Energy-aware checkpointing of divisible tasks with soft or hard deadlines

Guillaume Aupy¹, Anne Benoit^{1,2}, Rami Melhem³, Paul Renaud-Goud¹ and Yves Robert^{1,2,4}

- 1. Ecole Normale Supérieure de Lyon, France
 - 2. Institut Universitaire de France
 - 3. University of Pittsburgh, USA
 - 4. University of Tennessee Knoxville, USA

Anne.Benoit@ens-lyon.fr

http://graal.ens-lyon.fr/~abenoit/

International Green Computing Conference 2013 Arlington, USA

 Introduction
 Framework
 Single chunk
 Multiple chunks
 Simulations
 Conclusion

 Divisible load scheduling and resilience

- Divisible load scheduling: divide a computational workload into chunks
 - Arbitrary number of chunks
 - Size of chunks freely chosen by user
- Goal: minimize makespan, i.e., total execution time
- Current platforms: increasing frequency of failures
- Well-established method to deal with failures: checkpointing
- Take a checkpoint at the end of each chunk and verify result
- Re-execution in case of transient failure

 Introduction
 Framework
 Single chunk
 Multiple chunks
 Simulations
 Conclusion

 Divisible load scheduling and resilience
 Simulations
 Conclusion
 Simulations
 Conclusion

- Divisible load scheduling: divide a computational workload into chunks
 - Arbitrary number of chunks
 - Size of chunks freely chosen by user
- Goal: minimize makespan, i.e., total execution time
- Current platforms: increasing frequency of failures
- Well-established method to deal with failures: checkpointing
- Take a checkpoint at the end of each chunk and verify result
- Re-execution in case of transient failure

- IGCC: Green Computing Conference!
- Real need to reduce energy dissipation in current processors
- Processor running at speed s: power s^3 watts
- Dynamic voltage and frequency scaling techniques (DVFS)
- Our goal: minimize energy consumption
 - including that of checkpointing and re-execution (if failure)
 - while enforcing a bound on execution time

< 3 > < 3 >

- IGCC: Green Computing Conference!
- Real need to reduce energy dissipation in current processors
- Processor running at speed s: power s^3 watts
- Dynamic voltage and frequency scaling techniques (DVFS)
- Our goal: minimize energy consumption
 - including that of checkpointing and re-execution (if failure)
 - while enforcing a bound on execution time

Introduction	Framework	Single chunk	Multiple chunks	Simulations	Conclusion
Outline					

- 2 With a single chunk
- 3 With several chunks
- ④ Simulation results

5 Conclusion

- Execution of a divisible task (W operations)
- Failures may occur
 - Transient faults
 - Resilience through checkpointing
- Objective: minimize expected energy consumption $\mathbb{E}(E)$, given a deadline bound D
- Probabilistic nature of failure hits: expectation of energy consumption is natural (average cost over many executions)
- Deadline bound: two relevant scenarios (soft or hard deadline)

- Soft deadline: met in expectation, i.e., 𝔼(𝔅) ≤ 𝔅 (average response time)
- Hard deadline: met in the worst case, i.e., $T_{wc} \leq D$

 Introduction
 Framework
 Single chunk
 Multiple chunks
 Simulations
 Conclusion

 Execution time, one single chunk
 Simulations
 Conclusion
 Conclusion</

One single chunk of size W

- Checkpoint overhead: execution time T_C
- Instantaneous failure rate: λ
- First execution at speed s: $T_{\text{exec}} = \frac{W}{s} + T_C$
- Failure probability: $P_{\text{fail}} = \lambda T_{\text{exec}} = \lambda (\frac{W}{s} + T_C)$
- In case of failure: re-execute at speed σ : $T_{\text{reexec}} = \frac{W}{\sigma} + T_C$
- And we assume success after re-execution

•
$$\mathbb{E}(T) = T_{\text{exec}} + P_{\text{fail}} T_{\text{reexec}} = (\frac{W}{s} + T_C) + \lambda(\frac{W}{s} + T_C)(\frac{W}{\sigma} + T_C)$$

• $T_{\text{wc}} = T_{\text{exec}} + T_{\text{reexec}} = (\frac{W}{s} + T_C) + (\frac{W}{\sigma} + T_C)$

 Introduction
 Framework
 Single chunk
 Multiple chunks
 Simulations
 Conclusion

 Energy consumption, one single chunk
 Simulations
 Conclusion
 Conclusion
 Conclusion

One single chunk of size W

• Checkpoint overhead: energy consumption E_C

- First execution at speed s: $\frac{W}{s} \times s^3 + E_C = Ws^2 + E_C$
- Re-execution at speed σ : $W\sigma^2 + E_C$, with probability P_{fail} $(P_{\text{fail}} = \lambda T_{\text{exec}} = \lambda (\frac{W}{s} + T_C))$

•
$$\mathbb{E}(E) = (Ws^2 + E_C) + \lambda \left(\frac{W}{s} + T_C\right) (W\sigma^2 + E_C)$$

