Scheduling pipelined applications: models, algorithms and complexity

Anne Benoit
GRAAL team, LIP, École Normale Supérieure de Lyon, France

ASTEC meeting in Les Plantiers, France
June 2, 2009
Introduction and motivation

- **Schedule** an application onto a computational platform, with some criteria to optimize

- **Target application**
 - Streaming application (workflow, pipeline): several data sets are processed by a set of tasks (or pipeline stages)
 - Linear chain application: linear dependencies between tasks
 - Extensions: filtering services, general DAGs, more complex applications, ...

- **Target platform**
 - ranking from fully homogeneous to fully heterogeneous
 - completely interconnected, subject to failures
 - emphasis on different communication models (overlap or not, one- vs multi-port)

- **Optimization criteria**
 - period (inverse of throughput) and latency (execution time)
 - reliability, and also energy, stretch, ...
Introduction and motivation

- **Schedule** an application onto a computational platform, with some criteria to optimize

- **Target application**
 - Streaming application (workflow, pipeline): several data sets are processed by a set of tasks (or pipeline stages)
 - Linear chain application: linear dependencies between tasks
 - Extensions: filtering services, general DAGs, more complex applications, ...

- **Target platform**
 - ranking from fully homogeneous to fully heterogeneous
 - completely interconnected, subject to failures
 - emphasis on different communication models (overlap or not, one- vs multi-port)

- **Optimization criteria**
 - period (inverse of throughput) and latency (execution time)
 - reliability, and also energy, stretch, ...
Introduction and motivation

- **Schedule** an application onto a computational platform, with some criteria to optimize

- **Target application**
 - Streaming application (workflow, pipeline): several data sets are processed by a set of tasks (or pipeline stages)
 - Linear chain application: linear dependencies between tasks
 - Extensions: filtering services, general DAGs, more complex applications, ...

- **Target platform**
 - ranking from fully homogeneous to fully heterogeneous
 - completely interconnected, subject to failures
 - emphasis on different communication models (overlap or not, one- vs multi-port)

- **Optimization criteria**
 - period (inverse of throughput) and latency (execution time)
 - reliability, and also energy, stretch, ...
Introduction and motivation

- **Schedule** an application onto a computational platform, with some criteria to optimize

- **Target application**
 - Streaming application (workflow, pipeline): several data sets are processed by a set of tasks (or pipeline stages)
 - Linear chain application: linear dependencies between tasks
 - Extensions: filtering services, general DAGs, more complex applications, ...

- **Target platform**
 - ranking from fully homogeneous to fully heterogeneous
 - completely interconnected, subject to failures
 - emphasis on different communication models (overlap or not, one- vs multi-port)

- **Optimization criteria**
 - period (inverse of throughput) and latency (execution time)
 - reliability, and also energy, stretch, ...
Linear chain pipelined applications

Several consecutive data sets enter the application graph.

Multi-criteria to optimize?

Period \mathcal{P}: time interval between the beginning of execution of two consecutive data sets (inverse of throughput)

Latency \mathcal{L}: maximal time elapsed between beginning and end of execution of a data set

Reliability: inverse of \mathcal{F}, probability of failure of the application (i.e. some data sets will not be processed)
Linear chain pipelined applications

Several consecutive data sets enter the application graph.

Multi-criteria to optimize?

Period P: time interval between the beginning of execution of two consecutive data sets (inverse of throughput)

Latency L: maximal time elapsed between beginning and end of execution of a data set

Reliability: inverse of F, probability of failure of the application (i.e. some data sets will not be processed)
Linear chain pipelined applications

Several consecutive data sets enter the application graph.

Multi-criteria to optimize?

Period \mathcal{P}: time interval between the beginning of execution of two consecutive data sets (inverse of throughput)

Latency \mathcal{L}: maximal time elapsed between beginning and end of execution of a data set

Reliability: inverse of \mathcal{F}, probability of failure of the application (i.e. some data sets will not be processed)
Linear chain pipelined applications

Several consecutive data sets enter the application graph.

Multi-criteria to optimize?

Period \mathcal{P}: time interval between the beginning of execution of two consecutive data sets (inverse of throughput)

Latency \mathcal{L}: maximal time elapsed between beginning and end of execution of a data set

Reliability: inverse of \mathcal{F}, probability of failure of the application (i.e. some data sets will not be processed)
Linear chain pipelined applications

Several consecutive data sets enter the application graph.

Multi-criteria to optimize?

Period \mathcal{P}: time interval between the beginning of execution of two consecutive data sets (inverse of throughput)

Latency \mathcal{L}: maximal time elapsed between beginning and end of execution of a data set

Reliability: inverse of \mathcal{F}, probability of failure of the application (i.e. some data sets will not be processed)
Outline

1. Models
 - Application model
 - Platform and communication models
 - Multi-criteria mapping problems

2. Complexity results
 - Mono-criterion problems
 - Bi-criteria problems

3. Conclusion
1 Models
 - Application model
 - Platform and communication models
 - Multi-criteria mapping problems

2 Complexity results
 - Mono-criterion problems
 - Bi-criteria problems

3 Conclusion
Application model

- Set of n application stages
- Computation cost of stage S_i: w_i
- Pipelined: each data set must be processed by all stages
- Linear dependencies between stages

\[S_1 \xrightarrow{\delta_0} S_2 \xrightarrow{\delta_1} \cdots \xrightarrow{\delta_{i-1}} S_i \xrightarrow{\delta_i} S_n \]
Application model: communication costs

- Two dependent stages $S_i \rightarrow S_{i+1}$: data must be transferred from S_i to S_{i+1}

- Fixed data size δ_i, communication cost to pay only if S_i and S_{i+1} are mapped onto different processors (i.e., no cost on blue arrow in the example)
p + 2 processors P_u, $0 \leq u \leq p + 1$

$P_0 = P_{in}$: input data – $P_{p+1} = P_{out}$: output data

P_1 to P_p: fully interconnected (clique)

s_u: speed of processor P_u, $1 \leq u \leq p$, liner cost model

bidirectional link link$_{u,v} : P_u \rightarrow P_v$, bandwidth $b_{u,v}$

B^i_u / B^o_u: input/output network card capacity
Platform model: classification

Fully Homogeneous – Identical processors \((s_u = s)\) and homogeneous communication devices \((b_{u,v} = b, B_u^i = B^i, B_u^o = B^o)\):
typical parallel machines

Communication Homogeneous – Homogeneous communication devices but different-speed processors \((s_u \neq s_v)\):
networks of workstations, clusters

Fully Heterogeneous – Fully heterogeneous architectures:
hierarchical platforms, grids
Platform model: unreliable processors

- f_u: failure probability of processor P_u
 - independent of the duration of the application: global indicator of processor reliability
 - steady-state execution: loan/rent resources, cycle-stealing
 - fail-silent/fail-stop, no link failures (use different paths)

- *Failure Homogeneous* – Identically reliable processors ($f_u = f_v$), natural with *Fully Homogeneous*

- *Failure Heterogeneous* – Different failure probabilities ($f_u \neq f_v$), natural with *Communication Homogeneous* and *Fully Heterogeneous*
Platform model: unreliable processors

- f_u: failure probability of processor P_u
 - independent of the duration of the application: global indicator of processor reliability
 - steady-state execution: loan/rent resources, cycle-stealing
 - fail-silent/fail-stop, no link failures (use different paths)

- **Failure Homogeneous**—Identically reliable processors ($f_u = f_v$), natural with **Fully Homogeneous**

- **Failure Heterogeneous**—Different failure probabilities ($f_u \neq f_v$), natural with **Communication Homogeneous** and **Fully Heterogeneous**
Classical communication model in scheduling works: *macro-dataflow* model

\[
\text{cost}(T, T') = \begin{cases}
0 & \text{if } \text{alloc}(T) = \text{alloc}(T') \\
\text{comm}(T, T') & \text{otherwise}
\end{cases}
\]

- Task \(T \) communicates data to successor task \(T' \)
- \(\text{alloc}(T) \): processor that executes \(T \); \(\text{comm}(T, T') \): defined by the application specification
- Two main assumptions:
 1. (i) communication can occur as soon as data are available
 2. (ii) no contention for network links
- (i) is reasonable, (ii) assumes infinite network resources!
Platform model: communications, a bit of history

Classical communication model in scheduling works: *macro-dataflow* model

\[
\text{cost}(T, T') = \begin{cases}
0 & \text{if } \text{alloc}(T) = \text{alloc}(T') \\
\text{comm}(T, T') & \text{otherwise}
\end{cases}
\]

- Task \(T \) communicates data to successor task \(T' \)
- \(\text{alloc}(T) \): processor that executes \(T \); \(\text{comm}(T, T') \): defined by the application specification
- **Two main assumptions:**
 - (i) communication can occur as soon as data are available
 - (ii) no contention for network links
- (i) is reasonable, (ii) assumes infinite network resources!
Classical communication model in scheduling works: macro-dataflow model

\[cost(T, T') = \begin{cases}
0 & \text{if } alloc(T) = alloc(T') \\
comm(T, T') & \text{otherwise}
\end{cases} \]

- Task \(T \) communicates data to successor task \(T' \)
- \(alloc(T) \): processor that executes \(T \); \(comm(T, T') \): defined by the application specification
- Two main assumptions:
 - (i) communication can occur as soon as data are available
 - (ii) no contention for network links
- (i) is reasonable, (ii) assumes infinite network resources!
Platform model: one-port without overlap

- **no overlap**: at each time step, either computation or communication
- **one-port**: each processor can either send or receive to/from a single other processor any time step it is communicating
Platform model: one-port without overlap

- **no overlap**: at each time step, either computation or communication
- **one-port**: each processor can either send or receive to/from a single other processor any time step it is communicating

![Platform model diagram](image)

Anne.Benoit@ens-lyon.fr ASTEC, June 2, 2009
Platform model: bounded multi-port with overlap

- **overlap**: a processor can simultaneously compute and communicate
- **bounded multi-port**: simultaneous send and receive, but bound on the total outgoing/incoming communication (limitation of network card)
Platform model: bounded multi-port with overlap

- **overlap**: a processor can simultaneously compute and communicate
- **bounded multi-port**: simultaneous send and receive, but bound on the total outgoing/incoming communication (limitation of network card)

![Diagram showing simultaneous communication and computation]

Anne.Benoit@ens-lyon.fr ASTEC, June 2, 2009
Platform model: communication models

- **Multi-port**: if several non-consecutive stages mapped onto a same processor, several concurrent communications
- Matches multi-threaded systems
- Fits well together with overlap

- **One-port**: radical option, where everything is serialized
- Natural to consider it without overlap

- **Other communication models**: more complicated such as bandwidth sharing protocols.
- Too complicated for algorithm design.

