Resilient application co-scheduling

with processor redistribution

Anne Benoit!
Loic Pottier! Yves Robert!2

1ENS Lyon & INRIA, France

2University of Tennessee Knoxville, USA

Anne.Benoit@ens-lyon.fr

October 4, 2016 — CCDSC 2016

Anne.Benoit@ens-1lyon.fr October 4, 2016 — CCDSC 2016

Anne.Benoit@ens-lyon.fr
Anne.Benoit@ens-lyon.fr

Why co-scheduling?

@ Supercomputers use more and more accelerators
o For instance, next supercomputer hosted by Argonne:
e Aurora — 180 petaflops only provided by Xeon Phi

@ One KNL (actual Xeon Phi) has 288 threads

Anne.Benoit@ens-1lyon.fr October 4, 2016 — CCDSC 2016

Anne.Benoit@ens-lyon.fr

Why co-scheduling?

@ Supercomputers use more and more accelerators
o For instance, next supercomputer hosted by Argonne:
e Aurora — 180 petaflops only provided by Xeon Phi

@ One KNL (actual Xeon Phi) has 288 threads

More and more concurrency available ©

Anne.Benoit@ens-1lyon.fr October 4, 2016 — CCDSC 2016

Anne.Benoit@ens-lyon.fr

Why co-scheduling?

@ Supercomputers use more and more accelerators
o For instance, next supercomputer hosted by Argonne:
e Aurora — 180 petaflops only provided by Xeon Phi

@ One KNL (actual Xeon Phi) has 288 threads

More and more concurrency available ©

We want to execute applications concurrently!

Anne.Benoit@ens-1lyon.fr October 4, 2016 — CCDSC 2016

Anne.Benoit@ens-lyon.fr

Why co-scheduling?

T3

T2

T

0 time

Anne.Benoit@ens-1lyon.fr October 4, 2016 — CCDSC 2016

Anne.Benoit@ens-lyon.fr

Why resilience?

Supercomputers enroll huge number of processors

More components — increased probability of errors

MTBF of p processors — 1—20

o

o

@ MTBF of 1 processor — around 100 years
o

e MTBF Titan < 1 day

Anne.Benoit@ens-1lyon.fr October 4, 2016 — CCDSC 2016

Anne.Benoit@ens-lyon.fr

Why resilience?

Supercomputers enroll huge number of processors

More components — increased probability of errors

100

MTBF of p processors — e

o

o

@ MTBF of 1 processor — around 100 years
o

e MTBF Titan < 1 day

Resilience at petascale is already a problem @

Anne.Benoit@ens-1lyon.fr October 4, 2016 — CCDSC 2016

Anne.Benoit@ens-lyon.fr

Checkpoint with fail-stop errors

Save the state of the application periodically:

]] [<]

w w Time

Anne.Benoit@ens-1lyon.fr October 4, 2016 — CCDSC 2016

Anne.Benoit@ens-lyon.fr

Checkpoint with fail-stop errors

Save the state of the application periodically:

[<] [<] [<]

w w Time

In case of errors, application returns to last checkpoint:

[} [<] [<]

% w Time

Anne.Benoit@ens-1lyon.fr October 4, 2016 — CCDSC 2016

Anne.Benoit@ens-lyon.fr

Checkpoint with fail-stop errors

Save the state of the application periodically:

[<] [<] [<]

w w Time

In case of errors, application returns to last checkpoint:

[} [<] [<]

% w Time

Work done between last checkpoint and error is lost;
downtime D and recovery R before resuming execution:

i I [€] (]

Wit w w Time

Anne.Benoit@ens-1lyon.fr October 4, 2016 — CCDSC 2016

Anne.Benoit@ens-lyon.fr

Model and complexity
Heuristics

Simulation results

Conclusion

Anne.Benoit@ens-1lyon.fr October 4, 2016 — CCDSC 2016 6 /25

Anne.Benoit@ens-lyon.fr

T3

T2

T

0 time

Anne.Benoit@ens-1lyon.fr October 4, 2016 — CCDSC 2016

Anne.Benoit@ens-lyon.fr

p p
T3 T3
T2 T,
T T

0 time 0 time

Redistribution when T, releases its processors

Anne.Benoit@ens-1lyon.fr October 4, 2016 — CCDSC 2016

Anne.Benoit@ens-lyon.fr

P Error
|

T |

|

|

T }

!

