Mapping skeleton workflows onto heterogeneous platforms

Anne Benoit and Yves Robert

GRAAL team, LIP
École Normale Supérieure de Lyon

June 2007
Introduction and motivation

- Mapping applications onto parallel platforms
 Difficult challenge
- Heterogeneous clusters, fully heterogeneous platforms
 Even more difficult!
- Structured programming approach
 - Easier to program (deadlocks, process starvation)
 - Range of well-known paradigms (pipeline, farm)
 - Algorithmic skeleton: help for mapping

Mapping skeletons (pipeline, fork) onto heterogeneous platforms
Introduction and motivation

- Mapping applications onto parallel platforms
 Difficult challenge
- Heterogeneous clusters, fully heterogeneous platforms
 Even more difficult!
- Structured programming approach
 - Easier to program (deadlocks, process starvation)
 - Range of well-known paradigms (pipeline, farm)
 - Algorithmic skeleton: help for mapping

Mapping skeletons (pipeline, fork) onto heterogeneous platforms
Introduction and motivation

- Mapping applications onto parallel platforms
 Difficult challenge

- Heterogeneous clusters, fully heterogeneous platforms
 Even more difficult!

- Structured programming approach
 - Easier to program (deadlocks, process starvation)
 - Range of well-known paradigms (pipeline, farm)
 - Algorithmic skeleton: help for mapping

Mapping skeletons (pipeline, fork) onto heterogeneous platforms
Introduction and motivation

- Mapping applications onto parallel platforms
 Difficult challenge
- Heterogeneous clusters, fully heterogeneous platforms
 Even more difficult!
- Structured programming approach
 - Easier to program (deadlocks, process starvation)
 - Range of well-known paradigms (pipeline, farm)
 - Algorithmic skeleton: help for mapping

Mapping skeletons (pipeline, fork) onto heterogeneous platforms
Introduction and motivation

- Mapping applications onto parallel platforms
 Difficult challenge
- Heterogeneous clusters, fully heterogeneous platforms
 Even more difficult!
- Structured programming approach
 - Easier to program (deadlocks, process starvation)
 - Range of well-known paradigms (pipeline, farm)
 - Algorithmic skeleton: help for mapping

Mapping skeletons (pipeline, fork) onto heterogeneous platforms
Introduction and motivation

- Mapping applications onto parallel platforms
 Difficult challenge
- Heterogeneous clusters, fully heterogeneous platforms
 Even more difficult!
- Structured programming approach
 - Easier to program (deadlocks, process starvation)
 - Range of well-known paradigms (pipeline, farm)
 - Algorithmic skeleton: help for mapping

Mapping skeletons (pipeline, fork) onto heterogeneous platforms
Introduction and motivation

- Mapping applications onto parallel platforms
 Difficult challenge

- Heterogeneous clusters, fully heterogeneous platforms
 Even more difficult!

- Structured programming approach
 - Easier to program (deadlocks, process starvation)
 - Range of well-known paradigms (pipeline, farm)
 - Algorithmic skeleton: help for mapping

Mapping skeletons (pipeline, fork) onto heterogeneous platforms
Rule of the game

- Map each pipeline stage on a single processor (extended later)
- Goal: minimize execution time (extended later)

Several mapping strategies

The pipeline application
Rule of the game

- Map each pipeline stage on a single processor (extended later)
- Goal: minimize execution time (extended later)
- Several mapping strategies

The pipeline application
Rule of the game

- Map each pipeline stage on a single processor (extended later)
- Goal: minimize execution time (extended later)
- Several mapping strategies

One-to-one Mapping
Rule of the game

- Map each pipeline stage on a single processor (extended later)
- Goal: minimize execution time (extended later)
- Several mapping strategies

Interval Mapping
Rule of the game

- Map each pipeline stage on a single processor (extended later)
- Goal: minimize execution time (extended later)
- Several mapping strategies

GENERAL MAPPING
Major contributions

Theory
- Formal approach to the problem, definition of replication and data-parallelism
- Problem complexity for several cases
- Integer linear program for exact resolution

Practice
- Heuristics for INTERVAL MAPPING on clusters
- Experiments to compare heuristics and evaluate their absolute performance
Major contributions

Theory
- Formal approach to the problem, definition of replication and data-parallelism
- Problem complexity for several cases
- Integer linear program for exact resolution

Practice
- Heuristics for \textit{Interval Mapping} on clusters
- Experiments to compare heuristics and evaluate their absolute performance
Outline

1. Framework
2. Working out an example
3. Part 1 - Communications, monolithic stages, mono-criterion
4. Part 2 - Simpler model with no communications, but with replication/DP and bi-criteria
5. Conclusion
Outline

1. Framework
2. Working out an example
3. Part 1 - Communications, monolithic stages, mono-criterion
4. Part 2 - Simpler model with no communications, but with replication/DP and bi-criteria
5. Conclusion
The application: pipeline graphs

- n stages S_k, $1 \leq k \leq n$
- S_k:
 - receives input of size δ_{k-1} from S_{k-1}
 - performs w_k computations
 - outputs data of size δ_k to S_{k+1}
The application: fork graphs

- $n + 1$ stages S_k, $0 \leq k \leq n$
 - S_0: root stage
 - S_1 to S_n: independent stages
- A data-set goes through stage S_0, then it can be executed simultaneously for all other stages
The platform

- p processors P_u, $1 \leq u \leq p$, fully interconnected
- s_u: speed of processor P_u
- bidirectional link $\text{link}_{u,v}: P_u \rightarrow P_v$, bandwidth $b_{u,v}$
- one-port model: each processor can either send, receive or compute at any time-step
Different platforms

Fully Homogeneous – Identical processors \((s_u = s)\) and links \((b_{u,v} = b)\): typical parallel machines