Two considered models: good trade-off realism/tractability
Platform model: communication models

- **Multi-port**: if several non-consecutive stages mapped onto a same processor, several concurrent communications
- Matches multi-threaded systems
- Fits well together with overlap

- **One-port**: radical option, where everything is serialized
- Natural to consider it without overlap

- Other communication models: more complicated such as bandwidth sharing protocols.
- Too complicated for algorithm design.

Two considered models: good trade-off realism/tractability
Platform model: communication models

- **Multi-port**: if several non-consecutive stages mapped onto a same processor, several concurrent communications
- Matches multi-threaded systems
- Fits well together with overlap
- **One-port**: radical option, where everything is serialized
- Natural to consider it without overlap
- **Other communication models**: more complicated such as bandwidth sharing protocols.
- Too complicated for algorithm design.

Two considered models: good trade-off realism/tractability
Platform model: communication models

- **Multi-port**: if several non-consecutive stages mapped onto a same processor, several concurrent communications
- Matches multi-threaded systems
- Fits well together with overlap

- **One-port**: radical option, where everything is serialized
- Natural to consider it without overlap

- **Other communication models**: more complicated such as bandwidth sharing protocols.
- Too complicated for algorithm design.

Two considered models: good trade-off realism/tractability
Goal: assign application stages to platform processors in order to optimize some criteria

- Define stage types and replication mechanisms
- Establish rule of the game
- Define optimization criteria
- Define and classify optimization problems
Multi-criteria mapping problems

- Goal: assign application stages to platform processors in order to optimize some criteria
- Define stage types and replication mechanisms
- Establish rule of the game
- Define optimization criteria
- Define and classify optimization problems
Mapping: stage types and replication

- **Monolithic stages**: must be mapped on **one single processor** since computation for a data set may depend on result of previous computation.

- **Dealable stages**: can be replicated on **several processors**, but not parallel, *i.e.* a data set must be entirely processed on a single processor (distribute work).

- **Data-parallel stages**: inherently parallel stages, one data set can be computed in parallel by **several processors** (partition work).

- Replicating for failures: one data set is processed several times on different processors (redundant work).
Mapping: stage types and replication

- **Monolithic stages:** must be mapped on one single processor since computation for a data set may depend on result of previous computation.
- **Dealable stages:** can be replicated on several processors, but not parallel, i.e. a data set must be entirely processed on a single processor (distribute work).
- **Data-parallel stages:** inherently parallel stages, one data set can be computed in parallel by several processors (partition work).
- **Replicating for failures:** one data set is processed several times on different processors (redundant work).
Mapping strategies: rule of the game

- Map each application stage onto one or more processors
- First simple scenario with no replication

Allocation function $a : [1..n] \rightarrow [1..p]$
- $a(0) = 0 \ (= in)$ and $a(n + 1) = p + 1 \ (= out)$

Several mapping strategies

The pipeline application
Mapping strategies: rule of the game

- Map each application stage onto one or more processors
- First simple scenario with no replication
- Allocation function \(a : [1..n] \rightarrow [1..p] \)
 - \(a(0) = 0 (= \text{in}) \) and \(a(n + 1) = p + 1 (= \text{out}) \)
- Several mapping strategies

One-to-one Mapping: \(a \) is a one-to-one function, \(n \leq p \)
Mapping strategies: rule of the game

- Map each application stage onto one or more processors
- First simple scenario with no replication
- Allocation function $a : [1..n] \rightarrow [1..p]$
- $a(0) = 0 (= \text{in})$ and $a(n + 1) = p + 1 (= \text{out})$
- Several mapping strategies

Interval Mapping: partition into $m \leq p$ intervals $l_j = [d_j, e_j]$
Mapping strategies: rule of the game

- Map each application stage onto one or more processors
- First simple scenario with no replication
- Allocation function $a : [1..n] \rightarrow [1..p]$
 - $a(0) = 0 (= in)$ and $a(n + 1) = p + 1 (= out)$
- Several mapping strategies

\[S_1 \rightarrow S_2 \rightarrow \ldots \rightarrow S_k \rightarrow \ldots \rightarrow S_n \]

General Mapping: P_u is assigned any subset of stages
Mapping strategies: adding replication

- Allocation function: \(a(i) \) is a set of processor indices
- Set partitioned into \(t_i \) teams, each processor within a team is allocated the same piece of work
- Teams for stage \(S_i: T_{i,1}, \ldots, T_{i,t_i} \) \((1 \leq i \leq n)\)

- Monolithic stage: single team \(t_i = 1 \) and \(|T_{i,1}| = |a(i)| \); replication only for reliability if \(|a(i)| > 1 \)
- Dealable stage: each team = one round of the deal; \(type_i = deal \)
- Data-parallel stage: each team = computation of a fraction of each data set; \(type_i = dp \)

- Extend mapping rules with replication, same teams for an interval or a subset of stages; no fully general mappings
Mapping strategies: adding replication

- Allocation function: \(a(i) \) is a set of processor indices
- Set partitioned into \(t_i \) teams, each processor within a team is allocated the same piece of work
- Teams for stage \(S_i \): \(T_{i,1}, \ldots, T_{i,t_i} \) (\(1 \leq i \leq n \))
- **Monolithic stage:** single team \(t_i = 1 \) and \(|T_{i,1}| = |a(i)| \); replication only for reliability if \(|a(i)| > 1 \)
- **Dealable stage:** each team = one round of the deal; \(type_i = deal \)
- **Data-parallel stage:** each team = computation of a fraction of each data set; \(type_i = dp \)

- Extend mapping rules with replication, same teams for an interval or a subset of stages; no fully general mappings
Mapping strategies: adding replication

- Allocation function: $a(i)$ is a set of processor indices
- Set partitioned into t_i teams, each processor within a team is allocated the same piece of work
- Teams for stage S_i: $T_{i,1}, \ldots, T_{i,t_i}$ ($1 \leq i \leq n$)
- **Monolithic stage**: single team $t_i = 1$ and $|T_{i,1}| = |a(i)|$; replication only for reliability if $|a(i)| > 1$
- **Dealable stage**: each team = one round of the deal; $type_i = deal$
- **Data-parallel stage**: each team = computation of a fraction of each data set; $type_i = dp$
- Extend **mapping rules with replication**, same teams for an interval or a subset of stages; no fully general mappings
Mono-criterion

- Minimize period \mathcal{P} (inverse of throughput)
- Minimize latency \mathcal{L} (time to process a data set)
- Minimize application failure probability \mathcal{F}
Mapping: objective function

Mono-criterion

- Minimize period \mathcal{P} (inverse of throughput)
- Minimize latency \mathcal{L} (time to process a data set)
- Minimize application failure probability \mathcal{F}

Multi-criteria

- How to define it?
 Minimize $\alpha \mathcal{P} + \beta \mathcal{L} + \gamma \mathcal{F}$?
- Values which are not comparable
Mapping: objective function

Mono-criterion
- Minimize period \mathcal{P} (inverse of throughput)
- Minimize latency \mathcal{L} (time to process a data set)
- Minimize application failure probability \mathcal{F}

Multi-criteria
- How to define it?
 - Minimize $\alpha \cdot \mathcal{P} + \beta \cdot \mathcal{L} + \gamma \cdot \mathcal{F}$?
- Values which are not comparable
- Minimize \mathcal{P} for a fixed latency and failure
- Minimize \mathcal{L} for a fixed period and failure
- Minimize \mathcal{F} for a fixed period and latency
Mapping: objective function

Mono-criterion

- Minimize period P (inverse of throughput)
- Minimize latency L (time to process a data set)
- Minimize application failure probability F

Bi-criteria

- Period and Latency:
 - Minimize P for a fixed latency
 - Minimize L for a fixed period
- And so on...
Formal definition of period and latency

- **Allocation function**: characterizes a mapping
- Not enough information to compute the actual schedule of the application = the moment at which each operation takes place
- Time steps at which comm and comp begin and end
- Cyclic schedules which repeat for each data set (period λ)

- No deal replication: $S_i, u \in a(i), v \in a(i + 1)$, data set k
 - $\text{BeginComp}^k_{i,u}/\text{EndComp}^k_{i,u} = \text{time step at which comp of } S_i$ on P_u for data set k begins/ends
 - $\text{BeginComm}^k_{i,u,v}/\text{EndComm}^k_{i,u,v} = \text{time step at which comm}$ between P_u and P_v for output of S_i for k begins/ends

\[
\begin{align*}
\text{BeginComp}^k_{i,u} &= \text{BeginComp}^0_{i,u} + \lambda \times k \\
\text{EndComp}^k_{i,u} &= \text{EndComp}^0_{i,u} + \lambda \times k \\
\text{BeginComm}^k_{i,u,v} &= \text{BeginComm}^0_{i,u,v} + \lambda \times k \\
\text{EndComm}^k_{i,u,v} &= \text{EndComm}^0_{i,u,v} + \lambda \times k
\end{align*}
\]
Formal definition of period and latency