T1 :

0 tr time

Anne.Benoit@ens-1lyon.fr October 4, 2016 — CCDSC 2016

Anne.Benoit@ens-lyon.fr

p Error p Error
| |

T | T :

| |

| |

| |

T2 1 T 1

| |

| |

T | Ty |

0 tr time 0 tf time

How to compute the new execution time of T37?
Give processors of T to T37

Anne.Benoit@ens-1lyon.fr October 4, 2016 — CCDSC 2016

Anne.Benoit@ens-lyon.fr

@ n independent parallel applications T1, To,..., T,
@ Execution platform with p identical processors

@ Each application is malleable: its number of processors j can
change at any time

@ Each application is a divisible load application

Problem: COSCHED

Minimize the maximum of the expected completion times of

n applications executed on p processors subject to failures.
Redistributions are allowed only when an application completes
execution or is struck by a failure.

Anne.Benoit@ens-1lyon.fr October 4, 2016 — CCDSC 2016

Anne.Benoit@ens-lyon.fr

Fault model

Only fail-stop errors
Errors follow an exponential law Exp()\)

e Mean Time Between Faults (MTBF) for one proc.: p=1/\
o For application T; with j processors: 1 j = 1u/j

Use of light-weight periodic checkpointing protocol, with

period Tij = \/2,u,-JC,-J -+ C,'J [Young, 1974], where C,"J' is the
checkpoint cost

Cj= % + B, where m; is the memory footprint of T;, § is a
start-up latency and 7 is the link bandwidth

Anne.Benoit@ens-1lyon.fr October 4, 2016 — CCDSC 2016

Anne.Benoit@ens-lyon.fr

Checkpointing model

Double checkpointing algorithm [Kalé et al. 2004]

@ Each processor stores two checkpoints: its own and that of its
buddy processor

o If there is a fault, the buddy processor sends back both

checkpoints
Distance checkpoint (C2)
Local checkpoint (Cp)
| |
. 1} - ‘ l’ B ‘ The number of
ocessor 1 || @ !
| | processors allocated
! ! to each application
Procesor2 | 2 ‘ H w ‘ is even
| |
| |
|

|
Barrier checkpoints done

Anne.Benoit@ens-1lyon.fr October 4, 2016 — CCDSC 2016 11 /25

Anne.Benoit@ens-lyon.fr

For application T; with j processors:
e Fault-free execution time: t;

@ Resilient expected execution time: tfj.(a,-), where ¢; is the
remaining fraction of work that needs to be executed by T;
(initially, a; = 1)

@ We can easily express the number of checkpoints, N,‘-T,-(a,-),
and then obtain an expression of t,-’j-(a,-):

tR(aj)= eAJR"vf<)\.—|—D> (N[(ai)(eMT9 — 1)+ (eMTest —1))
y)

Anne.Benoit@ens-1lyon.fr October 4, 2016 — CCDSC 2016 12/

Anne.Benoit@ens-lyon.fr

With redistribution

@ Redistribution done (i) when an application ends, or (ii) when
an error strikes

@ Redistribution cost of application T; from j to k processors
RC/™* depends on:

Data footprint of T; (m;)

Number of processors involved (j to k)

Link bandwidth 7, start-up latency (8

Constant start-up overhead S

RC’J‘%k = 5 + max(min(j, k), |k — j|) x <Z7'_ + 6)

o After redistribution, we systematically checkpoint and
therefore pay the cost G «

Anne.Benoit@ens-1lyon.fr October 4, 2016 — CCDSC 2016

Anne.Benoit@ens-lyon.fr

Remaining fraction of work at time ¢t

@ Initially, a; = 1 for 1 <7 < n, and we remove progressively
the work already completed

