Energy-efficient scheduling

Guillaume Aupy1, Anne Benoit1,2,
Paul Renaud-Goud1 and Yves Robert1,2,3

1. Ecole Normale Supérieure de Lyon, France
2. Institut Universitaire de France
3. University of Tennessee Knoxville, USA

Anne.Benoit@ens-lyon.fr
http://graal.ens-lyon.fr/~abenoit/

Dagstuhl Seminar 13381, September 2013
Algorithms and Scheduling Techniques for Exascale Systems
Energy: a crucial issue

- Data centers
 - 330,000,000,000 Watts hour in 2007: more than France
 - 533,000,000 tons of CO₂: in the top ten countries

- Exascale computers (10^{18} floating operations per second)
 - Need effort for feasibility
 - 1% of power saved \(\sim \) 1 million dollar per year

- Lambda user
 - 1 billion personal computers
 - 500,000,000,000,000 Watts hour per year

\(\sim \) crucial for both environmental and economical reasons
Energy: a crucial issue

- Data centers
 - 330,000,000,000 Watts hour in 2007: more than France
 - 533,000,000,000 tons of CO₂: in the top ten countries

- Exascale computers (10¹⁸ floating operations per second)
 - Need effort for feasibility
 - 1% of power saved; 1 million dollar per year

- Lambda user
 - 1 billion personal computers
 - 500,000,000,000,000 Watts hour per year

- Crucial for both environmental and economical reasons
Power dissipation of a processor

\[P = P_{\text{leak}} + P_{\text{dyn}} \]

- \(P_{\text{leak}} \): constant
- \(P_{\text{dyn}} = B \times V^2 \times f \)

Standard approximation: \(P = P_{\text{leak}} + f^\alpha \) \quad (2 \leq \alpha \leq 3)

Energy \(E = P \times \text{time} \)

Dynamic Voltage and Frequency Scaling
- Real life: discrete speeds
- Continuous speeds can be emulated
Outline

1. Revisiting the greedy algorithm for independent jobs
2. Reclaiming the slack of a schedule
3. Tri-criteria problem: execution time, reliability, energy
4. Checkpointing and energy consumption
5. Conclusion
Framework

- Scheduling independent jobs

- **Greedy algorithm**: assign next job to least-loaded processor

- Two variants:
 - **Online-Greedy**: assign jobs on the fly
 - **Offline-Greedy**: sort jobs before execution
Classical problem

- n independent jobs $\{J_i\}_{1 \leq i \leq n}$, $a_i =$ size of J_i
- p processors $\{P_q\}_{1 \leq q \leq p}$
- allocation function $\text{alloc}: \{J_i\} \rightarrow \{P_q\}$
- load of $P_q = \text{load}(q) = \sum\{i \mid \text{alloc}(J_i) = P_q\} \ a_i$

Execution time:
$\max_{1 \leq q \leq p} \text{load}(q)$
Theorem

ONLine-Greedy *is a* $2 - \frac{1}{p}$ *approximation (tight bound)*

<table>
<thead>
<tr>
<th>\mathcal{P}_1</th>
<th>\mathcal{P}_2</th>
<th>\mathcal{P}_3</th>
<th>\mathcal{P}_4</th>
<th>\mathcal{P}_5</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

ONLine-Greedy

Optimal solution
OffLine-Greedy

Theorem

OffLine-Greedy is a $\frac{4}{3} - \frac{1}{3p}$ approximation (tight bound)

<table>
<thead>
<tr>
<th>p_1</th>
<th>9</th>
<th>5</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>p_2</td>
<td>9</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>p_3</td>
<td>8</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>p_4</td>
<td>8</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>p_5</td>
<td>7</td>
<td>7</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>p_1</th>
<th>5</th>
<th>5</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>p_2</td>
<td>9</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>p_3</td>
<td>9</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>p_4</td>
<td>8</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>p_5</td>
<td>8</td>
<td>7</td>
<td></td>
</tr>
</tbody>
</table>

OffLine-Greedy

Optimal solution
Bi-criteria problem

- Minimizing (dynamic) power consumption:
 \[P_{dyn} = f^3 \]
 \[\Rightarrow \] use slowest possible speed

- Bi-criteria problem:
 Given bound \(M = 1 \) on execution time,
 minimize power consumption while meeting the bound
Bi-criteria problem statement