- **Allocation function**: characterizes a mapping
- Not enough information to compute the actual schedule of the application = the moment at which each operation takes place
- Time steps at which comm and comp begin and end
- Cyclic schedules which repeat for each data set (period λ)

- **No deal replication**: S_i, $u \in a(i)$, $v \in a(i + 1)$, data set k
 - $Begin\text{Comp}^k_{i,u}/End\text{Comp}^k_{i,u} =$ time step at which comp of S_i on P_u for data set k begins/ends
 - $Begin\text{Comm}^k_{i,u,v}/End\text{Comm}^k_{i,u,v} =$ time step at which comm between P_u and P_v for output of S_i for k begins/ends

\[
\begin{align*}
Begin\text{Comp}^k_{i,u} &= Begin\text{Comp}^0_{i,u} + \lambda \times k \\
End\text{Comp}^k_{i,u} &= End\text{Comp}^0_{i,u} + \lambda \times k \\
Begin\text{Comm}^k_{i,u,v} &= Begin\text{Comm}^0_{i,u,v} + \lambda \times k \\
End\text{Comm}^k_{i,u,v} &= End\text{Comm}^0_{i,u,v} + \lambda \times k
\end{align*}
\]
Formal definition of period and latency

- **Allocation function**: characterizes a mapping
- Not enough information to compute the actual schedule of the application — the moment at which each operation takes place
- Time steps at which comm and comp begin and end
- Cyclic schedules which repeat for each data set (period λ)

- **No deal replication**: S_i, $u \in a(i)$, $v \in a(i + 1)$, data set k
 - $\text{BeginComp}_{i,u}^k / \text{EndComp}_{i,u}^k = \text{time step at which comp of } S_i \text{ on } P_u \text{ for data set } k \text{ begins/ends}$
 - $\text{BeginComm}_{i,u,v}^k / \text{EndComm}_{i,u,v}^k = \text{time step at which comm between } P_u \text{ and } P_v \text{ for output of } S_i \text{ for } k \text{ begins/ends}$

\[
\begin{align*}
\text{BeginComp}_{i,u}^k &= \text{BeginComp}_{i,u}^0 + \lambda \times k \\
\text{EndComp}_{i,u}^k &= \text{EndComp}_{i,u}^0 + \lambda \times k \\
\text{BeginComm}_{i,u,v}^k &= \text{BeginComm}_{i,u,v}^0 + \lambda \times k \\
\text{EndComm}_{i,u,v}^k &= \text{EndComm}_{i,u,v}^0 + \lambda \times k
\end{align*}
\]
Formal definition of period and latency: *operation list*

- Given communication model: set of rules to have a valid operation list
- Non-preemptive models, synchronous communications
 - Period $P = \lambda$
 - Latency $L = \max\{EndComm_{n,u,out}^0 | u \in a(n), \}$
- With deal replication: extension of the definition, periodic schedule rather than cyclic one
- Most cases: formula to express period and latency, no need for OL

Now, ready to describe optimization problems
Formal definition of period and latency: *operation list*

- Given communication model: set of rules to have a valid operation list
- Non-preemptive models, synchronous communications
- Period $P = \lambda$
- Latency $L = \max\{EndComm_{n,u,out}^0 \mid u \in a(n),\}$
 - With deal replication: extension of the definition, periodic schedule rather than cyclic one
 - Most cases: formula to express period and latency, no need for OL

Now, ready to describe optimization problems
Formal definition of period and latency: operation list

- Given communication model: set of rules to have a valid operation list
- Non-preemptive models, synchronous communications
- Period $\mathcal{P} = \lambda$
- Latency $\mathcal{L} = \max\{\text{EndComm}_{n,\text{u,}out}^0 | u \in a(n), \}$
- With deal replication: extension of the definition, periodic schedule rather than cyclic one
- Most cases: formula to express period and latency, no need for OL

Now, ready to describe optimization problems
Formal definition of period and latency: *operation list*

- Given communication model: set of rules to have a valid operation list
- Non-preemptive models, synchronous communications
- Period \(P = \lambda \)
- Latency \(L = \max \{ \text{EndComm}_{n,u,\text{out}}^0 | u \in a(n), \} \)
- With deal replication: extension of the definition, periodic schedule rather than cyclic one
- Most cases: formula to express period and latency, no need for OL

Now, ready to describe optimization problems
Formal definition of period and latency: operation list

- Given communication model: set of rules to have a valid operation list
- Non-preemptive models, synchronous communications
- Period $P = \lambda$
- Latency $L = \max\{EndComm_{n,u,\text{out}}^0 | u \in a(n), \}$
- With deal replication: extension of the definition, periodic schedule rather than cyclic one
- Most cases: formula to express period and latency, no need for OL

Now, ready to describe optimization problems
One-to-one and interval mappings, no replication

- **Latency**: max time required by a data set to traverse all stages

\[L^{(interval)} = \sum_{1 \leq j \leq m} \left\{ \frac{\delta_{d_j} - 1}{b_{a(d_j - 1), a(d_j)}} + \frac{\sum_{i=d_j}^{e_j} w_i}{s_{a(d_j)}} \right\} + \frac{\delta_n}{b_{a(d_m), out}} \]

- **Period**: definition depends on comm model (different rules in the OL), but always longest cycle-time of a processor:

\[P^{(interval)} = \max_{1 \leq j \leq m} \text{cycletime}(P_{a(d_j)}) \]

- One-port model **without overlap**:

\[P = \max_{1 \leq j \leq m} \left\{ \frac{\delta_{d_j} - 1}{b_{a(d_j - 1), a(d_j)}} + \frac{\sum_{i=d_j}^{e_j} w_i}{s_{a(d_j)}} + \frac{\delta_{e_j}}{b_{a(d_j), a(e_j + 1)}} \right\} \]

- Bounded multi-port model **with overlap**:
One-to-one and interval mappings, no replication

- **Latency**: max time required by a data set to traverse all stages

\[
L^{(interval)} = \sum_{1 \leq j \leq m} \left\{ \frac{\delta_{d_j-1}}{b_{a(d_j-1),a(d_j)}} + \sum_{i=d_j}^{e_j} \frac{w_i}{s_{a(d_j)}} \right\} + \frac{\delta_n}{b_{a(d_m),out}}
\]

- **Period**: definition depends on comm model (different rules in the OL), but always longest cycle-time of a processor:

\[
P^{(interval)} = \max_{1 \leq j \leq m} \text{cycletime}(P_{a(d_j)})
\]

- One-port model without overlap:

\[
P = \max_{1 \leq j \leq m} \left\{ \frac{\delta_{d_j-1}}{b_{a(d_j-1),a(d_j)}} + \sum_{i=d_j}^{e_j} \frac{w_i}{s_{a(d_j)}} + \frac{\delta_{e_j}}{b_{a(d_j),a(e_j+1)}} \right\}
\]

- Bounded multi-port model with overlap:
One-to-one and interval mappings, no replication

- **Latency**: max time required by a data set to traverse all stages

 \[\mathcal{L}^{(interval)} = \sum_{1 \leq j \leq m} \left(\frac{\delta_{d_j-1}}{b_{a(d_j-1),a(d_j)}} + \frac{\sum_{i=d_j}^{e_j} w_i}{s_{a(d_j)}} \right) + \frac{\delta_n}{b_{a(d_m),out}} \]

- **Period**: definition depends on comm model (different rules in the OL), but always longest cycle-time of a processor:

 \[\mathcal{P}^{(interval)} = \max_{1 \leq j \leq m} \text{cycletime}(P_{a(d_j)}) \]

- **One-port model without overlap**:

 \[\mathcal{P} = \max_{1 \leq j \leq m} \left(\frac{\delta_{d_j-1}}{b_{a(d_j-1),a(d_j)}} + \frac{\sum_{i=d_j}^{e_j} w_i}{s_{a(d_j)}} + \frac{\delta_{e_j}}{b_{a(d_j),a(e_j+1)}} \right) \]

 - Bounded multi-port model with overlap:
One-to-one and interval mappings, no replication

- **Latency**: max time required by a data set to traverse all stages

\[
L^{(\text{interval})} = \sum_{1 \leq j \leq m} \left\{ \frac{\delta_{d_j-1}}{b_{a(d_j-1),a(d_j)}} + \frac{\sum_{i=d_j}^{e_j} w_i}{s_{a(d_j)}} \right\} + \frac{\delta_n}{b_{a(d_m),\text{out}}}
\]

- **Period**: definition depends on comm model (different rules in the OL), but always longest cycle-time of a processor:

\[
P^{(\text{interval})} = \max_{1 \leq j \leq m} \text{cycletime}(P_{a(d_j)})
\]

- One-port model **without overlap**:

\[
P = \max_{1 \leq j \leq m} \left\{ \frac{\delta_{d_j-1}}{b_{a(d_j-1),a(d_j)}} + \frac{\sum_{i=d_j}^{e_j} w_i}{s_{a(d_j)}} + \frac{\delta_{e_j}}{b_{a(d_j),a(e_j+1)}} \right\}
\]

- Bounded multi-port model **with overlap**:

\[
P = \max_{1 \leq j \leq m} \left\{ \max\left(\frac{\delta_{d_j-1}}{\min\left(b_{a(d_j-1),a(d_j)}, B_{a(d_j)}^i\right)}, \frac{\sum_{i=d_j}^{e_j} w_i}{s_{a(d_j)}}, \min\left(b_{a(d_j),a(e_j+1)}, B_{a(d_j)}^o\right) \right) \right\}
\]
Adding replication for reliability

- Each processor: failure probability $0 \leq f_u \leq 1$
- m intervals, set of processors $a(d_j)$ for interval j

$$\mathcal{F}(\text{int–fp}) = 1 - \prod_{1 \leq j \leq m} (1 - \prod_{u \in a(d_j)} f_u)$$