@ Time when last redistribution or failure occurred for
application T;: tjoser;

@ Number of checkpoints between tj,5:r, and the event at
time t: N,'J = [MJ

i j

Anne.Benoit@ens-1lyon.fr October 4, 2016 — CCDSC 2016

Anne.Benoit@ens-lyon.fr

Remaining fraction of work at time ¢t

@ Initially, a; = 1 for 1 <7 < n, and we remove progressively
the work already completed

@ Time when last redistribution or failure occurred for
application T;: tjoser;

@ Number of checkpoints between tj,5:r, and the event at
time t: N,'J = [MJ

i j

How to compute the «; values,
and hence the expected execution times of applications?

Anne.Benoit@ens-1lyon.fr October 4, 2016 — CCDSC 2016

Anne.Benoit@ens-lyon.fr

Computation of work done

Example of redistribution when a fault strikes application T;: the colored

rectangles correspond to useful work done by T; and T, before the
failure; T;» is not affected by the failure (no redistribution)

processors
T,-// |C,'//,ju| : |C,-//’j//| ‘
|
=i=alCoa_ |
Ti’ Ci’,j’ Ci’,j’ RCi’ ij'=a|
I
I ! - -
| . . |
j—j+q ..
n [Te e ol 7 [
! | I time
L
tlastRl-// =0 =)ft tlastRi/ tlastR,-
au

: . N; jx (77— Ci
o If T; is the faulty application: «; = M
)

tr—tastr, —Ni j Ci j

@ Otherwise: «; = -
1

o

Anne.Benoit@ens-1lyon.fr October 4, 2016 — CCDSC 2016

Anne.Benoit@ens-lyon.fr

Complexity without redistribution

The COSCHED problem without redistributions can be solved in
polynomial time O(p x log(n)), where p is the number of
processors, and n is the number of applications

@ Each application has two processors

@ We allocate the p — 2n remaining processors two by two in a
greedy way to longest application

Anne.Benoit@ens-1lyon.fr October 4, 2016 — CCDSC 2016 16 /

Anne.Benoit@ens-lyon.fr

Greedy algorithm when redistributions are allowed

t1,1 = 10, wi 1 = 10 ta1 = 67 w21 = 6
T1 =4 t12=09, wip =18 Thr=4q t2=3, wp3>2=6
t13 =26, wi3 =18 th3=3, wy3=9

T1 — T: LA .
i 72 | " i

0 6 9 0 6 8 03 10 03 72
(a) Greedy uses largest execution (b) Greedy-SP uses best
time to allocate processors speedup profile to allocate
processors

Some examples where Greedy-SP is not optimal either...

Anne.Benoit@ens-1lyon.fr October 4, 2016 — CCDSC 2016 17 / 25

Anne.Benoit@ens-lyon.fr

Complexity with redistribution

With constant redistribution costs and without failures,
COSCHED is NP-complete (in the strong sense)

Reduction from 3-PARTITION with distinct integers

D
ar F--_
a Iz
e ST
a, 15[18] I.Igl T3m-k S
3m small applications B S Tomik s,
T \
] ST IS Tamik |
asm F--- /,I\
. =~ 77
m large applications ST IS IS Tamix N
.. k—rz—""

Anne.Benoit@ens-1lyon.fr

October 4, 2016 — CCDSC 2016

Anne.Benoit@ens-lyon.fr

Algorithms and heuristics

Optimal greedy algorithm without redistribution to allocate
processors to applications at beginning

Two cases of redistribution:
@ When an application ends and releases its processors

@ When a fault occurs, we redistribute only if the faulty
application becomes the longest one

Anne.Benoit@ens-1lyon.fr October 4, 2016 — CCDSC 2016

Anne.Benoit@ens-lyon.fr

Heuristics

Two heuristics when applications end:
o ENDGREEDY: Greedy algorithm with redistribution costs

e ENDLOCAL: Local decisions (take processors from shortest
applications)