- n independent jobs $\{J_i\}_{1 \leq i \leq n}$, $a_i =$ size of J_i
- p processors $\{\mathcal{P}_q\}_{1 \leq q \leq p}$
- allocation function $\text{alloc} : \{J_i\} \rightarrow \{\mathcal{P}_q\}$
- load of $\mathcal{P}_q = \text{load}(q) = \sum\{i \mid \text{alloc}(J_i) = \mathcal{P}_q\} a_i$

$(\text{load}(q))^3$ power dissipated by \mathcal{P}_q

$$\sum_{q=1}^{p} (\text{load}(q))^3 \quad \text{Power}$$

$$\max_{1 \leq q \leq p} \text{load}(q) \quad \text{Execution time}$$
Same **Greedy** algorithm . . .

- **Strategy:** assign next job to least-loaded processor

- **Natural for execution-time**
 - smallest increment of maximum load
 - minimize objective value for currently processed jobs

- **Natural for power too**
 - smallest increment of total power (convexity)
 - minimize objective value for currently processed jobs
... but different optimal solution!

<table>
<thead>
<tr>
<th>(p_1)</th>
<th>(p_2)</th>
<th>(p_3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.1</td>
<td>5</td>
<td>4</td>
</tr>
</tbody>
</table>

- Makespan 10, power 2531.441
- Makespan 10.1, power 2488.301
Greedy and L_r norms

$$N_r = \left(\sum_{q=1}^{p} (\text{load}(q))^r \right)^{\frac{1}{r}}$$

- Execution time $N_\infty = \lim_{r \to \infty} N_r = \max_{1 \leq q \leq p} \text{load}(q)$
- Power $(N_3)^3$
Known results

N_2, \texttt{OffLine-Greedy}
- Chandra and Wong 1975: upper and lower bounds
- Leung and Wei 1995: tight approximation factor

N_3, \texttt{OffLine-Greedy}
- Chandra and Wong 1975: upper and lower bounds

N_r
- Alon et al. 1997: PTAS for offline problem
- Avidor et al. 1998: upper bound $2 - \Theta(\ln \frac{r}{r})$ for \texttt{OnLine-Greedy}
Contribution

\(N_3 \)

- Tight approximation factor for **ONLINE-GREEDY**
- Tight approximation factor for **OFFLINE-GREEDY**

- Greedy for power fully solved!
Approximation for **ONLINE-GREEDY**

\[\frac{P_{\text{online}}}{P_{\text{opt}}} \leq \frac{\frac{1}{p^3} \left((1 + (p - 1)\beta)^3 + (p - 1)(1 - \beta)^3 \right)}{\beta^3 + \frac{(1-\beta)^3}{(p-1)^2}} \]

Theorem

- \(f_p^{(\text{on})} \) has a single maximum in \(\beta_p^{(\text{on})} \in \left[\frac{1}{p}, 1 \right] \)
- **ONLINE-GREEDY** is a \(f_p^{(\text{on})}(\beta_p^{(\text{on})}) \) approximation
- This approximation factor is tight
Approximation for **OffLine-Greedy**

\[
\frac{P_{\text{offline}}}{P_{\text{opt}}} \leq \frac{1}{p^3} \left(\left(1 + \frac{(p-1)\beta}{3} \right)^3 + (p - 1) \left(1 - \frac{\beta}{3} \right)^3 \right) \beta^3 + \frac{(1-\beta)^3}{(p-1)^2} \]

Theorem

- \(f_p^{(\text{off})} \) has a single maximum in \(\beta_p^{(\text{off})} \in \left[\frac{1}{p}, 1 \right] \)
- **OffLine-Greedy** is a \(f_p^{(\text{off})}(\beta_p^{(\text{off})}) \) approximation
- This approximation factor is tight
Numerical values of approximation ratios

<table>
<thead>
<tr>
<th>p</th>
<th>ONLINE-GREEDY</th>
<th>OFFLINE-GREEDY</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>1.866</td>
<td>1.086</td>
</tr>
<tr>
<td>3</td>
<td>2.008</td>
<td>1.081</td>
</tr>
<tr>
<td>4</td>
<td>2.021</td>
<td>1.070</td>
</tr>
<tr>
<td>5</td>
<td>2.001</td>
<td>1.061</td>
</tr>
<tr>
<td>6</td>
<td>1.973</td>
<td>1.054</td>
</tr>
<tr>
<td>7</td>
<td>1.943</td>
<td>1.048</td>
</tr>
<tr>
<td>8</td>
<td>1.915</td>
<td>1.043</td>
</tr>
<tr>
<td>64</td>
<td>1.461</td>
<td>1.006</td>
</tr>
<tr>
<td>512</td>
<td>1.217</td>
<td>1.00083</td>
</tr>
<tr>
<td>2048</td>
<td>1.104</td>
<td>1.00010</td>
</tr>
<tr>
<td>2^{24}</td>
<td>1.006</td>
<td>1.000000025</td>
</tr>
</tbody>
</table>
Large values of p