- Consensus protocol: one surviving processor performs all outgoing communications
- Worst case scenario: new formulas for latency and period

$$\mathcal{L}(\text{int–fp}) = \sum_{u \in a(1)} \frac{\delta_0}{b_{in,u}} + \sum_{1 \leq j \leq m} \max_{u \in a(d_j)} \left\{ \frac{\sum_{i=d_j}^{e_j} w_i}{s_u} + \sum_{v \in a(e_j+1)} \frac{\delta_{e_j}}{b_{u,v}} \right\}$$

$$\mathcal{P}(\text{int–fp}) = \max_{1 \leq j \leq m} \max_{u \in a(d_j)} \left\{ \frac{\delta_{d_j-1}}{\min_{v \in a(d_j-1)} b_{v,u}} + \frac{\sum_{i=d_j}^{e_j} w_i}{s_u} + \sum_{v \in a(e_j+1)} \frac{\delta_{e_j}}{b_{u,v}} \right\}$$
Adding replication for reliability

- Each processor: failure probability $0 \leq f_u \leq 1$
- m intervals, set of processors $a(d_j)$ for interval j

\[\mathcal{F}^{(\text{int-}fp)} = 1 - \prod_{1 \leq j \leq m} \left(1 - \prod_{u \in a(d_j)} f_u \right) \]

- Consensus protocol: one surviving processor performs all outgoing communications
- Worst case scenario: new formulas for latency and period

\[\mathcal{L}^{(\text{int-}fp)} = \sum_{u \in a(1)} \frac{\delta_0}{b_{in,u}} + \sum_{1 \leq j \leq m} \max_{u \in a(d_j)} \left\{ \sum_{i=d_j}^{e_j} w_i \frac{s_u}{s_u} + \sum_{v \in a(e_j+1)} \delta_{e_j} \frac{b_{u,v}}{b_{u,v}} \right\} \]

\[\mathcal{P}^{(\text{int-}fp)} = \max_{1 \leq j \leq m} \max_{u \in a(d_j)} \left\{ \frac{\delta_{d_j-1}}{\min_{v \in a(d_j-1)} b_{v,u}} \right\} + \sum_{i=d_j}^{e_j} w_i \frac{s_u}{s_u} + \sum_{v \in a(e_j+1)} \delta_{e_j} \frac{b_{u,v}}{b_{u,v}} \]
Adding replication for reliability

- Each processor: failure probability $0 \leq f_u \leq 1$
- m intervals, set of processors $a(d_j)$ for interval j

$$F^{(int-fp)} = 1 - \prod_{1 \leq j \leq m} \left(1 - \prod_{u \in a(d_j)} f_u \right)$$

- Consensus protocol: one surviving processor performs all outgoing communications
- Worst case scenario: new formulas for latency and period

$$L^{(int-fp)} = \sum_{u \in a(1)} \frac{\delta_0}{b_{in,u}} + \sum_{1 \leq j \leq m} \max_{u \in a(d_j)} \left\{ \sum_{i=1}^{e_j} \frac{w_i}{s_u} + \sum_{v \in a(e_j+1)} \frac{\delta_{e_j}}{b_{u,v}} \right\}$$

$$P^{(int-fp)} = \max_{1 \leq j \leq m} \max_{u \in a(d_j)} \left\{ \frac{\delta_{d_j-1}}{\min_{v \in a(d_j-1)} b_{v,u}} + \sum_{i=1}^{e_j} \frac{w_i}{s_u} + \sum_{v \in a(e_j+1)} \frac{\delta_{e_j}}{b_{u,v}} \right\}$$
Adding replication for reliability

- Each processor: failure probability $0 \leq f_u \leq 1$
- m intervals, set of processors $a(d_j)$ for interval j

\[F^{(\text{int-}fp)} = 1 - \prod_{1 \leq j \leq m} \left(1 - \prod_{u \in a(d_j)} f_u \right) \]

- **Consensus protocol**: one surviving processor performs all outgoing communications
- **Worst case scenario**: new formulas for latency and period

\[L^{(\text{int-}fp)} = \sum_{u \in a(1)} \frac{\delta_0}{b_{in,u}} + \sum_{1 \leq j \leq m} \max_{u \in a(d_j)} \left\{ \sum_{i=d_j}^{e_j} \frac{w_i}{s_u} + \sum_{v \in a(e_j+1)} \delta_{e_j} \right\} \]

\[P^{(\text{int-}fp)} = \max_{1 \leq j \leq m} \max_{u \in a(d_j)} \left\{ \frac{\delta_{d_j-1}}{\min_{v \in a(d_j-1)} b_{v,u}} + \sum_{i=d_j}^{e_j} \frac{w_i}{s_u} + \sum_{v \in a(e_j+1)} \delta_{e_j} \right\} \]
Adding replication for period and latency

- **Dealable stages**: replication of stage or interval of stages.
 - No latency decrease; period may decrease (less data sets per processor)
 - No communication: period trav_i/k if S_i onto k processors;

 $$\text{trav}_i = \min_{1 \leq u \leq k} \frac{w_i}{s_{qu}}$$

 - With communications: cases with no critical resources

- **Data-parallel stages**: replication of single stage
 - Both latency and period may decrease
 - $\text{trav}_i = o_i + \frac{w_i}{\sum_{u=1}^{k} s_{qu}}$

 Becomes very difficult with communications

- \Rightarrow Model with no communication!

- Replication for performance + replication for reliability: possible to mix both approaches, difficulties of both models
Adding replication for period and latency

- **Dealable stages**: replication of stage or interval of stages.
 - No latency decrease; period may decrease (less data sets per processor)
 - No communication: period trav_i/k if S_i onto k processors;
 \[
 \text{trav}_i = \frac{w_i}{\min_{1 \leq u \leq k} s_{qu}}
 \]
 - With communications: cases with no critical resources
 - Latency: longest path, no conflicts between data sets

- **Data-parallel stages**: replication of single stage
 - Both latency and period may decrease
 - $\text{trav}_i = o_i + \frac{w_i}{\sum_{u=1}^{k} s_{qu}}$
 - Becomes very difficult with communications

⇒ Model with no communication!

- Replication for performance + replication for reliability:
 possible to mix both approaches, difficulties of both models
Adding replication for period and latency

- **Dealable stages**: replication of stage or interval of stages.
 - No latency decrease; period may decrease (less data sets per processor)
 - No communication: period \(\text{trav}_i/k \) if \(S_i \) onto \(k \) processors;
 \[
 \text{trav}_i = \frac{w_i}{\min_{1 \leq u \leq k} s_{qu}}
 \]
 - With communications: cases with no critical resources
 - Latency: longest path, no conflicts between data sets

- **Data-parallel stages**: replication of single stage
 - Both latency and period may decrease
 \[
 \text{trav}_i = o_i + \frac{w_i}{\sum_{u=1}^{k} s_{qu}}
 \]
 - Becomes very difficult with communications

\[\Rightarrow\] Model with no communication!

- Replication for performance + replication for reliability:
 possible to mix both approaches, difficulties of both models

Anne.Benoit@ens-lyon.fr
ASTEC, June 2, 2009
Adding replication for period and latency

- **Dealable stages**: replication of stage or interval of stages.
 - No latency decrease; period may decrease (less data sets per processor)
 - No communication: period $\frac{\text{trav}_i}{k}$ if S_i onto k processors; $\text{trav}_i = \frac{\sum_{1 \leq u \leq k} w_i}{\min_{1 \leq u \leq k} s_{qu}}$
 - With communications: cases with no critical resources
 - Latency: longest path, no conflicts between data sets

- **Data-parallel stages**: replication of single stage
 - Both latency and period may decrease
 - $\text{trav}_i = o_i + \frac{\sum_{u=1}^{k} w_i}{\sum_{u=1}^{k} s_{qu}}$
 - Becomes very difficult with communications

- \Rightarrow Model with no communication!

- Replication for performance + replication for reliability:
 - possible to mix both approaches, difficulties of both models

Anne.Benoit@ens-lyon.fr ASTEC, June 2, 2009
Moving to general mappings

- **Failure probability**: definition in the general case easy to derive (all kind of replication)

\[
F^{(gen)} = 1 - \prod_{1 \leq j \leq m} \prod_{1 \leq k \leq t_{dj}} (1 - \prod_{u \in T_{dj,k}} f_u)
\]

- **Latency**: can be defined for Communication Homogeneous platforms with no data-parallelism.

\[
L^{(gen)} = \sum_{1 \leq i \leq n} \left(\max_{1 \leq k \leq t_i} \left\{ \frac{\Delta_i | T_{i,k} |}{b} \frac{\delta_i - 1}{b} + \frac{w_i}{\min_{u \in T_{i,k}} s_u} \right\} \right) + \frac{\delta_{n+1}}{b}
\]

- \(\Delta_i = 1\) iff \(S_{i-1}\) and \(S_i\) are in the same subset
- **Fully Heterogeneous**: longest path computation (polynomial time)
- With data-parallel stages: can be computed only with no communication and no start-up overhead
Moving to general mappings

- **Failure probability**: definition in the general case easy to derive (all kind of replication)

\[\mathcal{F}^{(\text{gen})} = 1 - \prod_{1 \leq j \leq m} \prod_{1 \leq k \leq t_{d_j}} (1 - \prod_{u \in T_{d_j,k}} f_u) \]

- **Latency**: can be defined for Communication Homogeneous platforms with no data-parallelism.

\[\mathcal{L}^{(\text{gen})} = \sum_{1 \leq i \leq n} \left(\max_{1 \leq k \leq t_i} \left\{ \Delta_i \mid T_{i,k} \right\} \frac{\delta_{i-1}}{b} + \frac{w_i}{\min_{u \in T_{i,k}} s_u} \right) + \frac{\delta_{n+1}}{b} \]

- \(\Delta_i = 1 \) iff \(S_{i-1} \) and \(S_i \) are in the same subset
- **Fully Heterogeneous**: longest path computation (polynomial time)
- With data-parallel stages: can be computed only with no communication and no start-up overhead
Moving to general mappings