Introduction	Framework	Single chunk	Multiple chunks	Simulations	Conclusion
Multiple	chunks				

- Execution times: sum of execution times for each chunk (worst-case or expected)
- Expected energy consumption: sum of expected energy for each chunk
- Coherent failure model: consider two chunks $W_1 + W_2 = W$
- Probability of failure for first chunk: $P_{\text{fail}}^1 = \lambda (\frac{W_1}{s} + T_C)$
- For second chunk: $P_{\text{fail}}^2 = \lambda (\frac{W_2}{s} + T_C)$
- With a single chunk of size W: $P_{\text{fail}} = \lambda (\frac{W}{s} + T_C)$, differs from $P_{\text{fail}}^1 + P_{\text{fail}}^2$ only because of extra checkpoint
- Trade-off: many small chunks (more *T_C* to pay, but small re-execution cost) vs few larger chunks (fewer *T_C*, but increased re-execution cost)

Introduction	Framework	Single chunk	Multiple chunks	Simulations	Conclusion
Optimiz	ation prob	lem			

- Decisions that should be taken before execution:
 - Chunks: how many (*n*)? which sizes (*W_i* for chunk *i*)?
 - Speeds of each chunk: first run (s_i) ? re-execution (σ_i) ?
- Input: W, T_C (checkpointing time), E_C (energy spent for checkpointing), λ (instantaneous failure rate), D (deadline)

Introduction	Framework	Single chunk	Multiple chunks	Simulations	Conclusion
Optimiz	ation prob	lem			

- Decisions that should be taken before execution:
 - Chunks: how many (*n*)? which sizes (W_i for chunk *i*)?
 - Speeds of each chunk: first run (s_i) ? re-execution (σ_i) ?
- Input: W, T_C (checkpointing time), E_C (energy spent for checkpointing), λ (instantaneous failure rate), D (deadline)

Introduction	Framework	Single chunk	Multiple chunks	Simulations	Conclusion
Optimiz	ation prob	lem			

- Decisions that should be taken before execution:
 - Chunks: how many (*n*)? which sizes (W_i for chunk *i*)?
 - Speeds of each chunk: first run (s_i) ? re-execution (σ_i) ?
- Input: W, T_C (checkpointing time), E_C (energy spent for checkpointing), λ (instantaneous failure rate), D (deadline)

Energy-aware checkpointing

Anne.Benoit@ens-lyon.fr

Introduction	Framework	Single chunk	Multiple chunks	Simulations	Conclusion
Outline					

- 2 With a single chunk
- 3 With several chunks
- ④ Simulation results

5 Conclusion

 Introduction
 Framework
 Single chunk
 Multiple chunks
 Simulations
 Conclusion

 Single chunk and single speed

 <t

Consider first that $s = \sigma$ (single speed): need to find optimal speed

•
$$\mathbb{E}(E)$$
 is a function of s:
 $\mathbb{E}(E)(s) = (Ws^2 + E_C)(1 + \lambda(\frac{W}{s} + T_C))$

- Lemma: this function is convex and has a unique minimum s* (function of λ , W, E_c , T_c) $s^* = \frac{\lambda W}{6(1+\lambda T_c)} \left(\frac{-(3\sqrt{3}\sqrt{27a^2-4a}-27a+2)^{1/3}}{2^{1/3}} - \frac{2^{1/3}}{(3\sqrt{3}\sqrt{27a^2-4a}-27a+2)^{1/3}} - 1 \right),$ where $a = \lambda E_c \left(\frac{2(1+\lambda T_c)}{\lambda W} \right)^2$
- $\mathbb{E}(T)$ and T_{wc} : decreasing functions of s
- Minimum speed s_{exp} and s_{wc} required to match deadline D (function of D, W, T_c , and λ for s_{exp})
- \rightarrow Optimal speed: maximum between s^{\star} and s_{exp} or s_{wc}

 Introduction
 Framework
 Single chunk
 Multiple chunks
 Simulations
 Conclusion

 Single chunk and multiple speeds
 Simulations
 Conclusion
 Simulations
 Conclusion

Consider now that $s \neq \sigma$ (multiple speeds): two unknowns

•
$$\mathbb{E}(E)$$
 is a function of s and σ :
 $\mathbb{E}(E)(s,\sigma) = (Ws^2 + E_C) + \lambda(\frac{W}{s} + T_C)(W\sigma^2 + E_C)$

- Lemma: energy minimized when deadline tight (both for wc and exp)
- $\rightsquigarrow \sigma$ expressed as a function of *s*:

$$\sigma_{exp} = \frac{\lambda W}{\frac{D}{\frac{W}{s} + T_C} - (1 + \lambda T_C)}, \quad \sigma_{wc} = \frac{W}{(D - 2T_C)s - W}s$$

 \rightarrow Minimization of single-variable function, can be solved numerically (no expression of optimal *s*)

Introduction	Framework	Single chunk	Multiple chunks	Simulations	Conclusion
Outline					

