Multi-criteria Scheduling of Pipeline Workflows

Anne Benoit Veronika Rehn-Sonigo Yves Robert

GRAAL team, LIP
École Normale Supérieure de Lyon
France

Heteropar’2007
Introduction and motivation

Mapping pipeline skeletons onto communication homogeneous platforms

- Previous talk: theoretical complexity results with no communications
- Now, more realistic platforms, but no replication nor data-parallelism
- Heuristics and experiments
Introduction and motivation

Mapping pipeline skeletons onto communication homogeneous platforms

- Previous talk: theoretical complexity results with no communications
- Now, more realistic platforms, but no replication nor data-parallelism
- Heuristics and experiments
Introduction and motivation

Mapping pipeline skeletons onto communication homogeneous platforms

- Previous talk: theoretical complexity results with no communications
- Now, more realistic platforms, but no replication nor data-parallelism
- Heuristics and experiments
Why restrict to pipelines?

- Chains-on-chains partitioning problem
 - no communications
 - identical processors

- Extensions (done)
 - with communications
 - with heterogeneous processors/links
 - with different optimization criteria
 - goal: assess complexity, design heuristics

- Extensions (current work)
 - deal with DAGs
Why restrict to pipelines?

- Chains-on-chains partitioning problem
 - no communications
 - identical processors

- Extensions (done)
 - with communications
 - with heterogeneous processors/links
 - with different optimization criteria
 - goal: assess complexity, design heuristics

- Extensions (current work)
 - deal with DAGs
Why restrict to pipelines?

- Chains-on-chains partitioning problem
 - no communications
 - identical processors

- Extensions (done)
 - with communications
 - with heterogeneous processors/links
 - with different optimization criteria
 - goal: assess complexity, design heuristics

- Extensions (current work)
 - deal with DAGs
Chains-on-chains

Load-balance contiguous tasks

5 7 3 4 8 1 3 8 2 9 7 3 5 2 3 6
Chains-on-chains

Load-balance **contiguous** tasks

5 7 3 4 8 1 3 8 2 9 7 3 5 2 3 6

With $p = 4$ identical processors?
Chains-on-chains

Load-balance contiguous tasks

5 7 3 4 8 1 3 8 2 9 7 3 5 2 3 6

With $p = 4$ identical processors?

5 7 3 4 | 8 1 3 8 | 2 9 7 | 3 5 2 3 6

$T_{\text{period}} = 20$
Chains-on-chains

Load-balance **contiguous** tasks

5 7 3 4 8 1 3 8 2 9 7 3 5 2 3 6

With $p = 4$ identical processors?

5 7 3 4 | 8 1 3 8 | 2 9 7 | 3 5 2 3 6

$T_{\text{period}} = 20$

- Back to Bokhari and Iqbal partitioning papers
- See survey by Pinar and Aykanat, JPDC 64, 8 (2004)
- If processors have different speeds?
Rule of the game

- Map each pipeline stage on a single processor
- Goal: minimize execution time AND minimize latency
- INTERVAL MAPPING

\[S_1 \rightarrow S_2 \rightarrow \cdots \rightarrow S_k \rightarrow \cdots \rightarrow S_n \]
Major contributions

Theory
Definition of bi-criteria mapping
Problem complexity

Practice
Heuristics for *Interval Mapping* on clusters
Experiments to compare heuristics and evaluate their performance
Major contributions

Theory Definition of bi-criteria mapping
Problem complexity

Practice Heuristics for **INTERVAL MAPPING** on clusters
Experiments to compare heuristics and evaluate their performance
Outline

1. Framework
2. Complexity results
3. Heuristics
4. Experiments
5. Conclusion
Framework

- Application: n-stages pipeline
- Platform: p processors fully interconnected
- s_u: speed of processor P_u
- bidirectional link $\text{link}_{u,v}: P_u \rightarrow P_v$, bandwidth $b_{u,v}$
- one-port model: each processor can either send, receive or compute at any time-step
Different platforms

Fully Homogeneous – Identical processors \((s_u = s)\) and links \((b_{u,v} = b)\): typical parallel machines

Communication Homogeneous – Different-speed processors \((s_u \neq s_v)\), identical links \((b_{u,v} = b)\): networks of workstations, clusters