Communication Homogeneous – Different-speed processors \((s_u \neq s_v)\), identical links \((b_{u,v} = b)\): networks of workstations, clusters

Fully Heterogeneous – Fully heterogeneous architectures, \(s_u \neq s_v\) and \(b_{u,v} \neq b_{u',v'}\): hierarchical platforms, grids
Rule of the game

- Consecutive data-sets fed into the workflow
- **Period** $T_{\text{period}} = \text{time interval between beginning of execution of two consecutive data sets (throughput=1/} T_{\text{period}}$)
- **Latency** $T_{\text{latency}}(x) = \text{time elapsed between beginning and end of execution for a given data set } x$, and $T_{\text{latency}} = \max_x T_{\text{latency}}(x)$
- Map each pipeline/fork stage on **one or several processors**
- Goal: minimize T_{period} or T_{latency} or bi-criteria minimization
Rule of the game

- Consecutive data-sets fed into the workflow
- **Period** $T_{\text{period}} = \text{time interval between beginning of execution of two consecutive data sets (throughput}=1/T_{\text{period}})$
- **Latency** $T_{\text{latency}}(x) = \text{time elapsed between beginning and end of execution for a given data set } x$, and $T_{\text{latency}} = \max_x T_{\text{latency}}(x)$
- Map each pipeline/fork stage on **one or several** processors
- Goal: minimize T_{period} or T_{latency} or bi-criteria minimization
Stage types

- **Monolithic stages**: must be mapped on **one single processor** since computation for a data-set may depend on result of previous computation.

- **Replicable stages**: can be replicated on **several processors**, but not parallel, *i.e.* a data-set must be entirely processed on a single processor.

- **Data-parallel stages**: inherently parallel stages, one data-set can be computed in parallel by **several processors**.
Replication

Replicate stage S_k on P_1, \ldots, P_q

\[
\begin{array}{c}
\forall \ q \ \ S_k \text{ on } P_1: \text{ data sets } 1, 4, 7, \ldots \\
\vdots \ S_{k-1} \rightarrow \ S_k \text{ on } P_2: \text{ data sets } 2, 5, 8, \ldots \\
\vdash \ S_k \text{ on } P_3: \text{ data sets } 3, 5, 9, \ldots \\
\vdash S_{k+1} \ldots
\end{array}
\]

- S_{k+1} may be monolithic: output order must be respected
- Round-robin rule to ensure output order
- Cannot feed more fast processors than slow ones
- Most efficient with similar-speed processors
Replication

Replicate stage S_k on P_1, \ldots, P_q

$\backslash \quad S_k$ on P_1: data sets 1, 4, 7, \ldots
\... S_{k-1} \quad \rightarrow \quad S_k on P_2: data sets 2, 5, 8, \ldots \quad \rightarrow S_{k+1} \ldots$

$\rightarrow \quad S_k$ on P_3: data sets 3, 5, 9, \ldots

- S_{k+1} may be monolithic: output order must be respected
- Round-robin rule to ensure output order
- Cannot feed more fast processors than slow ones
- Most efficient with similar-speed processors
Data-parallelism

Data-parallelize stage S_k on P_1, \ldots, P_q

$S_k (w = 16)$

\Rightarrow

$P_1 (s_1 = 2) : \bullet \bullet \bullet \bullet \bullet \bullet \bullet \bullet$

$P_2 (s_2 = 1) : \bullet \bullet \bullet \bullet$

$P_3 (s_3 = 1) : \bullet \bullet \bullet \bullet$

- Perfect sharing of the work
- Data-parallelize single stage only
Data-parallelism

Data-parallelize stage S_k on P_1, \ldots, P_q

$S_k (w = 16)$

\Rightarrow

$P_1 (s_1 = 2) : \bullet \bullet \bullet \bullet \bullet \bullet \bullet \bullet \bullet$
$P_2 (s_2 = 1) : \bullet \bullet \bullet$
$P_3 (s_3 = 1) : \bullet \bullet \bullet \bullet$

- Perfect sharing of the work
- Data-parallelize single stage only
Several consecutive stages onto the same processor
Increase computational load, reduce communications

Partition of \([1..n]\) into \(m\) intervals \(l_j = [d_j, e_j]\)
(with \(d_j \leq e_j\) for \(1 \leq j \leq m\), \(d_1 = 1\), \(d_{j+1} = e_j + 1\) for \(1 \leq j \leq m - 1\) and \(e_m = n\))
Interval \(l_j\) mapped onto processor \(P_{\text{alloc}(j)}\)

\[T_{\text{period}} = \max_{1 \leq j \leq m} \left\{ \frac{\delta_{d_j-1}}{b_{\text{alloc}(j-1),\text{alloc}(j)}} + \frac{\sum_{i=d_j}^{e_j} w_i}{s_{\text{alloc}(j)}} + \frac{\delta_{e_j}}{b_{\text{alloc}(j),\text{alloc}(j+1)}} \right\} \]

\[T_{\text{latency}} = \sum_{1 \leq j \leq m} \left\{ \frac{\delta_{d_j-1}}{b_{\text{alloc}(j-1),\text{alloc}(j)}} + \frac{\sum_{i=d_j}^{e_j} w_i}{s_{\text{alloc}(j)}} \right\} + \frac{\delta_n}{b_{\text{alloc}(m),\text{alloc}(m+1)}} \]
Interval Mapping for pipeline graphs

- Several consecutive stages onto the same processor
- Increase computational load, reduce communications

Partition of \([1..n]\) into \(m\) intervals \(I_j = [d_j, e_j]\)
(with \(d_j \leq e_j\) for \(1 \leq j \leq m\), \(d_1 = 1\), \(d_{j+1} = e_j + 1\) for \(1 \leq j \leq m - 1\) and \(e_m = n\))