Asymptotic approximation factor

\begin{align*}
\text{ONLINE-GREEDY} & : \frac{4}{3} \quad 1 \\
\text{OFFLINE-GREEDY} & : 2 \quad 1 \quad \uparrow \\
& \quad \text{optimal}
\end{align*}
Outline

1. Revisiting the greedy algorithm for independent jobs

2. Reclaiming the slack of a schedule

3. Tri-criteria problem: execution time, reliability, energy

4. Checkpointing and energy consumption

5. Conclusion
Motivation

- Mapping of tasks is given (ordered list for each processor and dependencies between tasks)
- If deadline not tight, why not take our time?
- Slack: unused time slots

Goal: efficiently use speed scaling (DVFS)
Speed models

<table>
<thead>
<tr>
<th>Type of speeds</th>
<th>Anytime</th>
<th>Change speed</th>
</tr>
</thead>
<tbody>
<tr>
<td>([s_{\min}, s_{\max}]) ({s_1, \ldots, s_m})</td>
<td>CONTINUOUS</td>
<td>Beginning of tasks</td>
</tr>
<tr>
<td></td>
<td>VDD-HOPPING</td>
<td>DISCRETE, INCREMENTAL</td>
</tr>
</tbody>
</table>

- **CONTINUOUS**: great for theory
- Other ”discrete” models more realistic
- **VDD-HOPPING** simulates CONTINUOUS
- **INCREMENTAL** is a special case of DISCRETE with equally-spaced speeds: for all \(1 \leq q < m\), \(s_{q+1} - s_q = \delta\)
Tasks

- DAG: $\mathcal{G} = (V, E)$
- $n = |V|$ tasks T_i of weight $w_i = \int_{t_i-d_i}^{t_i} s_i(t)dt$
- d_i: task duration; t_i: time of end of execution of T_i

Parameters for T_i scheduled on processor p_j
Assume T_i is executed at constant speed s_i

\[d_i = E\text{xe}(w_i, s_i) = \frac{w_i}{s_i} \]

$t_j + d_i \leq t_i$ for each $(T_j, T_i) \in E$

Constraint on makespan:

$t_i \leq D$ for each $T_i \in V$
Energy to execute task T_i once at speed s_i:

$$E_i(s_i) = d_i s_i^3 = w_i s_i^2$$

→ Dynamic part of classical energy models

Bi-criteria problem

- Constraint on deadline: $t_i \leq D$ for each $T_i \in V$
- Minimize energy consumption: $\sum_{i=1}^{n} w_i \times s_i^2$
Minimizing energy with fixed mapping on p processors:

- **Continuous**: Polynomial for some special graphs, geometric optimization in the general case
- **Discrete**: NP-complete (reduction from 2-partition); approximation algorithm
- **Incremental**: NP-complete (reduction from 2-partition); approximation algorithm
- **VDD-Hopping**: Polynomial (linear programming)
Summary

- Results for **Continuous**, but not very practical

- In real life, **Discrete** model (DVFS)

- **Vdd-Hopping**: good alternative, mixing two consecutive modes, smoothes out the discrete nature of modes

- **Incremental**: alternate (and simpler in practice) solution, with one unique speed during task execution; can be made arbitrarily efficient
Outline

1. Revisiting the greedy algorithm for independent jobs
2. Reclaiming the slack of a schedule
3. Tri-criteria problem: execution time, reliability, energy
4. Checkpointing and energy consumption
5. Conclusion
Framework

- DAG: $\mathcal{G} = (V, E)$
- $n = |V|$ tasks T_i of weight w_i
- p identical processors fully connected
- DVFS: interval of available continuous speeds $[s_{\text{min}}, s_{\text{max}}]$
- One speed per task