Fully Heterogeneous – Fully heterogeneous architectures, \(s_u \neq s_v\) and \(b_{u,v} \neq b_{u',v'}\): hierarchical platforms, grids
Mapping problem: **Interval Mapping**

- Partition of \([1..n]\) into \(m\) intervals \(I_j = [d_j, e_j]\)
 (with \(d_j \leq e_j\) for \(1 \leq j \leq m\), \(d_1 = 1\), \(d_{j+1} = e_j + 1\) for \(1 \leq j \leq m - 1\) and \(e_m = n\))
- Interval \(I_j\) mapped onto processor \(P_{\text{alloc}(j)}\)

\[
T_{\text{period}} = \max_{1 \leq j \leq m} \left\{ \frac{\delta_{d_j-1}}{b} + \sum_{i=d_j}^{e_j} \frac{w_i}{s_{\text{alloc}(j)}} + \frac{\delta_{e_j}}{b} \right\}
\]

\[
T_{\text{latency}} = \sum_{1 \leq j \leq m} \left\{ \frac{\delta_{d_j-1}}{b} + \sum_{i=d_j}^{e_j} \frac{w_i}{s_{\text{alloc}(j)}} \right\} + \frac{\delta_n}{b}
\]
Mapping problem: **Interval Mapping**

- Partition of \([1..n]\) into \(m\) intervals \(I_j = [d_j, e_j]\)
 (with \(d_j \leq e_j\) for \(1 \leq j \leq m\), \(d_1 = 1\), \(d_{j+1} = e_j + 1\) for \(1 \leq j \leq m - 1\) and \(e_m = n\))
- Interval \(I_j\) mapped onto processor \(P_{\text{alloc}(j)}\)

\[
T_{\text{period}} = \max_{1 \leq j \leq m} \left\{ \frac{\delta_{d_j-1}}{b} + \sum_{i=d_j}^{e_j} \frac{w_i}{s_{\text{alloc}(j)}} + \frac{\delta_{e_j}}{b} \right\}
\]

\[
T_{\text{latency}} = \sum_{1 \leq j \leq m} \left\{ \frac{\delta_{d_j-1}}{b} + \sum_{i=d_j}^{e_j} \frac{w_i}{s_{\text{alloc}(j)}} \right\} + \frac{\delta_n}{b}
\]
Mapping problem: **Interval Mapping**

- Partition of \([1..n]\) into \(m\) intervals \(l_j = [d_j, e_j]\)
 (with \(d_j \leq e_j\) for \(1 \leq j \leq m\), \(d_1 = 1\), \(d_{j+1} = e_j + 1\) for \(1 \leq j \leq m - 1\) and \(e_m = n\))

- Interval \(l_j\) mapped onto processor \(P_{alloc(j)}\)

\[
T_{\text{period}} = \max_{1 \leq j \leq m} \left\{ \frac{\delta_{d_j - 1}}{b} + \frac{\sum_{i=d_j}^{e_j} w_i}{s_{alloc(j)}} + \frac{\delta_{e_j}}{b} \right\}
\]

\[
T_{\text{latency}} = \sum_{1 \leq j \leq m} \left\{ \frac{\delta_{d_j - 1}}{b} + \frac{\sum_{i=d_j}^{e_j} w_i}{s_{alloc(j)}} \right\} + \frac{\delta_n}{b}
\]
Objective function?

Mono-criterion

- Minimize T_{period}
- Minimize T_{latency}

Bi-criteria

- How to define it?
 Minimize $\alpha \cdot T_{\text{period}} + \beta \cdot T_{\text{latency}}$?
- Values which are not comparable
- Minimize T_{period} for a fixed latency
- Minimize T_{latency} for a fixed period
Objective function?

Mono-criterion

- Minimize T_{period}
- Minimize T_{latency}

Bi-criteria

- How to define it?
 Minimize $\alpha \cdot T_{\text{period}} + \beta \cdot T_{\text{latency}}$?
- Values which are not comparable
- Minimize T_{period} for a fixed latency
- Minimize T_{latency} for a fixed period
Objective function?

Mono-criterion

- Minimize T_{period}
- Minimize T_{latency}

Bi-criteria

- How to define it?
- Minimize $\alpha \cdot T_{\text{period}} + \beta \cdot T_{\text{latency}}$?
- Values which are not comparable
 - Minimize T_{period} for a fixed latency
 - Minimize T_{latency} for a fixed period
Objective function?