Interval \(I_j\) mapped onto processor \(P_{\text{alloc}(j)}\)

\[
T_{\text{period}} = \max_{1 \leq j \leq m} \left\{ \frac{\delta_{d_j-1}}{b_{\text{alloc}(j-1),\text{alloc}(j)}} + \frac{\sum_{i=d_j}^{e_j} w_i}{s_{\text{alloc}(j)}} + \frac{\delta_{e_j}}{b_{\text{alloc}(j),\text{alloc}(j+1)}} \right\}
\]

\[
T_{\text{latency}} = \sum_{1 \leq j \leq m} \left\{ \frac{\delta_{d_j-1}}{b_{\text{alloc}(j-1),\text{alloc}(j)}} + \frac{\sum_{i=d_j}^{e_j} w_i}{s_{\text{alloc}(j)}} \right\} + \frac{\delta_n}{b_{\text{alloc}(m),\text{alloc}(m+1)}}
\]
Interval Mapping for pipeline graphs

- Several consecutive stages onto the same processor
- Increase computational load, reduce communications
- Partition of $[1..n]$ into m intervals $I_j = [d_j, e_j]$
 (with $d_j \leq e_j$ for $1 \leq j \leq m$, $d_1 = 1$, $d_{j+1} = e_j + 1$ for $1 \leq j \leq m - 1$ and $e_m = n$)
- Interval I_j mapped onto processor $P_{\text{alloc}(j)}$

\[
T_{\text{period}} = \max_{1 \leq j \leq m} \left\{ \frac{\delta_{d_j-1}}{b_{\text{alloc}(j-1),\text{alloc}(j)}} + \frac{\sum_{i=d_j}^{e_j} w_i}{s_{\text{alloc}(j)}} + \frac{\delta_{e_j}}{b_{\text{alloc}(j),\text{alloc}(j+1)}} \right\}
\]

\[
T_{\text{latency}} = \sum_{1 \leq j \leq m} \left\{ \frac{\delta_{d_j-1}}{b_{\text{alloc}(j-1),\text{alloc}(j)}} + \frac{\sum_{i=d_j}^{e_j} w_i}{s_{\text{alloc}(j)}} \right\} + \frac{\delta_n}{b_{\text{alloc}(m),\text{alloc}(m+1)}}
\]
Interval Mapping for pipeline graphs

- Several consecutive stages onto the same processor
- Increase computational load, reduce communications
- Partition of \([1..n]\) into \(m\) intervals \(I_j = [d_j, e_j]\)

 \[(with \ d_j \leq e_j \ for \ 1 \leq j \leq m, \ d_1 = 1, \ d_{j+1} = e_j + 1 \ for \ 1 \leq j \leq m - 1 \ and \ e_m = n)\]
- Interval \(I_j\) mapped onto processor \(P_{alloc(j)}\)

\[
T_{\text{period}} = \max_{1 \leq j \leq m} \left\{ \frac{\delta d_j - 1}{b_{alloc(j-1),alloc(j)}} + \frac{\sum_{i=d_j}^{e_j} W_i}{s_{alloc(j)}} + \frac{\delta e_j}{b_{alloc(j),alloc(j+1)}} \right\}
\]

\[
T_{\text{latency}} = \sum_{1 \leq j \leq m} \left\{ \frac{\delta d_j - 1}{b_{alloc(j-1),alloc(j)}} + \frac{\sum_{i=d_j}^{e_j} W_i}{s_{alloc(j)}} \right\} + \frac{\delta n}{b_{alloc(m),alloc(m+1)}}
\]
Simpler problem, replication and data-parallelism

- No communication costs nor overheads

- Cost to execute S_i on P_u alone: $\frac{w_i}{s_u}$

- Cost to data-parallelize $[S_i, S_j]$ ($i = j$ for pipeline; $0 < i \leq j$ or $i = j = 0$ for fork) on k processors P_{q_1}, \ldots, P_{q_k}:

$$\sum_{\ell=i}^{j} \frac{w_\ell}{\sum_{u=1}^{k} s_{q_u}}$$

Cost = T_{period} of assigned processors
Cost = delay to traverse the interval
Simpler problem, replication and data-parallelism

- No communication costs nor overheads

- Cost to execute S_i on P_u alone: $\frac{w_i}{s_u}$

- Cost to data-parallelize $[S_i, S_j]$ ($i = j$ for pipeline; $0 < i \leq j$ or $i = j = 0$ for fork) on k processors P_{q_1}, \ldots, P_{q_k}:

 $$\frac{\sum_{\ell=i}^{j} w_{\ell}}{\sum_{u=1}^{k} s_{q_u}}$$

 Cost = T_{period} of assigned processors
 Cost = delay to traverse the interval
Simpler problem, replication and data-parallelism

- No communication costs nor overheads
- Cost to execute S_i on P_u alone: $\frac{w_i}{s_u}$
- Cost to data-parallelize $[S_i, S_j]$ ($i = j$ for pipeline; $0 < i \leq j$ or $i = j = 0$ for fork) on k processors P_{q_1}, \ldots, P_{q_k}:
 \[
 \frac{\sum_{\ell=i}^{j} w_{\ell}}{\sum_{u=1}^{k} s_{qu}}
 \]

Cost = T_{period} of assigned processors
Cost = delay to traverse the interval
Simpler problem, replication and data-parallelism

Cost to replicate \([S_i, S_j]\) on \(k\) processors \(P_{q_1}, \ldots, P_{q_k}\):

\[
\frac{\sum_{\ell=i}^{j} w_{\ell}}{k \times \min_{1 \leq u \leq k} s_{q_u}}.
\]