(I will not discuss results for the \textsc{Vdd-Hopping} model)
Execution time of T_i at speed s_i:

$$d_i = \frac{w_i}{s_i}$$

If T_i is executed twice on the same processor at speeds s_i and s'_i:

$$d_i = \frac{w_i}{s_i} + \frac{w_i}{s'_i}$$

Constraint on makespan: end of execution before deadline D
Reliability

- **Transient fault**: local, no impact on the rest of the system
- Reliability R_i of task T_i as a function of speed s
- Threshold reliability (and hence speed s_{rel})
Re-execution: a task is re-executed \textit{on the same processor, just after its first execution}

With two executions, reliability R_i of task T_i is:

$$R_i = 1 - (1 - R_i(s_i))(1 - R_i(s_i'))$$

Constraint on reliability:

\textbf{Reliability:} $R_i \geq R_i(s_{rel})$, and at most one re-execution
Energy

- Energy to execute task T_i once at speed s_i:

$$E_i(s_i) = w_i s_i^2$$

→ Dynamic part of classical energy models

- With re-executions, it is natural to take the worst-case scenario:

$$\text{ENERGY} : E_i = w_i \left(s_i^2 + s_i'^2 \right)$$
Given $G = (V, E)$

Find

- A schedule of the tasks
- A set of tasks $I = \{ i \mid T_i \text{ is executed twice} \}$
- Execution speed s_i for each task T_i
- Re-execution speed s'_i for each task in I

such that

$$\sum_{i \in I} w_i (s_i^2 + s'_i^2) + \sum_{i \notin I} w_i s_i^2$$

is minimized, while meeting reliability and deadline constraints
Complexity results

- **One speed** per task
- **Re-execution at same speed** as first execution, i.e., \(s_i = s'_i \)

- **Tri-Crit-Cont** is NP-hard even for a linear chain, but not known to be in NP (because of Continuous model)
- Polynomial-time solution for a fork
Energy-reducing heuristics

Two steps:
- Mapping (NP-hard) \rightarrow List scheduling
- Speed scaling + re-execution (NP-hard) \rightarrow Energy reducing

- The list-scheduling heuristic maps tasks onto processors at speed s_{max}, and we keep this mapping in step two
- Step two = slack reclamation! Use of deceleration and re-execution
Deceleration and re-execution

- **Deceleration**: select a set of tasks that we execute at speed
 \[
 \max\left(s_{rel}, s_{\max} \frac{\max_{i=1}^{n} \frac{t_i}{D}}{n}\right): \text{ slowest possible speed meeting both reliability and deadline constraints}
 \]

- **Re-execution**: greedily select tasks for re-execution
Super-weight (SW) of a task

- SW: sum of the weights of the tasks (including T_i) whose execution interval is included into T_i’s execution interval
- SW of task slowed down = estimation of the total amount of work that can be slowed down together with that task
Selected heuristics

- **A. SUS-Crit**: efficient on DAGs with low degree of parallelism
 - Set the speed of every task to $\max(s_{rel}, s_{max} \frac{\max_i t_i}{D})$
 - Sort the tasks of every critical path according to their SW and try to re-execute them
 - Sort all the tasks according to their **weight** and try to re-execute them

- **B. SUS-Crit-Slow**: good for highly parallel tasks: re-execute, then decelerate
 - Sort the tasks of every critical path according to their SW and try to re-execute them. If not possible, then try to slow them down
 - Sort all tasks according to their **weight** and try to re-execute them. If not possible, then try to slow them down
We compare the impact of:

- the number of processors p
- the ratio D of the deadline over the minimum deadline D_{min} (given by the list-scheduling heuristic at speed s_{max})

on the output of each heuristic

Results normalized by heuristic running each task at speed s_{max}; the lower the better
Results

With increasing p, $D = 1.2$ (left), $D = 2.4$ (right)

- A better when number of processors is small
- B better when number of processors is large
- Superiority of B for tight deadlines: decelerates critical tasks that cannot be re-executed
Summary

- Tri-criteria energy/makespan/reliability optimization problem

- Various theoretical results

- Two-step approach for polynomial-time heuristics:
 - List-scheduling heuristic
 - Energy-reducing heuristics

- Two complementary energy-reducing heuristics for **Tri-Crit-Cont**
Outline

1. Revisiting the greedy algorithm for independent jobs
2. Reclaiming the slack of a schedule
3. Tri-criteria problem: execution time, reliability, energy
4. Checkpointing and energy consumption
5. Conclusion
Framework

- Execution of a divisible task (W operations)
- Failures may occur
 - Transient faults
 - Resilience through checkpointing
- Objective: minimize expected energy given a deadline bound
- Decisions before execution:
 - Chunks: how many (n)? which sizes (W_i for chunk i)?
 - Speeds of each chunk: first run (s_i)? re-execution (σ_i)?