Mono-criterion

- Minimize T_{period}
- Minimize T_{latency}

Bi-criteria

- How to define it?
 Minimize $\alpha. T_{\text{period}} + \beta. T_{\text{latency}}$?
- Values which are not comparable
- Minimize T_{period} for a fixed latency
- Minimize T_{latency} for a fixed period
Outline

1. Framework

2. Complexity results

3. Heuristics

4. Experiments

5. Conclusion
Lemma

The optimal mapping which minimizes latency can be determined in polynomial time.

Assign whole pipeline to fastest processor!
No communications to pay in this case.
The optimal mapping which *minimizes latency* can be determined in polynomial time.

Assign whole pipeline to fastest processor!
No communications to pay in this case.
Complexity results

Minimize the period?
Chains-on-chains problem with different speed processors!

Definition (HETERO-1D-PARTITION-DEC)

Given n elements a_1, a_2, \ldots, a_n, p values s_1, s_2, \ldots, s_p and a bound K, can we find a partition of $[1..n]$ into p intervals I_1, I_2, \ldots, I_p, with $I_k = [d_k, e_k]$ and $d_k \leq e_k$ for $1 \leq k \leq p$, $d_1 = 1$, $d_{k+1} = e_k + 1$ for $1 \leq k \leq p - 1$ and $e_p = n$, and a permutation σ of $\{1, 2, \ldots, p\}$, such that

$$\max_{1 \leq k \leq p} \frac{\sum_{i \in I_k} a_i}{s_{\sigma(k)}} \leq K$$

Complexity results

Minimize the period?

Chains-on-chains problem with different speed processors!

Definition (HETERO-1D-PARTITION-DEC)

Given \(n \) elements \(a_1, a_2, \ldots, a_n \), \(p \) values \(s_1, s_2, \ldots, s_p \) and a bound \(K \), can we find a partition of \([1..n]\) into \(p \) intervals \(\mathcal{I}_1, \mathcal{I}_2, \ldots, \mathcal{I}_p \), with \(\mathcal{I}_k = [d_k, e_k] \) and \(d_k \leq e_k \) for \(1 \leq k \leq p \), \(d_1 = 1 \), \(d_{k+1} = e_k + 1 \) for \(1 \leq k \leq p - 1 \) and \(e_p = n \), and a permutation \(\sigma \) of \(\{1, 2, \ldots, p\} \), such that

\[
\max_{1 \leq k \leq p} \frac{\sum_{i \in \mathcal{I}_k} a_i}{s_{\sigma(k)}} \leq K
\]
Complexity results

Minimize the period?

Chains-on-chains problem with different speed processors!

Definition (HETERO-1D-PARTITION-DEC)

Given n elements a_1, a_2, \ldots, a_n, p values s_1, s_2, \ldots, s_p and a bound K, can we find a partition of $[1..n]$ into p intervals I_1, I_2, \ldots, I_p, with $I_k = [d_k, e_k]$ and $d_k \leq e_k$ for $1 \leq k \leq p$, $d_1 = 1$, $d_{k+1} = e_k + 1$ for $1 \leq k \leq p - 1$ and $e_p = n$, and a permutation σ of $\{1, 2, \ldots, p\}$, such that

$$\max_{1 \leq k \leq p} \frac{\sum_{i \in I_k} a_i}{s_{\sigma(k)}} \leq K$$
Complexity results

Theorem 1

The **HETERO-1D-PARTITION-DEC** problem is NP-complete.

Involved reduction

Theorem 2

The period minimization problem for pipeline graphs is NP-complete.

Direct consequence from Theorem 1
Complexity results

Theorem 1

The *Hetero-1D-Partition-Dec* problem is NP-complete.

Involved reduction

Theorem 2

The period minimization problem for pipeline graphs is NP-complete.

Direct consequence from Theorem 1
Complexity results

Theorem 1
The **HETERO-1D-PARTITION-DEC** problem is NP-complete.

Involved reduction

Theorem 2
The period minimization problem for pipeline graphs is NP-complete.

Direct consequence from Theorem 1
Complexity results

Theorem 1

The HETERO-1D-PARTITION-DEC problem is NP-complete.

Involved reduction

Theorem 2

The period minimization problem for pipeline graphs is NP-complete.