Cost = \(T_{\text{period}}\) of assigned processors
Delay to traverse the interval = time needed by slowest processor:

\[
t_{\text{max}} = \frac{\sum_{\ell=i}^{j} w_{\ell}}{\min_{1 \leq u \leq k} s_{q_u}}
\]

With these formulas: easy to compute \(T_{\text{period}}\) and \(T_{\text{latency}}\) for pipeline graphs
Simpler problem, replication and data-parallelism

- Cost to replicate \([S_i, S_j]\) on \(k\) processors \(P_{q_1}, \ldots, P_{q_k}\):

\[
\sum_{\ell=i}^{j} w_\ell \frac{1}{k \times \min_{1 \leq u \leq k} s_{qu}}.
\]

Cost = \(T_{\text{period}}\) of assigned processors
Delay to traverse the interval = time needed by slowest processor:

\[
t_{\text{max}} = \sum_{\ell=i}^{j} w_\ell \frac{1}{\min_{1 \leq u \leq k} s_{qu}}.
\]

- With these formulas: easy to compute \(T_{\text{period}}\) and \(T_{\text{latency}}\) for pipeline graphs
Outline

1. Framework

2. Working out an example

3. Part 1 - Communications, monolithic stages, mono-criterion

4. Part 2 - Simpler model with no communications, but with replication/DP and bi-criteria

5. Conclusion
Working out an example

\[S_1 \rightarrow S_2 \rightarrow S_3 \rightarrow S_4 \]

14 4 2 4

Interval mapping, 4 processors, \(s_1 = 2 \) and \(s_2 = s_3 = s_4 = 1 \)

Optimal period?
Working out an example

\[S_1 \rightarrow S_2 \rightarrow S_3 \rightarrow S_4 \]
\[14 \quad 4 \quad 2 \quad 4 \]

Interval mapping, 4 processors, \(s_1 = 2 \) and \(s_2 = s_3 = s_4 = 1 \)

Optimal period?
\[T_{\text{period}} = 7, S_1 \rightarrow P_1, S_2S_3 \rightarrow P_2, S_4 \rightarrow P_3 \quad (T_{\text{latency}} = 17) \]

Optimal latency?
Working out an example

\[S_1 \rightarrow S_2 \rightarrow S_3 \rightarrow S_4 \]

14 → 4 → 2 → 4

Interval mapping, 4 processors, \(s_1 = 2 \) and \(s_2 = s_3 = s_4 = 1 \)

Optimal period?
\[T_{\text{period}} = 7, \ S_1 \rightarrow P_1, \ S_2S_3 \rightarrow P_2, \ S_4 \rightarrow P_3 \ (T_{\text{latency}} = 17) \]

Optimal latency?
\[T_{\text{latency}} = 12, \ S_1S_2S_3S_4 \rightarrow P_1 \ (T_{\text{period}} = 12) \]

Min. latency if \(T_{\text{period}} \leq 10 \)?
Working out an example

\[S_1 \rightarrow S_2 \rightarrow S_3 \rightarrow S_4 \]

Interval mapping, 4 processors, \(s_1 = 2 \) and \(s_2 = s_3 = s_4 = 1 \)

Optimal period?
\[T_{\text{period}} = 7, \ S_1 \rightarrow P_1, \ S_2S_3 \rightarrow P_2, \ S_4 \rightarrow P_3 \ (T_{\text{latency}} = 17) \]

Optimal latency?
\[T_{\text{latency}} = 12, \ S_1S_2S_3S_4 \rightarrow P_1 \ (T_{\text{period}} = 12) \]

Min. latency if \(T_{\text{period}} \leq 10 \)?
\[T_{\text{latency}} = 14, \ S_1S_2S_3 \rightarrow P_1, \ S_4 \rightarrow P_2 \]
Example with replication and data-parallelism

\[S_1 \rightarrow S_2 \rightarrow S_3 \rightarrow S_4 \]
\[14 \quad 4 \quad 2 \quad 4 \]

Interval mapping, 4 processors, \(s_1 = 2 \) and \(s_2 = s_3 = s_4 = 1 \)

Replicate interval \([S_u .. S_v]\) on \(P_1, \ldots, P_q \)

\[\begin{align*}
\left/ \begin{array}{l}
S_u \ldots S_v \text{ on } P_1: \text{ data sets } 1, 4, 7, \ldots \\
S_u \ldots S_v \text{ on } P_2: \text{ data sets } 2, 5, 8, \ldots \\
S_u \ldots S_v \text{ on } P_3: \text{ data sets } 3, 5, 9, \ldots
\end{array} \right\}
\end{align*} \]

\[T_{\text{period}} = \frac{\sum_{k=u}^{v} w_k}{q \times \min_i(s_i)} \text{ and } T_{\text{latency}} = q \times T_{\text{period}} \]
Example with replication and data-parallelism

\[S_1 \rightarrow S_2 \rightarrow S_3 \rightarrow S_4 \]

\[
\begin{array}{c}
14 \\
4 \\
2 \\
4
\end{array}
\]

Interval mapping, 4 processors, \(s_1 = 2 \) and \(s_2 = s_3 = s_4 = 1 \)

Data Parallelize single stage \(S_k \) on \(P_1, \ldots, P_q \)

\[
S \ (w = 16) \quad P_1 \ (s_1 = 2) : \quad \bullet \bullet \bullet \bullet \bullet \bullet \bullet \bullet \bullet \\
\Rightarrow \quad P_2 \ (s_2 = 1) : \quad \bullet \bullet \bullet \\
P_3 \ (s_3 = 1) : \quad \bullet \bullet \bullet \bullet \bullet \\
\]

\[
T_{\text{period}} = \frac{w_k}{\sum_{i=1}^{q}s_i} \quad \text{and} \quad T_{\text{latency}} = T_{\text{period}}
\]
Example with replication and data-parallelism

\[S_1 \rightarrow S_2 \rightarrow S_3 \rightarrow S_4 \]