- **Period**: case with no replication for period and latency

- **Bounded multi-port model with overlap**
 - Period = maximum cycle-time of processors
 - Communications in parallel: **No conflicts**
 - input coms on data sets $k_1 + 1, \ldots, k_\ell + 1$; computes on k_1, \ldots, k_ℓ, outputs $k_1 - 1, \ldots, k_\ell - 1$

Mathematical formulation:

\[
\mathcal{P}(\text{gen-mp}) = \max_{1 \leq j \leq m} \max_{u \in a(d_j)} \left\{ \max_{i \in \text{stages}_j} \max_{v \in a(i-1)} \Delta_i \frac{\delta_i - 1}{b_{v,u}}, \sum_{i \in \text{stages}_j} \Delta_i \frac{\delta_i - 1}{B_u^i}, \sum_{i \in \text{stages}_j} \frac{w_i}{s_u}, \max_{i \in \text{stages}_j} \max_{v \in a(i+1)} \Delta_{i+1} \frac{\delta_i}{b_{u,v}}, \sum_{i \in \text{stages}_j} \Delta_{i+1} \frac{\delta_i}{B_u^{i+1}} \right\}
\]

- **Without overlap**: conflicts similar to case with replication; NP-hard to decide how to order coms
Moving to general mappings

- **Period**: case with no replication for period and latency
- **Bounded multi-port model with overlap**
 - Period = maximum cycle-time of processors
 - Communications in parallel: No conflicts
 - input coms on data sets \(k_1 + 1, \ldots, k_\ell + 1\); computes on \(k_1, \ldots, k_\ell\), outputs \(k_1 - 1, \ldots, k_\ell - 1\)

\[
P^{(gen\,-\,mp)} = \max_{1 \leq j \leq m} \max_{u \in a(d_j)} \left\{ \begin{array}{c}
\max \left(\max_{i \in \text{stages}_j} \max_{v \in a(i-1)} \Delta_i \frac{\delta_{i-1}}{b_{v,u}}, \sum_{i \in \text{stages}_j} \Delta_i \frac{\delta_{i-1}}{B_u}, \frac{\sum_{i \in \text{stages}_j} w_i}{s_u} \right), \\
\max \left(\max_{i \in \text{stages}_j} \max_{v \in a(i+1)} \Delta_{i+1} \frac{\delta_i}{b_{u,v}}, \sum_{i \in \text{stages}_j} \Delta_{i+1} \frac{\delta_i}{B_u} \right) \end{array} \right\}
\]

- **Without overlap**: conflicts similar to case with replication; NP-hard to decide how to order coms
Outline

1. Models
 - Application model
 - Platform and communication models
 - Multi-criteria mapping problems

2. Complexity results
 - Mono-criterion problems
 - Bi-criteria problems

3. Conclusion
Failure probability

• Turns out simple for interval and general mappings: minimum reached by replicating the whole pipeline as a single interval consisting in a single team on all processors: \(F = \prod_{u=1}^{p} f_u \)

• One-to-one mappings: polynomial for Failure Homogeneous platforms (balance number of processors to stages), NP-hard for Failure Heterogeneous platforms (3-PARTITION with \(n \) stages and \(3n \) processors)

<table>
<thead>
<tr>
<th></th>
<th>Failure-Hom.</th>
<th>Failure-Het.</th>
</tr>
</thead>
<tbody>
<tr>
<td>One-to-one</td>
<td>polynomial</td>
<td>NP-hard</td>
</tr>
<tr>
<td>Interval</td>
<td>polynomial</td>
<td></td>
</tr>
<tr>
<td>General</td>
<td>polynomial</td>
<td></td>
</tr>
</tbody>
</table>
Failure probability

- Turns out simple for **interval and general mappings**: minimum reached by replicating the whole pipeline as a single interval consisting in a single team on all processors: \(F = \prod_{u=1}^{p} f_u \)

- **One-to-one mappings**: polynomial for *Failure Homogeneous* platforms (balance number of processors to stages), **NP-hard** for *Failure Heterogeneous* platforms (3-PARTITION with \(n \) stages and \(3n \) processors)

<table>
<thead>
<tr>
<th></th>
<th>Failure-Hom.</th>
<th>Failure-Het.</th>
</tr>
</thead>
<tbody>
<tr>
<td>One-to-one</td>
<td>polynomial</td>
<td>NP-hard</td>
</tr>
<tr>
<td>Interval</td>
<td>polynomial</td>
<td></td>
</tr>
<tr>
<td>General</td>
<td>polynomial</td>
<td></td>
</tr>
</tbody>
</table>
Failure probability

- Turns out simple for interval and general mappings: minimum reached by replicating the whole pipeline as a single interval consisting in a single team on all processors: $\mathcal{F} = \prod_{u=1}^{p} f_u$

- One-to-one mappings: polynomial for Failure Homogeneous platforms (balance number of processors to stages), NP-hard for Failure Heterogeneous platforms (3-PARTITION with n stages and $3n$ processors)

<table>
<thead>
<tr>
<th></th>
<th>Failure-Hom.</th>
<th>Failure-Het.</th>
</tr>
</thead>
<tbody>
<tr>
<td>One-to-one</td>
<td>polynomial</td>
<td>NP-hard</td>
</tr>
<tr>
<td>Interval</td>
<td>polynomial</td>
<td></td>
</tr>
<tr>
<td>General</td>
<td>polynomial</td>
<td></td>
</tr>
</tbody>
</table>
Latency

- Replication of dealable stages, replication for reliability: no impact on latency

- No data-parallelism: reduce communication costs
 - Fully Homogeneous and Communication Homogeneous platforms: map all stages onto fastest processor (1 interval); one-to-one mappings: most computationally expensive stages onto fastest processors (greedy algorithm)

- Fully Heterogeneous platforms: problem of input/output communications: may need to split interval
Latency

- Replication of dealable stages, replication for reliability: no impact on latency

- No data-parallelism: reduce communication costs
 - Fully Homogeneous and Communication Homogeneous platforms: map all stages onto fastest processor (1 interval); one-to-one mappings: most computationally expensive stages onto fastest processors (greedy algorithm)

- Fully Heterogeneous platforms: problem of input/output communications: may need to split interval
Replication of dealable stages, replication for reliability: no impact on latency

No data-parallelism: reduce communication costs

- **Fully Homogeneous** and **Communication Homogeneous** platforms: map all stages onto fastest processor (1 interval); one-to-one mappings: most computationally expensive stages onto fastest processors (greedy algorithm)

- **Fully Heterogeneous** platforms: problem of input/output communications: may need to split interval
Replication of dealable stages, replication for reliability: no impact on latency

No data-parallelism: reduce communication costs

- Fully Homogeneous and Communication Homogeneous platforms: map all stages onto fastest processor (1 interval); one-to-one mappings: most computationally expensive stages onto fastest processors (greedy algorithm)

- Fully Heterogeneous platforms: problem of input/output communications: may need to split interval
Latency

- Replication of dealable stages, replication for reliability: no impact on latency
- **No data-parallelism**: reduce communication costs
 - *Fully Homogeneous* and *Communication Homogeneous* platforms: map all stages onto fastest processor (1 interval); one-to-one mappings: most computationally expensive stages onto fastest processors (greedy algorithm)

Fully Heterogeneous platforms: problem of input/output communications: may need to split interval
Latency

- **Fully Heterogeneous** platforms: NP-hard for one-to-one and interval mappings (involved reductions), polynomial for general mappings (shortest paths)

- With data-parallelism: model with no communication; polynomial with same speed processors (dynamic programming algorithm), NP-hard otherwise (2-PARTITION)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>no DP, One-to-one</td>
<td>polynomial</td>
<td></td>
<td>NP-hard</td>
</tr>
<tr>
<td>no DP, Interval</td>
<td>polynomial</td>
<td></td>
<td>NP-hard</td>
</tr>
<tr>
<td>no DP, General</td>
<td>polynomial</td>
<td></td>
<td></td>
</tr>
<tr>
<td>with DP, no coms</td>
<td>polynomial</td>
<td></td>
<td>NP-hard</td>
</tr>
</tbody>
</table>
Latency

- **Fully Heterogeneous** platforms: NP-hard for one-to-one and interval mappings (involved reductions), polynomial for general mappings (shortest paths)

- With data-parallelism: model with no communication; polynomial with same speed processors (dynamic programming algorithm), NP-hard otherwise (2-PARTITION)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>no DP, One-to-one</td>
<td>polynomial</td>
<td></td>
<td>NP-hard</td>
</tr>
<tr>
<td>no DP, Interval</td>
<td>polynomial</td>
<td></td>
<td>NP-hard</td>
</tr>
<tr>
<td>no DP, General</td>
<td>polynomial</td>
<td></td>
<td></td>
</tr>
<tr>
<td>with DP, no coms</td>
<td>polynomial</td>
<td></td>
<td>NP-hard</td>
</tr>
</tbody>
</table>
Latency

- **Fully Heterogeneous** platforms: NP-hard for one-to-one and interval mappings (involved reductions), polynomial for general mappings (shortest paths)

- **With data-parallelism**: model with no communication; polynomial with same speed processors (dynamic programming algorithm), NP-hard otherwise (2-PARTITION)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>no DP, One-to-one</td>
<td>polynomial</td>
<td></td>
<td>NP-hard</td>
</tr>
<tr>
<td>no DP, Interval</td>
<td>polynomial</td>
<td></td>
<td>NP-hard</td>
</tr>
<tr>
<td>no DP, General</td>
<td></td>
<td>polynomial</td>
<td></td>
</tr>
<tr>
<td>with DP, no coms</td>
<td>polynomial</td>
<td></td>
<td>NP-hard</td>
</tr>
</tbody>
</table>
Period - Example with no comm, no replication

\[S_1 \rightarrow S_2 \rightarrow S_3 \rightarrow S_4 \]