Direct consequence from Theorem 1
Outline

1. Framework
2. Complexity results
3. Heuristics
4. Experiments
5. Conclusion
Heuristics

- Target clusters: *Communication Homogeneous* platforms and *Interval Mapping*
- n stages, p processors
- Minimizing period NP-complete \rightarrow bi-criteria problems
 - NP-complete

Two sets of heuristics

- Minimizing latency for a fixed period
- Minimizing period for a fixed latency
Minimizing Latency for a Fixed Period (1/2)

Sp mono P: Splitting mono-criterion

- Map all stages to fastest processor.
- At each step, select used processor j with largest period.
- Try to split its stage interval, giving some stages to the next fastest processor j' in the list (not yet used).
- Split interval at any place, and either assign the first part of the interval on j and the remainder on j', or the other way round. Solution which minimizes $\max(\text{period}(j), \text{period}(j'))$ is chosen if better than original solution.
- Break-conditions:
 Fixed period is reached or period cannot be improved anymore (splitting reduces period but increases latency).
3-Explo mono: 3-Exploration mono-criterion – Select used processor j with largest period and split its interval into three parts.

3-Explo bi: 3-Exploration bi-criteria – More elaborated choice where to split: split the interval with largest period so that $\max_{i \in \{j, j', j''\}} \left(\frac{\Delta \text{latency}}{\Delta \text{period}(i)} \right)$ is minimized.

Sp bi P: Splitting bi criteria – Binary search over latency: at each step choose split that minimizes $\max_{i \in \{j, j'\}} \left(\frac{\Delta \text{latency}}{\Delta \text{period}(j)} \right)$ within the authorized latency increase.

$\Delta \text{latency} : T_{\text{latency}}$ after split - T_{latency} before split

$\Delta \text{period} : T_{\text{period}(j)}$ before split - $T_{\text{period}(j)}$ after split
Minimizing Period for a Fixed Latency

Sp mono L: Splitting mono-criterion – Similar to Sp mono P with different break condition: splitting is performed as long as fixed latency is not exceeded.

Sp bi L: Splitting bi-criteria – Similar to Sp mono L, but at each step choose solution that minimizes

$$\max_{i \in \{j, j'\}} \left(\frac{\Delta \text{latency}}{\Delta \text{period}(i)} \right)$$

while fixed latency is not exceeded.
Outline

1. Framework
2. Complexity results
3. Heuristics
4. Experiments
5. Conclusion
Plan of experiments

- **Assess performance of polynomial heuristics**

- Random applications, \(n \in \{5, 10, 20, 40\} \) stages

- Random *Communication Homogeneous* platforms, \(p = 10 \) and \(p = 100 \) processors

- \(b = 10 \), proc. speed between 1 and 20

- Relevant parameters: ratios \(\frac{\delta}{b} \) and \(\frac{w}{s} \)

- Average over 50 similar random appli/platform pairs
Plan of experiments

- Assess performance of polynomial heuristics
- Random applications, $n \in \{5, 10, 20, 40\}$ stages
- Random *Communication Homogeneous* platforms, $p = 10$ and $p = 100$ processors
- $b = 10$, proc. speed between 1 and 20
- Relevant parameters: ratios $\frac{\delta}{b}$ and $\frac{w}{s}$
- Average over 50 similar random appli/platform pairs
Experiment 1 - balanced comm/comp, hom comm

- communication time $\delta_i = 10$
- computation time between 1 and 20
- 10 processors

10 stages.

😊 Sp bi P
😊 3-Explo mono

40 stages.

😊 Sp mono P
😊 3-Explo mono
Experiment 1 - balanced comm/comp, hom comm

- communication time $\delta_i = 10$
- computation time between 1 and 20
- 10 vs. 100 processors

40 stages, 10 procs.

😊 Sp mono P
😊 3-Explo mono

40 stages, 100 procs.

😊 3 Explo bi
😊 3-Explo mono
Experiment 2 - balanced comm/comp, het comm

- communication time between 1 and 100
- computation time between 1 and 20

100 processors.
40 stages.

😊 Sp bi P
😊 3-Explo mono
Experiment 3 - large computations

- communication time between 1 and 20
- computation time between 10 and 1000

100 processors.
5 stages.

😊 Sp bi P
😊 Sp mono L
Experiment 4 - small computations

- communication time between 1 and 20
- computation time between 0.01 and 10

100 processors.
5 stages.