14 4 2 4

Interval mapping, 4 processors, \(s_1 = 2 \) and \(s_2 = s_3 = s_4 = 1 \)

Optimal period?
Example with replication and data-parallelism

\[S_1 \rightarrow S_2 \rightarrow S_3 \rightarrow S_4 \]
\[14 \rightarrow 4 \rightarrow 2 \rightarrow 4 \]

Interval mapping, 4 processors, \(s_1 = 2 \) and \(s_2 = s_3 = s_4 = 1 \)

Optimal period?

\[S_1 \xrightarrow{\text{DP}} P_1P_2, \ S_2S_3S_4 \xrightarrow{\text{REP}} P_3P_4 \]

\[T_{\text{period}} = \max\left(\frac{14}{2+1}, \frac{4+2+4}{2\times1} \right) = 5, \ T_{\text{latency}} = 14.67 \]
Example with replication and data-parallelism

\[S_1 \rightarrow S_2 \rightarrow S_3 \rightarrow S_4 \]
\[
14 \quad 4 \quad 2 \quad 4
\]

Interval mapping, 4 processors, \(s_1 = 2 \) and \(s_2 = s_3 = s_4 = 1 \)

Optimal period?

\[S_1 \overset{\text{DP}}{\rightarrow} P_1P_2, \quad S_2S_3S_4 \overset{\text{REP}}{\rightarrow} P_3P_4 \]

\[T_{\text{period}} = \max\left(\frac{14}{2+1}, \frac{4+2+4}{2\times1}\right) = 5, \quad T_{\text{latency}} = 14.67 \]

\[S_1 \overset{\text{DP}}{\rightarrow} P_2P_3P_4, \quad S_2S_3S_4 \rightarrow P_1 \]

\[T_{\text{period}} = \max\left(\frac{14}{1+1+1}, \frac{4+2+4}{2}\right) = 5, \quad T_{\text{latency}} = 9.67 \text{ (optimal)} \]
Outline

1. Framework
2. Working out an example
3. Part 1 - Communications, monolithic stages, mono-criterion
4. Part 2 - Simpler model with no communications, but with replication/DP and bi-criteria
5. Conclusion
Part 1

- Pipeline graph
- Different platforms, with communications
- Different mapping strategies
- Only monolithic stages: no replication nor data-parallelism
- Mono-criterion: period minimization

- Complexity results, heuristics and experiments
Part 1

- Pipeline graph
- Different platforms, with communications
- Different mapping strategies
- Only monolithic stages: no replication nor data-parallelism
- Mono-criterion: period minimization

- Complexity results, heuristics and experiments
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>One-to-one Mapping</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Interval Mapping</td>
<td></td>
<td></td>
</tr>
<tr>
<td>General Mapping</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Complexity results

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>One-to-one Mapping</td>
<td>polynomial</td>
<td>polynomial</td>
</tr>
<tr>
<td>Interval Mapping</td>
<td></td>
<td></td>
</tr>
<tr>
<td>General Mapping</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Binary search polynomial algorithm for **ONE-TO-ONE MAPPING**
Complexity results

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>One-to-one Mapping</td>
<td>polynomial</td>
<td>polynomial</td>
</tr>
<tr>
<td>Interval Mapping</td>
<td>polynomial</td>
<td></td>
</tr>
<tr>
<td>General Mapping</td>
<td></td>
<td>NP-complete</td>
</tr>
</tbody>
</table>

- Binary search *polynomial algorithm* for **One-to-one Mapping**
- Dynamic programming algorithm for **Interval Mapping** on Hom. platforms (**NP-hard otherwise**)
Complexity results

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>One-to-one Mapping</td>
<td>polynomial</td>
<td>polynomial</td>
</tr>
<tr>
<td>Interval Mapping</td>
<td>polynomial</td>
<td>NP-complete</td>
</tr>
<tr>
<td>General Mapping</td>
<td>same complexity as Interval</td>
<td></td>
</tr>
</tbody>
</table>

- Binary search **polynomial algorithm** for **ONE-TO-ONE MAPPING**
- Dynamic programming algorithm for **INTERVAL MAPPING** on Hom. platforms (**NP-hard otherwise**)
- General mapping: same complexity as **INTERVAL MAPPING**
Complexity results

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>One-to-one Mapping</td>
<td>polynomial</td>
<td>polynomial</td>
</tr>
<tr>
<td>Interval Mapping</td>
<td>polynomial</td>
<td>NP-complete</td>
</tr>
<tr>
<td>General Mapping</td>
<td>same complexity as Interval</td>
<td></td>
</tr>
</tbody>
</table>

- Binary search polynomial algorithm for **ONE-TO-ONE MAPPING**
- Dynamic programming algorithm for **INTERVAL MAPPING** on Hom. platforms (NP-hard otherwise)
- General mapping: same complexity as **INTERVAL MAPPING**
- All problem instances NP-complete on **Fully Heterogeneous** platforms
One-to-one/Comm. Hom.: binary search algorithm

- Work with fastest n processors, numbered P_1 to P_n, where $s_1 \leq s_2 \leq \ldots \leq s_n$
- Mark all stages S_1 to S_n as free
- **For** $u = 1$ **to** n
 - Pick up any free stage S_k s.t. $\delta_{k-1}/b + w_k/s_u + \delta_k/b \leq T_{\text{period}}$
 - Assign S_k to P_u, and mark S_k as already assigned
 - If no stage found return "failure"