2 processors (\(P_1\) and \(P_2\)) of speed 1

Optimal period?
Period - Example with no comm, no replication

\[S_1 \rightarrow S_2 \rightarrow S_3 \rightarrow S_4 \]

2 processors \((P_1 \text{ and } P_2)\) of speed 1

Optimal period?
\(P = 5, \ S_1 S_3 \rightarrow P_1, \ S_2 S_4 \rightarrow P_2\)

Perfect load-balancing in this case, but NP-hard (2-PARTITION)

Interval mapping?
Period - Example with no comm, no replication

\[S_1 \rightarrow S_2 \rightarrow S_3 \rightarrow S_4 \]

2 processors (\(P_1\) and \(P_2\)) of speed 1

Optimal period?
\[P = 5, \quad S_1S_3 \rightarrow P_1, \quad S_2S_4 \rightarrow P_2 \]
Perfect load-balancing in this case, but NP-hard (2-PARTITION)

Interval mapping?
\[P = 6, \quad S_1S_2S_3 \rightarrow P_1, \quad S_4 \rightarrow P_2 \quad - \quad \text{ Polynomial algorithm?} \]
Period - Example with no comm, no replication

\[S_1 \rightarrow S_2 \rightarrow S_3 \rightarrow S_4 \]

2 processors \((P_1 \text{ and } P_2)\) of speed 1

Optimal period?
\(P = 5, \quad S_1S_3 \rightarrow P_1, \quad S_2S_4 \rightarrow P_2\)
Perfect load-balancing in this case, but NP-hard (2-PARTITION)

Interval mapping?
\(P = 6, \quad S_1S_2S_3 \rightarrow P_1, \quad S_4 \rightarrow P_2\) – Polynomial algorithm?
Classical chains-on-chains problem, dynamic programming works
Period - Example with no comm, no replication

\[S_1 \rightarrow S_2 \rightarrow S_3 \rightarrow S_4 \]

2 1 3 4

\(P_1 \) of speed 2, and \(P_2 \) of speed 3

Optimal period?
\[\mathcal{P} = 5, \quad S_1S_3 \rightarrow P_1, \quad S_2S_4 \rightarrow P_2 \]

Perfect load-balancing in this case, but NP-hard (2-PARTITION)

Interval mapping?
\[\mathcal{P} = 6, \quad S_1S_2S_3 \rightarrow P_1, \quad S_4 \rightarrow P_2 \]

Polynomial algorithm?
Classical chains-on-chains problem, dynamic programming works

Heterogeneous platform?
Period - Example with no comm, no replication

\[S_1 \rightarrow S_2 \rightarrow S_3 \rightarrow S_4 \]
\[2 \rightarrow 1 \rightarrow 3 \rightarrow 4 \]

\(P_1 \) of speed 2, and \(P_2 \) of speed 3

Optimal period?
\(P = 5, \ S_1S_3 \rightarrow P_1, S_2S_4 \rightarrow P_2 \)
Perfect load-balancing in this case, but NP-hard (2-PARTITION)

Interval mapping?
\(P = 6, \ S_1S_2S_3 \rightarrow P_1, S_4 \rightarrow P_2 \) – Polynomial algorithm?
Classical chains-on-chains problem, dynamic programming works

Heterogeneous platform?
\(P = 2, \ S_1S_2S_3 \rightarrow P_2, S_4 \rightarrow P_1 \)
Heterogeneous chains-on-chains, NP-hard
Period - Complexity

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>One-to-one</td>
<td>polynomial</td>
<td>polynomial</td>
<td>NP-hard</td>
</tr>
<tr>
<td>Interval</td>
<td>polynomial</td>
<td>NP-hard</td>
<td>NP-hard</td>
</tr>
<tr>
<td>General</td>
<td>NP-hard</td>
<td></td>
<td>NP-hard</td>
</tr>
</tbody>
</table>

- With replication?
 - No change in complexity except one-to-one/com-hom (the problem becomes NP-hard, reduction from 2-PARTITION, enforcing use of data-parallelism) and general/full-hom (the problem becomes polynomial)
 - Other NP-completeness proofs remain valid
 - Fully homogeneous platforms: one interval replicated onto all processors (works also for general mappings); greedy assignment for one-to-one mappings
Period - Complexity

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>One-to-one</td>
<td>polynomial</td>
<td>polynomial</td>
<td>NP-hard</td>
</tr>
<tr>
<td>Interval</td>
<td>polynomial</td>
<td>NP-hard</td>
<td>NP-hard</td>
</tr>
<tr>
<td>General</td>
<td>NP-hard</td>
<td></td>
<td>NP-hard</td>
</tr>
</tbody>
</table>

- **With replication?**
 - No change in complexity except one-to-one/com-hom (the problem becomes NP-hard, reduction from 2-PARTITION, enforcing use of data-parallelism) and general/full-hom (the problem becomes polynomial)
 - Other NP-completeness proofs remain valid
 - Fully homogeneous platforms: one interval replicated onto all processors (works also for general mappings); greedy assignment for one-to-one mappings
Period - Complexity

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>One-to-one</td>
<td>polynomial</td>
<td>polynomial, NP-hard (rep)</td>
<td>NP-hard</td>
</tr>
<tr>
<td>Interval</td>
<td>polynomial</td>
<td>NP-hard</td>
<td>NP-hard</td>
</tr>
<tr>
<td>General</td>
<td>NP-hard, poly (rep)</td>
<td></td>
<td>NP-hard</td>
</tr>
</tbody>
</table>

- **With replication?**
 - No change in complexity except one-to-one/com-hom (the problem becomes NP-hard, reduction from 2-PARTITION, enforcing use of data-parallelism) and general/full-hom (the problem becomes polynomial)
 - Other NP-completeness proofs remain valid
 - Fully homogeneous platforms: one interval replicated onto all processors (works also for general mappings); greedy assignment for one-to-one mappings

Anne.Benoit@ens-lyon.fr ASTEC, June 2, 2009
Impact of communication models

\[
\begin{array}{cccc}
\uparrow & 1 & S_1 & 4 \\
2 & & & 4 \\
\downarrow & & S_2 & 3 \\
1 & & & 1 \\
\downarrow & & & S_3 \\
4 & & & \downarrow \\
\end{array}
\]

2 processors of speed 1

Without overlap: optimal period and latency?

General mappings: too difficult to handle in this case (no formula for latency and period) \(\rightarrow\) restrict to interval mappings

\(P = 8: \quad S_1S_2S_3 \rightarrow P_1, \quad S_4 \rightarrow P_2\)

\(L = 12: \quad S_1S_2S_3S_4 \rightarrow P_1\)
Impact of communication models

\[\begin{align*}
S_1 &\rightarrow S_2 & S_2 &\rightarrow S_3 & S_3 &\rightarrow S_4 & S_4 &\rightarrow S_1 \\
2 &\rightarrow 1 & 4 &\rightarrow 3 & 1 &\rightarrow 4 & 1 &\rightarrow 2
\end{align*} \]

2 processors of speed 1

Without overlap: optimal period and latency?

- General mappings: too difficult to handle in this case (no formula for latency and period) → restrict to interval mappings

- \(P = 8 \): \(S_1S_2S_3 \rightarrow P_1, S_4 \rightarrow P_2 \)
- \(L = 12 \): \(S_1S_2S_3S_4 \rightarrow P_1 \)
Impact of communication models

\[
1 \rightarrow S_1 \quad 4 \rightarrow S_2 \quad 4 \rightarrow S_3 \quad 1 \rightarrow S_4 \\
\downarrow \quad \downarrow \quad \downarrow \quad \downarrow \\
2 \quad 1 \quad 3 \quad 4
\]

2 processors of speed 1

Without overlap: optimal period and latency?

General mappings: too difficult to handle in this case (no formula for latency and period) \(\rightarrow\) restrict to interval mappings

\[P = 8: S_1 S_2 S_3 \rightarrow P_1, S_4 \rightarrow P_2\]
\[L = 12: S_1 S_2 S_3 S_4 \rightarrow P_1\]
Impact of communication models

\[1 \rightarrow S_1 \rightarrow 2 \quad 4 \rightarrow S_2 \rightarrow 1 \quad 4 \rightarrow S_3 \rightarrow 3 \quad 1 \rightarrow S_4 \rightarrow 4 \]

2 processors of speed 1

Without overlap: optimal period and latency?

General mappings: too difficult to handle in this case (no formula for latency and period) → restrict to interval mappings

\[P = 8: \quad S_1S_2S_3 \rightarrow P_1, \quad S_4 \rightarrow P_2 \]

\[L = 12: \quad S_1S_2S_3S_4 \rightarrow P_1 \]
Impact of communication models

\[\begin{array}{cccccc}
1 & \rightarrow & S_1 & \rightarrow & S_2 & \rightarrow & S_3 & \rightarrow & S_4 & \rightarrow \\
2 & \rightarrow & 1 & \rightarrow & 3 & \rightarrow & 4 & \rightarrow & 1 \\
\end{array} \]

2 processors of speed 1

Without overlap: optimal period and latency?

