 20 processors, 1-5 failures
- random graphs, 100 150 tasks, granularity [0.2, 2] (comp/comm ratio)

Metrics

- Latency bounds, latency with crash
- Overhead = $\frac{\text{FTSA}^{\ell b}|\text{FTBAR}^{\ell b}|\text{FTSA}^c|\text{FTBAR}^c-\text{FTSA}^*}{\text{FTSA}^*}$

Experimental results

Aim

Introduction

- Evaluation of FTSA and MC-FTSA performance
- Comparison with FTBAR heuristic [Girault et al'04] (integrated in SynDex: Synchronized Distributed Executive)
- Comparison with fault-free schedule $(\varepsilon = 0)$

Simulation parameters

- 20 processors, 1 − 5 failures
- random graphs, 100 150 tasks, granularity [0.2, 2] (comp/comm ratio)

Metrics

- Latency bounds, latency with crash
- Overhead = $\frac{\text{FTSA}^{\ell b}|\text{FTBAR}^{\ell b}|\text{FTSA}^{c}|\text{FTBAR}^{c}-\text{FTSA}^{*}}{\text{FTSA}^{*}}$

Aim

- Evaluation of FTSA and MC-FTSA performance
- Comparison with FTBAR heuristic [Girault et al'04] (integrated in SynDex: Synchronized Distributed Executive)
- ullet Comparison with fault-free schedule (arepsilon=0)

Simulation parameters

- 20 processors, 1 − 5 failures
- random graphs, 100 150 tasks, granularity [0.2, 2] (comp/comm ratio)

Metrics

- Latency bounds, latency with crash
- Overhead = $\frac{\mathrm{FTSA}^{\ell b}|\mathrm{FTBAR}^{\ell b}|\mathrm{FTSA}^{c}|\mathrm{FTBAR}^{c}-\mathrm{FTSA}^{*}}{\mathrm{FTSA}^{*}}$

Bounds ($\varepsilon = 1, \varepsilon = 5$)

$$\varepsilon = 1$$

$$arepsilon=1$$
 $arepsilon=5$

- FTSA lower bound close to fault-free schedule
- FTSA lower bound better than FTBAR lower bound
- MC-FTSA: upper bound close to lower bound

Latency with crash ($\varepsilon = 2$)

Overhead with crash ($\varepsilon = 2$)

- Execution slightly slower when crashes occur
- MC-FTSA: bigger latency (less comm links)
- MC-FTSA: still better than FTBAR in some cases

Latency with crash ($\varepsilon = 5$)

Overhead with crash ($\varepsilon = 5$)

- Similar to case $\varepsilon = 2$
- Many failures: FTBAR better than MC-FTSA with crash

Running times in seconds

Number of tasks	FTSA	MC-FTSA	FTBAR
100	0.01	0.02	0.15
500	0.08	0.12	4.19
1000	0.16	0.24	17.10
2000	0.30	0.50	71.22
3000	0.46	0.75	167.57
5000	0.77	1.28	465.75

 $|\mathcal{P}| = 50$, $\varepsilon = 5$, language: C, machine: Core 2 Duo (CPU 1.66 GHz)

Models and problem Proposed algorithms Experimental results Conclusion

Conclusion

Introduction

Efficient Fault Tolerant Scheduling Algorithm FTSA

- Based on active replication scheme
- Aims at minimizing latency while supporting failures
- Low time complexity
- Better than standard FTBAR heuristic
- Different objective functions: fixed latency

Future work

- Maximize system reliability (failure probabilities)
- Multicriteria (reliability, failures and latency) scheduling
- Realistic comm. model (one-port, bounded multi-port)
- Already results, good behavior of MC-FTSA