😊 3-Explo bi
😊 Sp mono L
Failure Thresholds for 10 procs

Failure threshold: largest fixed value (latency or period) for which a heuristic does not find a solution.

<table>
<thead>
<tr>
<th>Exp.</th>
<th>Heuristic</th>
<th>Number of stages</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>E1</td>
<td>Sp mono P</td>
<td>3.0</td>
</tr>
<tr>
<td></td>
<td>3-Explo mono</td>
<td>3.0</td>
</tr>
<tr>
<td></td>
<td>3-Explo bi</td>
<td>3.0</td>
</tr>
<tr>
<td></td>
<td>Sp bi P</td>
<td>3.3</td>
</tr>
<tr>
<td></td>
<td>Sp mono L</td>
<td>4.5</td>
</tr>
<tr>
<td></td>
<td>Sp bi L</td>
<td>4.5</td>
</tr>
<tr>
<td>E3</td>
<td>Sp mono P</td>
<td>50.0</td>
</tr>
<tr>
<td></td>
<td>3-Explo mono</td>
<td>50.0</td>
</tr>
<tr>
<td></td>
<td>3-Explo bi</td>
<td>50.0</td>
</tr>
<tr>
<td></td>
<td>Sp bi P</td>
<td>100.0</td>
</tr>
<tr>
<td></td>
<td>Sp mono L</td>
<td>140.0</td>
</tr>
<tr>
<td></td>
<td>Sp bi L</td>
<td>140.0</td>
</tr>
</tbody>
</table>

Small values are good! 🙂

Small values are bad! 😞

- Sp mono P
- 3-Explo mono
Failure Thresholds for 10 procs

Failure threshold: largest fixed value (latency or period) for which a heuristic does not find a solution.

<table>
<thead>
<tr>
<th>Exp.</th>
<th>Heuristic</th>
<th>Number of stages</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>E1</td>
<td>Sp mono P</td>
<td>3.0</td>
</tr>
<tr>
<td></td>
<td>3-Explo mono</td>
<td>3.0</td>
</tr>
<tr>
<td></td>
<td>3-Explo bi</td>
<td>3.0</td>
</tr>
<tr>
<td></td>
<td>Sp bi P</td>
<td>3.3</td>
</tr>
<tr>
<td></td>
<td>Sp mono L</td>
<td>4.5</td>
</tr>
<tr>
<td></td>
<td>Sp bi L</td>
<td>4.5</td>
</tr>
<tr>
<td>E3</td>
<td>Sp mono P</td>
<td>50.0</td>
</tr>
<tr>
<td></td>
<td>3-Explo mono</td>
<td>50.0</td>
</tr>
<tr>
<td></td>
<td>3-Explo bi</td>
<td>50.0</td>
</tr>
<tr>
<td></td>
<td>Sp bi P</td>
<td>100.0</td>
</tr>
<tr>
<td></td>
<td>Sp mono L</td>
<td>140.0</td>
</tr>
<tr>
<td></td>
<td>Sp bi L</td>
<td>140.0</td>
</tr>
</tbody>
</table>

Small values are good! 😊
3-Explo mono 😞
Failure Thresholds for 10 procs

Failure threshold: largest fixed value (latency or period) for which a heuristic does not find a solution.

<table>
<thead>
<tr>
<th>Exp.</th>
<th>Heuristic</th>
<th>Number of stages</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>E1</td>
<td>Sp mono P</td>
<td>3.0</td>
</tr>
<tr>
<td></td>
<td>3-Explo mono</td>
<td>3.0</td>
</tr>
<tr>
<td></td>
<td>3-Explo bi</td>
<td>3.0</td>
</tr>
<tr>
<td></td>
<td>Sp bi P</td>
<td>3.3</td>
</tr>
<tr>
<td></td>
<td>Sp mono L</td>
<td>4.5</td>
</tr>
<tr>
<td></td>
<td>Sp bi L</td>
<td>4.5</td>
</tr>
<tr>
<td>E3</td>
<td>Sp mono P</td>
<td>50.0</td>
</tr>
<tr>
<td></td>
<td>3-Explo mono</td>
<td>50.0</td>
</tr>
<tr>
<td></td>
<td>3-Explo bi</td>
<td>50.0</td>
</tr>
<tr>
<td></td>
<td>Sp bi P</td>
<td>100.0</td>
</tr>
<tr>
<td></td>
<td>Sp mono L</td>
<td>140.0</td>
</tr>
<tr>
<td></td>
<td>Sp bi L</td>
<td>140.0</td>
</tr>
</tbody>
</table>

Small values are good!