General mappings: too difficult to handle in this case (no formula for latency and period) → restrict to interval mappings

\[P = 8: \quad S_1S_2S_3 \rightarrow P_1, \quad S_4 \rightarrow P_2 \]

\[L = 12: \quad S_1S_2S_3S_4 \rightarrow P_1 \]
Impact of communication models

\[
\begin{align*}
1 & \rightarrow S_1 \quad 4 & \rightarrow S_2 \quad 4 & \rightarrow S_3 \quad 1 & \rightarrow S_4 \quad 1 & \rightarrow \\
2 & \quad 1 & \quad 3 & \quad 4 & \\
\end{align*}
\]

2 processors of speed 1

With overlap: optimal period?
Impact of communication models

\[
\begin{align*}
&1 \rightarrow S_1 \quad 4 \rightarrow S_2 \quad 4 \rightarrow S_3 \quad 1 \rightarrow S_4 \quad 1 \\
&2 \quad 1 \quad 3 \quad 4
\end{align*}
\]

2 processors of speed 1

With overlap: optimal period?

\[\mathcal{P} = 5, \quad S_1S_3 \rightarrow P_1, \quad S_2S_4 \rightarrow P_2\]

Perfect load-balancing both for computation and comm
Impact of communication models

\[\begin{align*}
1 & \rightarrow S_1 & 4 & \rightarrow S_2 & 4 & \rightarrow S_3 & 1 & \rightarrow S_4 & 1 \\
2 & & 1 & & 3 & & 4 & & \\
\end{align*} \]

2 processors of speed 1

With overlap: optimal period?

\[P = 5, \quad S_1 S_3 \rightarrow P_1, \quad S_2 S_4 \rightarrow P_2 \]

Optimal latency?

With only one processor, \(L = 12 \)

No internal communication to pay
Impact of communication models

![Communication Model Diagram]

2 processors of speed 1

- With overlap: optimal period?
 - $P = 5$, $S_1 S_3 \rightarrow P_1$, $S_2 S_4 \rightarrow P_2$

- Optimal latency?
 - Same mapping as above: $L = 21$ with no period constraint
 - $P = 21$, no conflicts

<table>
<thead>
<tr>
<th>Mapping</th>
<th>0</th>
<th>0</th>
<th>0</th>
<th>1 2/12 13 14</th>
<th>3 4 5 6 15</th>
<th>8 9 10 11</th>
<th>16 17 18 19</th>
<th>20</th>
</tr>
</thead>
<tbody>
<tr>
<td>$P_{\text{in}} \rightarrow P_1$</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P_1</td>
<td>1 2</td>
<td></td>
<td></td>
<td>1 2/12 13 14</td>
<td>3 4 5 6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$P_1 \rightarrow P_2$</td>
<td>3 4 5 6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P_2</td>
<td></td>
<td>8 9</td>
<td>10 11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$P_2 \rightarrow P_{\text{out}}$</td>
<td></td>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td>16 17 18 19</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Impact of communication models

\[
\begin{align*}
1 & \rightarrow S_1 & 4 & \rightarrow S_2 & 4 & \rightarrow S_3 & 1 & \rightarrow S_4 & 1 & \rightarrow 1 \\
2 & \rightarrow 1 & 3 & \rightarrow 4
\end{align*}
\]

2 processors of speed 1

With overlap: optimal period?

\[P = 5, \quad S_1 S_3 \rightarrow P_1, \quad S_2 S_4 \rightarrow P_2\]

Optimal latency? with \(P = 5\)?

Progress step-by-step in the pipeline \(\rightarrow\) no conflicts

\(K = 4\) processor changes, \(L = (2K + 1).P = 9P = 45\)

\[
\begin{array}{llll}
\text{in} & \rightarrow P_1 & \ldots & \text{period} k & \text{period} k + 1 & \text{period} k + 2 & \ldots \\
\text{P}_1 & \ldots & ds^{(k)} & ds^{(k+1)} & ds^{(k+2)} & \ldots \\
\text{P}_1 \rightarrow P_2 & \ldots & ds^{(k-1)}, ds^{(k-5)} & ds^{(k)}, ds^{(k-4)} & ds^{(k+1)}, ds^{(k-3)} & \ldots \\
\text{P}_2 & \ldots & ds^{(k-2)}, ds^{(k-6)} & ds^{(k-1)}, ds^{(k-5)} & ds^{(k)}, ds^{(k-4)} & \ldots \\
\text{P}_2 \rightarrow \text{P}_1 & \ldots & ds^{(k-4)} & ds^{(k-3)} & ds^{(k-2)} & \ldots \\
\text{P}_2 & \ldots & ds^{(k-3)}, ds^{(k-7)} & ds^{(k-2)}, ds^{(k-6)} & ds^{(k-1)}, ds^{(k-5)} & \ldots \\
\text{P}_2 \rightarrow \text{out} & \ldots & ds^{(k-8)} & ds^{(k-7)} & ds^{(k-6)} & \ldots
\end{array}
\]
Many problems are NP-hard due to the period.

Dynamic programming algorithm for fully homogeneous platforms.

Integer linear program for interval mappings, fully heterogeneous platforms, bi-criteria, without overlap.

Variables:

- \(\text{Obj} \): period or latency of the pipeline, depending on the objective function.
- \(x_{i,u} \): 1 if \(S_i \) on \(P_u \) (0 otherwise).
- \(z_{i,u,v} \): 1 if \(S_i \) on \(P_u \) and \(S_{i+1} \) on \(P_v \) (0 otherwise).
- \(\text{first}_u \) and \(\text{last}_u \): integer denoting first and last stage assigned to \(P_u \) (to enforce interval constraints).
Most problems NP-hard because of period

Dynamic programming algorithm for fully homogeneous platforms

Integer linear program for interval mappings, fully heterogeneous platforms, bi-criteria, without overlap

Variables:

- **Obj**: period or latency of the pipeline, depending on the objective function
- **$x_{i,u}$**: 1 if S_i on P_u (0 otherwise)
- **$z_{i,u,v}$**: 1 if S_i on P_u and S_{i+1} on P_v (0 otherwise)
- **first$_u$ and last$_u$**: integer denoting first and last stage assigned to P_u (to enforce interval constraints)
Most problems NP-hard because of period

Dynamic programming algorithm for fully homogeneous platforms

Integer linear program for interval mappings, fully heterogeneous platforms, bi-criteria, without overlap

Variables:

- **Obj**: period or latency of the pipeline, depending on the objective function
- **$x_{i,u}$**: 1 if S_i on P_u (0 otherwise)
- **$z_{i,u,v}$**: 1 if S_i on P_u and S_{i+1} on P_v (0 otherwise)
- **first$_u$** and **last$_u$**: integer denoting first and last stage assigned to P_u (to enforce interval constraints)
Linear program: constraints

Constraints on processors and links:
- \(\forall i \in [0..n + 1], \sum_u x_{i,u} = 1 \)
- \(\forall i \in [0..n], \sum_{u,v} z_{i,u,v} = 1 \)
- \(\forall i \in [0..n], \forall u, v \in [0..p + 1], x_{i,u} + x_{i+1,v} \leq 1 + z_{i,u,v} \)

Constraints on intervals:
- \(\forall i \in [1..n], \forall u \in [1..p], \text{first}_u \leq i.x_{i,u} + n.(1 - x_{i,u}) \)
- \(\forall i \in [1..n], \forall u \in [1..p], \text{last}_u \geq i.x_{i,u} \)
- \(\forall i \in [1..n - 1], \forall u, v \in [1..p], u \neq v, \text{last}_u \leq i.z_{i,u,v} + n.(1 - z_{i,u,v}) \)
- \(\forall i \in [1..n - 1], \forall u, v \in [1..p], u \neq v, \text{first}_v \geq (i + 1).z_{i,u,v} \)
Linear program: constraints

Constraints on processors and links:
- $\forall i \in [0..n + 1], \, \sum_u x_{i,u} = 1$
- $\forall i \in [0..n], \, \sum_{u,v} z_{i,u,v} = 1$
- $\forall i \in [0..n], \forall u, v \in [0..p + 1], \, x_{i,u} + x_{i+1,v} \leq 1 + z_{i,u,v}$

Constraints on intervals:
- $\forall i \in [1..n], \forall u \in [1..p], \, \text{first}_u \leq i \cdot x_{i,u} + n \cdot (1 - x_{i,u})$
- $\forall i \in [1..n], \forall u \in [1..p], \, \text{last}_u \geq i \cdot x_{i,u}$
- $\forall i \in [1..n - 1], \forall u, v \in [1..p], \, u \neq v,$
 $\text{last}_u \leq i \cdot z_{i,u,v} + n \cdot (1 - z_{i,u,v})$
- $\forall i \in [1..n - 1], \forall u, v \in [1..p], \, u \neq v, \, \text{first}_v \geq (i + 1) \cdot z_{i,u,v}$
Linear program: constraints

\[\forall u \in [1..p], \sum_{i=1}^{n} \left\{ \left(\sum_{t \neq u} \frac{\delta_{i-1}}{b} z_{i-1,t,u} \right) + \frac{w_i}{s_u} x_{i,u} + \left(\sum_{v \neq u} \frac{\delta_i}{b} z_{i,u,v} \right) \right\} \leq \mathcal{P} \]

\[\sum_{u=1}^{p} \sum_{i=1}^{n} \left[\left(\sum_{t \neq u, t \in [0..p+1]} \frac{\delta_{i-1}}{b} z_{i-1,t,u} \right) + \frac{w_i}{s_u} x_{i,u} \right] + \left(\sum_{u \in [0..p]} \frac{\delta_n}{b} z_{n,u,\text{out}} \right) \leq \mathcal{L} \]

Min period with fixed latency

\[\text{Obj} = \mathcal{P} \]

\[\mathcal{L} \text{ is fixed} \]

Min latency with fixed period

\[\text{Obj} = \mathcal{L} \]

\[\mathcal{P} \text{ is fixed} \]
Linear program: constraints

\[
\forall u \in [1..p], \sum_{i=1}^{n} \left\{ \left(\sum_{t \neq u} \frac{\delta_{i-1}}{b} z_{i-1,t,u} \right) + \frac{w_i}{s_u} x_{i,u} + \left(\sum_{v \neq u} \frac{\delta_i}{b} z_{i,u,v} \right) \right\} \leq \mathcal{P}
\]

\[
\sum_{u=1}^{p} \sum_{i=1}^{n} \left[\left(\sum_{t \neq u, t \in [0..p+1]} \frac{\delta_{i-1}}{b} z_{i-1,t,u} \right) + \frac{w_i}{s_u} x_{i,u} \right] + \left(\sum_{u \in [0..p]} \frac{\delta_n}{b} z_{n,u,\text{out}} \right) \leq \mathcal{L}
\]