<table>
<thead>
<tr>
<th>W</th>
</tr>
</thead>
<tbody>
<tr>
<td>$n = 4$</td>
</tr>
<tr>
<td>W_1</td>
</tr>
</tbody>
</table>
Framework

- Execution of a divisible task (W operations)
- Failures may occur
 - Transient faults
 - Resilience through checkpointing
- Objective: minimize expected energy given a deadline bound
- Decisions before execution:
 - Chunks: how many (n)? which sizes (W_i for chunk i)?
 - Speeds of each chunk: first run (s_i)? re-execution (σ_i)?
Framework

- Execution of a divisible task (W operations)
- Failures may occur
 - Transient faults
 - Resilience through checkpointing
- Objective: minimize expected energy given a deadline bound
- Decisions before execution:
 - Chunks: how many (n)? which sizes (W_i for chunk i)?
 - Speeds of each chunk: first run (s_i)? re-execution (σ_i)?
Models

- Chunks

 Single chunk VS Multiple chunks

- Speed per chunk

 Single speed VS Multiple speeds

- Deadline bound

 Hard (∼ Worst-case) VS Soft (Expected)
Summary of results: single chunk

- **Single speed**
 - $s \mapsto \mathbb{E}(E)$ convex (expected energy consumption)
 - $s \mapsto \mathbb{E}(T)$ (expected execution time) and $s \mapsto T_{wc}$ (worst-case execution time) decreasing
 - \rightarrow Expression of s and $\mathbb{E}(E)$ (function of λ, W, s, E_c, T_c)

- **Multiple speeds**
 - Energy minimized when deadline tight
 - $\sim \sigma$ expressed as a function of s
 - \rightarrow Minimization of single-variable function
Summary of results: multiple chunks

- Single speed
 - Equal-sized chunks, executed at same speed
 - Bound on \(s \) given \(n \)
 \[\rightarrow \text{Minimization of double-variable function} \]

- Multiple speeds
 - Conjecture: equal-sized chunks, same first-execution / re-execution speeds
 - \(\sigma \) as a function of \(s \), bound on \(s \) given \(n \)
 \[\rightarrow \text{Minimization of double-variable function} \]
Simulation settings

- Large set of simulations: illustrate differences between models
- **Maple** software to solve problems
- We plot relative energy consumption as a function of λ
 - The lower the better
 - Given a deadline constraint (hard or expected), normalize with the result of single-chunk single-speed
 - Impact of the constraint: normalize expected deadline with hard deadline
- Parameters varying within large ranges
Comparison with single-chunk single-speed

- Results identical for any value of W/D

- For expected deadline, with small $\lambda (< 10^{-2})$, using multiple chunks or multiple speeds do not improve energy ratio: re-execution term negligible; increasing λ: improvement with multiple chunks

- For hard deadline, better to run at high speed during second execution: use multiple speeds; use multiple chunks if frequent failures
Expected vs hard deadline constraint

- **Important differences for single speed models**, confirming previous conclusions: with hard deadline, use multiple speeds.

- **Multiple speeds**: no difference for small λ: re-execution at maximum speed has little impact on expected energy consumption; increasing λ: more impact of re-execution, and expected deadline may use slower re-execution speed, hence reducing energy consumption.
Outline

1. Revisiting the greedy algorithm for independent jobs
2. Reclaiming the slack of a schedule
3. Tri-criteria problem: execution time, reliability, energy
4. Checkpointing and energy consumption
5. Conclusion
Conclusion

- **ONLINE-GREEDY** and **OFFLINE-GREEDY** for power: tight approximation factor for any p, extends long series of papers and completely solves N_3 minimization problem 😊

- Different energy models, from continuous to discrete (through VDD-hopping and incremental)

- Tri-criteria heuristics with re-execution to deal with reliability

- Checkpointing techniques for reliability while minimizing energy consumption
What we had:

Energy-efficient scheduling
+ frequency scaling

What we aim at:

Energy-efficient scheduling
+ frequency scaling