Proof: exchange argument
One-to-one/Comm. Hom.: binary search algorithm

- Work with fastest n processors, numbered P_1 to P_n, where $s_1 \leq s_2 \leq \ldots \leq s_n$
- Mark all stages S_1 to S_n as free
- **For** $u = 1$ **to** n
 - Pick up any free stage S_k s.t. $\frac{\delta_{k-1}}{b} + \frac{w_k}{s_u} + \frac{\delta_k}{b} \leq T_{\text{period}}$
 - Assign S_k to P_u, and mark S_k as already assigned
 - If no stage found return "failure"

- **Proof:** exchange argument
Greedy heuristics

Target clusters: *Com. hom.* platforms and **Interval Mapping**

H1a-GR: random – fixed intervals

H1b-GRIL: random interval length

H2-GSW: biggest $\sum w$ – Place interval with most computations on fastest processor

H3-GSD: biggest $\delta_{in} + \delta_{out}$ – Intervals are sorted by communications ($\delta_{in} + \delta_{out}$)

 in: first stage of interval; (out $- 1$): last one

H4-GP: biggest period on fastest processor – Balancing computation and communication: processors sorted by decreasing speed s_u; for current processor u, choose interval with biggest period

 $$(\delta_{in} + \delta_{out})/b + \sum_{i \in \text{Interval}} w_i / s_u$$
Sophisticated heuristics

H5-BS121: binary search for **One-to-one Mapping** – optimal algorithm for **One-to-one Mapping**. When \(p < n \), application cut in fixed intervals of length \(L \).

H6-SPL: splitting intervals – Processors sorted by decreasing speed, all stages to first processor. At each step, select used proc \(j \) with largest period, split its interval (give fraction of stages to \(j' \)): minimize \(\max(\text{period}(j), \text{period}(j')) \) and split if maximum period improved.

H7a-BSL and H7b-BSC: binary search (longest/closest) – Binary search on period \(P \): start with stage \(s = 1 \), build intervals \((s, s')\) fitting on processors. For each \(u \), and each \(s' \geq s \), compute period \((s..s', u)\) and check whether it is smaller than \(P \). **H7a:** maximizes \(s' \); **H7b:** chooses the closest period.
Plan of experiments

- Assess performance of polynomial heuristics
 - Random applications, $n = 1$ to 50 stages
 - Random platforms, $p = 10$ and $p = 100$ processors
 - $b = 10$ (comm. hom.), proc. speed between 1 and 20
 - Relevant parameters: ratios $\frac{\delta}{b}$ and $\frac{w}{s}$
 - Average over 100 similar random appli/platform pairs
Plan of experiments

- Assess performance of polynomial heuristics
- Random applications, $n = 1$ to 50 stages
- Random platforms, $p = 10$ and $p = 100$ processors
- $b = 10$ (comm. hom.), proc. speed between 1 and 20
- Relevant parameters: ratios $\frac{\delta}{b}$ and $\frac{w}{s}$
- Average over 100 similar random appli/platform pairs
Experiment 1 - balanced comm/comp, hom comm

- $\delta_i = 10$, computation time between 1 and 20
- 10 processors

![Graph showing the relationship between maximum period and number of stages for different algorithms. Each algorithm is represented by a different line and marker.

Legend:
- H1a-GreedyRandom
- H1b-GreedyRandomIntervalLength
- H2-GreedySumW
- H3-GreedySumDinDout
- H4-GreedyPeriod
- H5-BinarySearch1to1
- H6-SPLitting
- H7a-BinarySearchLongest
- H7b-BinarySearchClosest

X-axis: Number of stages (n=10)
Y-axis: Maximum period

Anne.Benoit@ens-lyon.fr Cetraro, June 07
Experiment 1 - balanced comm/comp, hom comm

- $\delta_i = 10$, computation time between 1 and 20
- 100 processors

![Graph showing maximum period vs. number of stages for different algorithms]

- H1a-GreedyRandom
- H1b-GreedyRandomIntervalLength
- H2-GreedySumW
- H3-GreedySumDinDout
- H4-GreedyPeriod
- H5-BinarySearch1to1
- H6-SPLitting
- H7a-BinarySearchLongest
- H7b-BinarySearchClosest
Experiment 2 - balanced comm/comp, het comm

- communication time between 1 and 100
- computation time between 1 and 20
Experiment 2 - balanced comm/comp, het comm

- communication time between 1 and 100
- computation time between 1 and 20

![Graph showing maximum period versus number of stages (p=100)]
Experiment 3 - large computations

- communication time between 1 and 20
- computation time between 10 and 1000
Experiment 3 - large computations

- communication time between 1 and 20
- computation time between 10 and 1000
Experiment 4 - small computations

- communication time between 1 and 20
- computation time between 0.01 and 10
Experiment 4 - small computations

- communication time between 1 and 20
- computation time between 0.01 and 10
Summary of experiments

- Much more efficient than random mappings
- Three dominant heuristics for different cases

- Insignificant communications (hom. or small) and many processors: H5-BS121 (One-to-one Mapping)
- Insignificant communications (hom. or small) and few processors: H7b-BSC (binary search: clever choice where to split)
- Important communications (het. or big): H6-SPL (splitting choice relevant for any number of processors)
Summary of experiments

- Much more efficient than random mappings
- Three dominant heuristics for different cases
- Insignificant communications (hom. or small) and many processors: H5-BS121 (One-to-one Mapping)
- Insignificant communications (hom. or small) and few processors: H7b-BSC (binary search: clever choice where to split)
- Important communications (het. or big): H6-SPL (splitting choice relevant for any number of processors)
Outline

1. Framework
2. Working out an example
3. Part 1 - Communications, monolithic stages, mono-criterion
4. Part 2 - Simpler model with no communications, but with replication/DP and bi-criteria
5. Conclusion
Part 2

- Pipeline graph
- Different platforms, with communications
- Different mapping strategies
- Only monolithic stages: no replication nor data-parallelism
- Mono-criterion: period minimization