Min period with fixed latency

\[\text{Obj} = \mathcal{P}\]

\[\mathcal{L} \text{ is fixed}\]

Min latency with fixed period

\[\text{Obj} = \mathcal{L}\]

\[\mathcal{P} \text{ is fixed}\]
Other multi-criteria problems

- **Latency/reliability**: two “easy” instances, polynomial bi-criteria algorithms, single interval often optimal
- Reliability/period: mixes difficulties, period often NP-hard and reliability strongly non-linear
- Tri-criteria: even more difficult
- Experimental approach, design of polynomial heuristics for such difficult problem instances
Other multi-criteria problems

- **Latency/reliability**: two “easy” instances, polynomial bi-criteria algorithms, single interval often optimal
- Reliability/period: mixes difficulties, period often NP-hard and reliability strongly non-linear
- Tri-criteria: even more difficult
- Experimental approach, design of polynomial heuristics for such difficult problem instances
Other multi-criteria problems

- **Latency/reliability**: two “easy” instances, polynomial bi-criteria algorithms, single interval often optimal
- Reliability/period: mixes difficulties, period often NP-hard and reliability strongly non-linear
- Tri-criteria: even more difficult
- Experimental approach, design of polynomial heuristics for such difficult problem instances
Outline

1 Models
 - Application model
 - Platform and communication models
 - Multi-criteria mapping problems

2 Complexity results
 - Mono-criterion problems
 - Bi-criteria problems

3 Conclusion
Related work

Subhlok and Vondran— Pipeline on hom platforms: extended
Chains-to-chains— Heterogeneous, replicate/data-parallelize
Qishi Wu et al— Directed platform graphs (WAN); unbounded multi-port with overlap; mono-criterion problems

Mapping pipelined computations onto clusters and grids— DAG [Taura et al.], DataCutter [Saltz et al.]
Energy-aware mapping of pipelined computations— [Melhem et al.], three-criteria optimization

Scheduling task graphs on heterogeneous platforms— Acyclic task graphs scheduled on different speed processors [Topcuoglu et al.]. Communication contention: one-port model [Beaumont et al.]

Mapping pipelined computations onto special-purpose architectures— FPGA arrays [Fabiani et al.]. Fault-tolerance for embedded systems [Zhu et al.]
Conclusion

- Definition of the ingredients of scheduling: applications, platforms, multi-criteria mappings
- Surprisingly difficult problems: given a mapping, how to order communications to obtain the optimal period?
- Replication for performance and general mappings add one level of difficulty
- Cases in which application throughput not dictated by a critical resource

- Full mono-criterion complexity study, hints of multi-criteria complexity results, linear program formulation
Conclusion

- Definition of the ingredients of scheduling: applications, platforms, multi-criteria mappings
- Surprisingly difficult problems: given a mapping, how to order communications to obtain the optimal period?
- Replication for performance and general mappings add one level of difficulty
- Cases in which application throughput not dictated by a critical resource
- Full mono-criterion complexity study, hints of multi-criteria complexity results, linear program formulation
Extension to dynamic platforms

- How to handle uncertainties?

- Markovian-based model to compute the throughput of a given mapping with PEPA, performance evaluation process algebra (Murray Cole, Jane Hillston, Stephen Gilmore)

- More accurate capture of the behavior with non-markovian model based on timed Petri nets: identification of non-critical resource cases (Matthieu Gallet, Bruno Gaujal, YR)

- Failure probability related to time: problems become incredibly difficult (Arny Rosenberg, Frederic Vivien, YR)
Extension to dynamic platforms

- How to handle uncertainties? Next session

- Markovian-based model to compute the throughput of a given mapping with PEPA, performance evaluation process algebra (Murray Cole, Jane Hillston, Stephen Gilmore)

- More accurate capture of the behavior with non-markovian model based on timed Petri nets: identification of non-critical resource cases (Matthieu Gallet, Bruno Gaujal, YR)

- Failure probability related to time: problems become incredibly difficult (Arny Rosenberg, Frederic Vivien, YR)
Extension to dynamic platforms

- How to handle uncertainties? Next session

- Markovian-based model to compute the throughput of a given mapping with PEPA, performance evaluation process algebra (Murray Cole, Jane Hillston, Stephen Gilmore)

- More accurate capture of the behavior with non-markovian model based on timed Petri nets: identification of non-critical resource cases (Matthieu Gallet, Bruno Gaujal, YR)

- Failure probability related to time: problems become incredibly difficult (Arny Rosenberg, Frederic Vivien, YR)
Extension to dynamic platforms

- How to handle uncertainties? **Next session**

- Markovian-based model to compute the throughput of a given mapping with PEPA, performance evaluation process algebra (Murray Cole, Jane Hillston, Stephen Gilmore)

- More accurate capture of the behavior with non-markovian model based on timed Petri nets: identification of non-critical resource cases (Matthieu Gallet, Bruno Gaujal, YR)

- Failure probability related to time: problems become incredibly difficult (Arny Rosenberg, Frederic Vivien, YR)
Extension to dynamic platforms

- How to handle uncertainties? Next session

- Markovian-based model to compute the throughput of a given mapping with PEPA, performance evaluation process algebra (Murray Cole, Jane Hillston, Stephen Gilmore)

- More accurate capture of the behavior with non-markovian model based on timed Petri nets: identification of non-critical resource cases (Matthieu Gallet, Bruno Gaujal, YR)

- Failure probability related to time: problems become incredibly difficult (Arny Rosenberg, Frederic Vivien, YR)
Extension to more complex applications

- Web service applications with filtering property on stages: same challenges as for standard pipelined applications (Fanny Dufossé, YR)
- Results extended for fork or fork-join graphs, additional complexity for general DAGs (YR, Mourad Hakem)
- More complex problems of replica placement optimization, and in-network stream processing application (Veronika Rehn-Sonigo, YR)
Web service applications with filtering property on stages: same challenges as for standard pipelined applications (Fanny Dufossé, YR) Next talk

Results extended for fork or fork-join graphs, additional complexity for general DAGs (YR, Mourad Hakem)

More complex problems of replica placement optimization, and in-network stream processing application (Veronika Rehn-Sonigo, YR)
Extension to more complex applications

- Web service applications with filtering property on stages: same challenges as for standard pipelined applications (Fanny Dufossé, YR) Next talk

- Results extended for fork or fork-join graphs, additional complexity for general DAGs (YR, Mourad Hakem)

- More complex problems of replica placement optimization, and in-network stream processing application (Veronika Rehn-Sonigo, YR)
Extension to more complex applications

- Web service applications with filtering property on stages: same challenges as for standard pipelined applications (Fanny Dufossé, YR) Next talk

- Results extended for fork or fork-join graphs, additional complexity for general DAGs (YR, Mourad Hakem)

- More complex problems of replica placement optimization, and in-network stream processing application (Veronika Rehn-Sonigo, YR)
Future work

- **Experiments on linear chain applications:** design of multi-criteria heuristics and experiments on real applications such as a pipelined-version of MPEG-4 encoder (Veronika, YR)

- **Other research directions on linear chains:**
 - Complexity of period and latency minimization once a mapping is given (Loic Magnan, Kunal Agrawal, YR)
 - Multi-application setting and energy minimization (Paul Renaud-Goud, YR)
 - Trade-offs between replication for reliability and deal replication (Loris Marchal, Oliver Sinnen)

- **New applications:** Filtering applications (Fanny Dufossé, YR), micro-factories with task failures (Alexandru Dobrila et al)
Future work

- **Experiments on linear chain applications**: design of multi-criteria heuristics and experiments on real applications such as a pipelined-version of MPEG-4 encoder (Veronika, YR)

- **Other research directions on linear chains**:
 - Complexity of period and latency minimization once a mapping is given (Loic Magnan, Kunal Agrawal, YR)
 - Multi-application setting and energy minimization (Paul Renaud-Goud, YR)
 - Trade-offs between replication for reliability and deal replication (Loris Marchal, Oliver Sinnen)

- **New applications**: Filtering applications (Fanny Dufossé, YR), micro-factories with task failures (Alexandru Dobrila et al)
Future work

- **Experiments on linear chain applications**: design of multi-criteria heuristics and experiments on real applications such as a pipelined-version of MPEG-4 encoder (Veronika, YR)

- **Other research directions on linear chains**:
 - Complexity of period and latency minimization once a mapping is given (Loic Magnan, Kunal Agrawal, YR)
 - Multi-application setting and energy minimization (Paul Renaud-Goud, YR)
 - Trade-offs between replication for reliability and deal replication (Loris Marchal, Oliver Sinnen)

- **New applications**: Filtering applications (Fanny Dufossé, YR), micro-factories with task failures (Alexandru Dobrila et al)
Future work

Dynamic platforms and variability

- Many challenges and open problems
- StochaGrid and ALEAE projects
- Adding non-determinism to the timed Petri net model
- Extend work with more sophisticated failure model to heterogeneous platforms
- Come up with a good and realistic model for platform failure and variability
Future work

Dynamic platforms and variability

- Many challenges and open problems
- StochaGrid and ALEAE projects
- Adding non-determinism to the timed Petri net model
 - Extend work with more sophisticated failure model to heterogeneous platforms
 - Come up with a good and realistic model for platform failure and variability
Future work

Dynamic platforms and variability

- Many challenges and open problems
- StochaGrid and ALEAE projects
- Adding non-determinism to the timed Petri net model
- Extend work with more sophisticated failure model to heterogeneous platforms
- Come up with a good and realistic model for platform failure and variability
Future work

Dynamic platforms and variability

- Many challenges and open problems
- StochaGrid and ALEAE projects
- Adding non-determinism to the timed Petri net model
- Extend work with more sophisticated failure model to heterogeneous platforms
- Come up with a good and realistic model for platform failure and variability