Two heuristics in case of fault:

o ITERATEDGREEDY: Greedy algorithm with redistribution
costs

@ SHORTESTAPPSFIRST: Local decisions (take processors from
shortest applications)

Anne.Benoit@ens-1lyon.fr October 4, 2016 — CCDSC 2016 20 / 25

Anne.Benoit@ens-lyon.fr

Test platform

@ Fault simulator, synthetic applications

Fault-free execution time (Amdahl model)
ti1 = 2 X m; X /ng(m,')

tj mj
t,',j:th,"l-I-(l—f)’J—fl‘l‘TI

loga(m;)

@ m;: number of data needed by application /

e f: sequential fraction of time (f = 0.08 for our tests)

Anne.Benoit@ens-1lyon.fr

October 4, 2016 — CCDSC 2016

Anne.Benoit@ens-lyon.fr

Impact of n with 5000 processors and an MTBF of 100 years for each
processor

Fal‘JIt context wi‘thoul ReDist‘rib —
IteratedGreedy-EndGreedy
IteratedGreedy-EndLocal
ShortestApplicationsFirst-EndGreedy ———
ShortestApplicationsFirst-EndLocal
Fault-free context with ReDistrib (EndLocal)

Normalized execution time

Heuristics are more efficient when the number of applications
increases. With n = 1000, we obtain a gain around 40%.

Anne.Benoit@ens-1lyon.fr October 4, 2016 — CCDSC 2016 22 /25

Anne.Benoit@ens-lyon.fr

Impact of checkpointing cost ¢ and sequential fraction f
with n =100 and p = 1000

001 01 1 0 01 02 03 04 05
Cost of checkpoints. Fraction of sequential time.

Heuristics more efficient when checkpointing cost decreases.
Heuristics very efficient when applications are almost fully parallel.

Anne.Benoit@ens-1lyon.fr October 4, 2016 — CCDSC 2016 23/

Anne.Benoit@ens-lyon.fr

Summary of results

@ ITERATEDGREEDY better than SHORTESTAPPSFIRST:
rebuilds complete schedule at each fault (except for very low
MTBF, 10 years or less)

@ Faulty context: gain flexibility from failures

e Too many processors/too few applications: less need of
redistribution

@ Best context: heterogeneous applications

@ Significant impact of checkpointing cost and fraction of
sequential time

@ All heuristics run within a few seconds, while total execution
time of applications takes several days: negligible overhead

Anne.Benoit@ens-1lyon.fr October 4, 2016 — CCDSC 2016

Anne.Benoit@ens-lyon.fr

Conclusion

@ Detailed and comprehensive model for scheduling a pack of
applications with failures and redistributions

@ Greedy polynomial-time algorithm with failures but
no redistribution

@ With redistribution: NP-completeness of the problem, even
with constant redistribution costs and no failures

@ Polynomial-time heuristics to redistribute efficiently:
significant improvement of execution time

Anne.Benoit@ens-1lyon.fr October 4, 2016 — CCDSC 2016

Anne.Benoit@ens-lyon.fr

Conclusion

@ Detailed and comprehensive model for scheduling a pack of
applications with failures and redistributions

@ Greedy polynomial-time algorithm with failures but
no redistribution

@ With redistribution: NP-completeness of the problem, even
with constant redistribution costs and no failures

@ Polynomial-time heuristics to redistribute efficiently:
significant improvement of execution time

Future work:
@ How to partition applications into packs?
@ Competitiveness of online redistribution algorithms?

@ How to deal with silent errors?

Anne.Benoit@ens-1lyon.fr October 4, 2016 — CCDSC 2016

Anne.Benoit@ens-lyon.fr

	Resilience
	Checkpoint

	Model and problem
	Model
	Fault model
	Checkpointing model
	Execution time
	Redistribution

	Complexity
	Algorithms
	Initial algorithm and redistribution
	Heuristics

	Simulations
	Conclusion