- 2 With a single chunk
- 3 With several chunks
- ④ Simulation results

5 Conclusion

 Introduction
 Framework
 Single chunk
 Multiple chunks
 Simulations
 Conclusion

 General problem with multiple chunks
 Simulations
 Conclusion
 Simulations
 Conclusion

- Divisible task of size W
- Split into *n* chunks of size W_i : $\sum_{i=1}^{n} W_i = W$
- Chunk *i* is executed once at speed s_i, and re-executed (if necessary) at speed σ_i
- Unknowns: *n*, W_i , s_i , σ_i

•
$$\mathbb{E}(E) = \sum_{i=1}^{n} \left(W_i s_i^2 + E_C \right) + \lambda \sum_{i=1}^{n} \left(\frac{W_i}{s_i} + T_C \right) \left(W_i \sigma_i^2 + E_C \right)$$

 Introduction
 Framework
 Single chunk
 Multiple chunks
 Simulations
 Conclusion

 Multiple chunks and single speed
 Simulations
 Conclusion
 Simulations
 Conclusion

With a single speed, $\sigma_i = s_i$ for each chunk

- Theorem: in optimal solution, *n* equal-sized chunks $(W_i = \frac{W}{n})$, executed at same speed $s_i = s$
 - Proof by contradiction: consider two chunks W_1 and W_2 executed at speed s_1 and s_2 , with either $s_1 \neq s_2$, or $s_1 = s_2$ and $W_1 \neq W_2$
 - \Rightarrow Strictly better solution with two chunks of size $w = (W_1 + W_2)/2$ and same speed s
- Only two unknowns, s and n
- Minimum speed with *n* chunks: $s_{exp}^{\star}(n) = W \frac{1 + 2\lambda T_C + \sqrt{4 \frac{\lambda D}{n} + 1}}{2(D nT_C(1 + \lambda T_C))}$

 \rightarrow Minimization of double-variable function, can be solved numerically both for expected and hard deadline

 Introduction
 Framework
 Single chunk
 Multiple chunks
 Simulations
 Conclusion

 Multiple chunks and multiple speeds
 Simulations
 Simul

Need to find *n*, W_i , s_i , σ_i

- With expected deadline:
 - All re-execution speeds are equal $(\sigma_i = \sigma)$ and tight deadline
 - All chunks have same size and are executed at same speed
- WIth hard deadline:
 - If $s_i = s$ and $\sigma_i = \sigma$, then all W_i 's are equal
 - Conjecture: equal-sized chunks, same first-execution / re-execution speeds
- σ as a function of s, bound on s given n

 \rightarrow Minimization of double-variable function, can be solved numerically

Introduction	Framework	Single chunk	Multiple chunks	Simulations	Conclusion
Outline					

- 2 With a single chunk
- 3 With several chunks
- ④ Simulation results

5 Conclusion

Introduction	Framework	Single chunk	Multiple chunks	Simulations	Conclusion
Simulatio	n settings				

- Large set of simulations: illustrate differences between models
- Maple software to solve problems
- \bullet We plot relative energy consumption as a function of λ
 - The lower the better
 - Given a deadline constraint (hard or expected), normalize with the result of single-chunk single-speed
 - Impact of the constraint: normalize expected deadline with hard deadline
- Parameters varying within large ranges

 Introduction
 Framework
 Single chunk
 Multiple chunks
 Simulations
 Conclusion

 Comparison with single-chunk single-speed

 </td

- Results identical for any value of W/D
- For expected deadline, with small λ (< 10⁻²), using multiple chunks or multiple speeds do not improve energy ratio: re-execution term negligible; increasing λ: improvement with multiple chunks
- For hard deadline, better to run at high speed during second execution: use multiple speeds; use multiple chunks if frequent failures

Introduction Framework Single chunk Multiple chunks Simulations Conclusion Expected vs hard deadline constraint

- Important differences for single speed models, confirming previous conclusions: with hard deadline, use multiple speeds
- Multiple speeds: no difference for small λ: re-execution at maximum speed has little impact on expected energy consumption; increasing λ: more impact of re-execution, and expected deadline may use slower re-execution speed, hence reducing energy consumption

Introduction	Framework	Single chunk	Multiple chunks	Simulations	Conclusion
Outline					

- 2 With a single chunk
- 3 With several chunks
- ④ Simulation results

Introduction	Framework	Single chunk	Multiple chunks	Simulations	Conclusion
Conclusi	ion				

- Energy consumption of a divisible load workload on volatile platforms
- Soft or hard deadline constraint
- Theoretical side:
 - Formal models for the problem
 - Expression of solutions as functions to minimize
 - With multiple chunks, use same size chunks, same speed, and same re-execution speed (conjecture for multiple-speed hard-deadline)
- Simulations:
 - Single-chunk single-speed is very good for expected deadline
 - Hard deadline and small λ : use multiple speeds
 - Large values of λ : use multiple speeds and multiple chunks

Introduction

ramework

Single chunk

Multiple chur

Simulations

Conclusion

What we had:

Energy-aware checkpointing + frequency scaling

э