- Complexity results, heuristics and experiments
Part 2

- Pipeline and fork graphs
- Different platforms, with communications
- Different mapping strategies
- Only monolithic stages: no replication nor data-parallelism
- Mono-criterion: period minimization

- Complexity results, heuristics and experiments
Part 2

- Pipeline and fork graphs
- Different platforms, without communications
- Different mapping strategies
- Only monolithic stages: no replication nor data-parallelism
- Mono-criterion: period minimization

- Complexity results, heuristics and experiments
Part 2

- Pipeline and fork graphs
- Different platforms, without communications
- **Interval Mapping** only
- Only monolithic stages: no replication nor data-parallelism
- Mono-criterion: period minimization

- Complexity results, heuristics and experiments
Part 2

- Pipeline and fork graphs
- Different platforms, without communications
- Interval Mapping only
- Replicable stages, and either data-parallelism or not
- Mono-criterion: period minimization

- Complexity results, heuristics and experiments
Part 2

- Pipeline and fork graphs
- Different platforms, without communications
- **Interval Mapping** only
- Replicable stages, and either data-parallelism or not
- Bi-criteria optimization

- Complexity results, heuristics and experiments
Part 2

- Pipeline and fork graphs
- Different platforms, without communications
- Interval Mapping only
- Replicable stages, and either data-parallelism or not
- Bi-criteria optimization

- Complexity results only
Complexity results

Without data-parallelism, *Homogeneous* platforms

<table>
<thead>
<tr>
<th>Objective</th>
<th>period</th>
<th>latency</th>
<th>bi-criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hom. pipeline</td>
<td>-</td>
<td>Poly (str)</td>
<td></td>
</tr>
<tr>
<td>Het. pipeline</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hom. fork</td>
<td>-</td>
<td>Poly (DP)</td>
<td>NP-hard</td>
</tr>
<tr>
<td>Het. fork</td>
<td>Poly (str)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Complexity results

With data-parallelism, *Homogeneous* platforms

<table>
<thead>
<tr>
<th>Objective</th>
<th>period</th>
<th>latency</th>
<th>bi-criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hom. pipeline</td>
<td>-</td>
<td>Poly (DP)</td>
<td></td>
</tr>
<tr>
<td>Het. pipeline</td>
<td>Poly (str)</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Hom. fork</td>
<td>Poly (DP)</td>
<td>Poly (DP)</td>
<td></td>
</tr>
<tr>
<td>Het. fork</td>
<td>NP-hard</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Without data-parallelism, *Heterogeneous* platforms

<table>
<thead>
<tr>
<th>Objective</th>
<th>period</th>
<th>latency</th>
<th>bi-criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hom. pipeline</td>
<td>Poly (*)</td>
<td>-</td>
<td>Poly (*)</td>
</tr>
<tr>
<td>Het. pipeline</td>
<td>NP-hard (**)</td>
<td>Poly (str)</td>
<td>NP-hard</td>
</tr>
<tr>
<td>Hom. fork</td>
<td>Poly (*)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Het. fork</td>
<td>NP-hard</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Complexity results

With data-parallelism, *Heterogeneous* platforms

<table>
<thead>
<tr>
<th>Objective</th>
<th>period</th>
<th>latency</th>
<th>bi-criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hom. pipeline</td>
<td></td>
<td>NP-hard</td>
<td></td>
</tr>
<tr>
<td>Het. pipeline</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hom. fork</td>
<td></td>
<td>NP-hard</td>
<td></td>
</tr>
<tr>
<td>Het. fork</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Complexity results

Most interesting case:
Without data-parallelism, Heterogeneous platforms

<table>
<thead>
<tr>
<th>Objective</th>
<th>period</th>
<th>latency</th>
<th>bi-criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hom. pipeline</td>
<td>Poly (*)</td>
<td>-</td>
<td>Poly (*)</td>
</tr>
<tr>
<td>Het. pipeline</td>
<td>NP-hard (**)</td>
<td>Poly (str)</td>
<td>NP-hard</td>
</tr>
<tr>
<td>Hom. fork</td>
<td>Poly (*)</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Het. fork</td>
<td>NP-hard</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

--

Anne.Benoit@ens-lyon.fr
Cetraro, June 07
Mapping skeleton workflows
WS'07
35/44
No data-parallelism, *Heterogeneous* platforms

- For pipeline, **minimizing the latency** is straightforward: map all stages on fastest proc
- **Minimizing the period** is NP-hard (involved reduction similar to the heterogeneous chain-to-chain one) for general pipeline
- **Homogeneous pipeline**: all stages have same workload w:
in this case, polynomial complexity.

- Polynomial bi-criteria algorithm for homogeneous pipeline
No data-parallelism, *Heterogeneous* platforms

- For pipeline, **minimizing the latency** is straightforward: map all stages on fastest proc
- **Minimizing the period** is NP-hard (involved reduction similar to the heterogeneous chain-to-chain one) for general pipeline
- **Homogeneous pipeline**: all stages have same workload w: in this case, polynomial complexity.
- **Polynomial bi-criteria algorithm** for homogeneous pipeline
Lemma: form of the solution

Pipeline, no data-parallelism, *Heterogeneous* platform

Lemma

If an optimal solution which minimizes pipeline period uses q processors, consider q fastest processors \(P_1, \ldots, P_q \), ordered by non-decreasing speeds: \(s_1 \leq \ldots \leq s_q \). There exists an optimal solution which replicates intervals of stages onto \(k \) intervals of processors \(I_r = [P_{d_r}, P_{e_r}] \), with \(1 \leq r \leq k \leq q \), \(d_1 = 1 \), \(e_k = q \), and \(e_r + 1 = d_{r+1} \) for \(1 \leq r < k \).