😊 Sp mono P

😢 3-Explo mono
Failure Thresholds for 10 procs

Failure threshold: largest fixed value (latency or period) for which a heuristic does not find a solution.

<table>
<thead>
<tr>
<th>Exp.</th>
<th>Heuristic</th>
<th>Number of stages</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>E1</td>
<td>Sp mono P</td>
<td>3.0</td>
</tr>
<tr>
<td></td>
<td>3-Explo mono</td>
<td>3.0</td>
</tr>
<tr>
<td></td>
<td>3-Explo bi</td>
<td>3.0</td>
</tr>
<tr>
<td></td>
<td>Sp bi P</td>
<td>3.3</td>
</tr>
<tr>
<td></td>
<td>Sp mono L</td>
<td>4.5</td>
</tr>
<tr>
<td></td>
<td>Sp bi L</td>
<td>4.5</td>
</tr>
<tr>
<td>E3</td>
<td>Sp mono P</td>
<td>50.0</td>
</tr>
<tr>
<td></td>
<td>3-Explo mono</td>
<td>50.0</td>
</tr>
<tr>
<td></td>
<td>3-Explo bi</td>
<td>50.0</td>
</tr>
<tr>
<td></td>
<td>Sp bi P</td>
<td>100.0</td>
</tr>
<tr>
<td></td>
<td>Sp mono L</td>
<td>140.0</td>
</tr>
<tr>
<td></td>
<td>Sp bi L</td>
<td>140.0</td>
</tr>
</tbody>
</table>

- Small values are good!
 - 😊 Sp mono P
 - 😞 3-Explo mono
Performance of bi-criterion heuristics highly depends on the number of available processors.

- **Small number of processors:**
 - Sp mono P and Sp mono L
 - Small latencies: Sp bi P

- **Increasing number of processors:**
 - Sp bi P and Sp bi L
Summary of experiments

- Performance of bi-criterion heuristics highly depends on the number of available processors.

- Small number of processors:
 - Sp mono P and Sp mono L
 - Small latencies: Sp bi P

- Increasing number of processors:
 - Sp bi P and Sp bi L
Summary of experiments

- Performance of bi-criterion heuristics highly depends on the number of available processors.

- **Small number of processors:**
 - Sp mono P and Sp mono L
 - Small latencies: Sp bi P

- **Increasing number of processors:**
 - Sp bi P and Sp bi L
Outline

1. Framework
2. Complexity results
3. Heuristics
4. Experiments
5. Conclusion
Related work

Subhlok and Vondran— Extension of their work (pipeline on hom platforms)

Mapping pipelined computations onto clusters and grids— DAG
[Taura et al.], DataCutter [Saltz et al.]

Energy-aware mapping of pipelined computations [Melhem et al.],
three-criteria optimization

Mapping pipelined computations onto special-purpose architectures—
FPGA arrays [Fabiani et al.]. Fault-tolerance for embedded systems [Zhu et al.]

Mapping skeletons onto clusters and grids— Use of stochastic process algebra [Benoit et al.]
Conclusion

Theoretical side

- Bi-criteria mapping problem on Communication Homogeneous platforms
- Pipeline structured applications
- Complexity study

Practical side

- Design of several polynomial heuristics
- Extensive simulations to compare their performance
Future work

Short term

- Heuristics for *Fully Heterogeneous* platforms, with stage replication
- Extension to DAG-trees (a DAG which is a tree when un-oriented)

Longer term

- Real experiments on heterogeneous clusters, using an already-implemented skeleton library and MPI
- Comparison of effective performance against theoretical performance
Open problems

- Replication for **fault-tolerance** vs replication for parallelism
 - compute several time the same data-set in case of failure
 - uses more resources and does not decrease period or latency
 - increases robustness

- **Energy** savings
 - processors that can run at different frequencies
 - trade-off between energy consumption and speed

- Simultaneous execution of **several (concurrent) workflows**
 - competition for CPU and network resources
 - fairness between applications (stretch)
 - sensitivity to application/platform parameter changes