Proof: exchange argument, which does not increase latency
Lemma: form of the solution

Pipeline, no data-parallelism, *Heterogeneous* platform

Lemma

If an optimal solution which minimizes pipeline period uses \(q \) *processors, consider* \(q \) *fastest processors* \(P_1, \ldots, P_q \), *ordered by non-decreasing speeds: \(s_1 \leq \ldots \leq s_q \).*

There exists an optimal solution which replicates intervals of stages onto \(k \) *intervals of processors* \(I_r = [P_{d_r}, P_{e_r}] \), *with* \(1 \leq r \leq k \leq q \), \(d_1 = 1 \), \(e_k = q \), *and* \(e_r + 1 = d_{r+1} \) *for* \(1 \leq r < k \).

Proof: exchange argument, which does not increase latency
Binary-search/Dynamic programming algorithm

- Given latency L, given period K
- Loop on number of processors q
- Dynamic programming algorithm to minimize latency
- Success if L is obtained
 - Binary search on L to minimize latency for fixed period
 - Binary search on K to minimize period for fixed latency
Binary-search/Dynamic programming algorithm

- Given latency L, given period K
- Loop on number of processors q
- Dynamic programming algorithm to minimize latency
- Success if L is obtained
- Binary search on L to minimize latency for fixed period
- Binary search on K to minimize period for fixed latency
Dynamic programming algorithm

- Compute $L(n, 1, q)$, where $L(m, i, j)$ = minimum latency to map m pipeline stages on processors P_i to P_j, while fitting in period K.

$$L(m, i, j) = \min_{1 \leq m' < m} \left\{ \begin{array}{ll}
\frac{m.w}{s_i} & \text{if } \frac{m.w}{(j-i).s_j} \leq K \\
L(m', i, k) + L(m - m', k + 1, j) & \text{else}
\end{array} \right. \quad (1)$$

$$i \leq k < j \quad (2)$$

- Case (1): replicating m stages onto processors P_i, \ldots, P_j
- Case (2): splitting the interval
Dynamic programming algorithm

- Compute $L(n, 1, q)$, where $L(m, i, j)$ = minimum latency to map m pipeline stages on processors P_i to P_j, while fitting in period K.

$$L(m, i, j) = \min_{1 \leq m' < m} \begin{cases} \frac{m.w}{s_i} & \text{if } \frac{m.w}{(j-i).s_i} \leq K \\ L(m', i, k) + L(m - m', k + 1, j) & i \leq k < j \end{cases}$$

Initialization:

$$L(1, i, j) = \begin{cases} \frac{w}{s_i} & \text{if } \frac{w}{(j-i).s_i} \leq K \\ +\infty & \text{otherwise} \end{cases}$$

$$L(m, i, i) = \begin{cases} \frac{m.w}{s_i} & \text{if } \frac{m.w}{s_i} \leq K \\ +\infty & \text{otherwise} \end{cases}$$
Dynamic programming algorithm

- Compute \(L(n, 1, q) \), where \(L(m, i, j) = \) minimum latency to map \(m \) pipeline stages on processors \(P_i \) to \(P_j \), while fitting in period \(K \).

\[
L(m, i, j) = \min_{1 \leq m' < m} \left\{ \begin{array}{ll}
\frac{m.w}{s_i} & \text{if } \frac{m.w}{(j-i).s_i} \leq K \\
L(m', i, k) + L(m - m', k + 1, j) & \text{if } i \leq k < j
\end{array} \right.
\]

- **Complexity** of the dynamic programming: \(O(n^2.p^4) \)
- Number of iterations of the binary search formally bounded, very small number of iterations in practice.
Outline

1. Framework
2. Working out an example
3. Part 1 - Communications, monolithic stages, mono-criterion
4. Part 2 - Simpler model with no communications, but with replication/DP and bi-criteria
5. Conclusion
Related work

Subhlok and Vondran— Extension of their work (pipeline on hom platforms)

Chains-to-chains— In our work possibility to replicate or data-parallelize

Mapping pipelined computations onto clusters and grids— DAG [Taura et al.], DataCutter [Saltz et al.]

Energy-aware mapping of pipelined computations [Melhem et al.], three-criteria optimization

Mapping pipelined computations onto special-purpose architectures— FPGA arrays [Fabiani et al.]. Fault-tolerance for embedded systems [Zhu et al.]

Mapping skeletons onto clusters and grids— Use of stochastic process algebra [Benoit et al.]
Conclusion

Theoretical side – Complexity results for several cases
Solid theoretical foundation for study of single/bi-criteria mappings, with possibility to replicate and data-parallelize application stages

Practical side

- Optimal polynomial algorithms, heuristics for NP-hard instances of the problem
- Experiments: Comparison of heuristics performance
- Linear program to assess the absolute performance of the heuristics, which turns out to be quite good
Future work

Short term

- **Heuristics** for *Fully Heterogeneous* platforms and other NP-hard instances of the problem
- Extension to **DAG-trees** (a DAG which is a tree when un-oriented)

Longer term

- **Heuristics** based on our polynomial algorithms for general application graphs structured as combinations of pipeline and fork kernels
- **Real experiments** on heterogeneous clusters, using an already-implemented skeleton library and MPI
- **Comparison** of effective performance against theoretical performance
Open problems

- Replication for **fault-tolerance** vs replication for parallelism
 - compute several time the same data-set in case of failure
 - uses more resources and does not decrease period or latency
 - increases robustness

- **Energy** savings
 - processors that can run at different frequencies
 - trade-off between energy consumption and speed

- Simultaneous execution of **several (concurrent) workflows**
 - competition for CPU and network resources
 - fairness between applications (stretch)
 - sensitivity to application/platform parameter changes