Energy-aware checkpointing of divisible tasks with soft or hard deadlines

Guillaume Aupy1, Anne Benoit1,2, Rami Melhem3, Paul Renaud-Goud1 and Yves Robert1,2,4

1. Ecole Normale Supérieure de Lyon, France
2. Institut Universitaire de France
3. University of Pittsburgh, USA
4. University of Tennessee Knoxville, USA

Anne.Benoit@ens-lyon.fr
http://graal.ens-lyon.fr/~abenoit/

International Green Computing Conference 2013
Arlington, USA
Divisible load scheduling and resilience

- **Divisible load scheduling**: divide a computational workload into chunks
 - Arbitrary number of chunks
 - Size of chunks freely chosen by user
- **Goal**: minimize *makespan*, i.e., total execution time

- Current platforms: increasing frequency of failures
- Well-established method to deal with failures: **checkpointing**
 - Take a checkpoint at the end of each chunk and verify result
 - Re-execution in case of transient failure
Divisible load scheduling and resilience

- **Divisible load scheduling**: divide a computational workload into chunks
 - Arbitrary number of chunks
 - Size of chunks freely chosen by user
- **Goal**: minimize makespan, i.e., total execution time

- **Current platforms**: increasing frequency of failures
- **Well-established method to deal with failures**: checkpointing
 - Take a checkpoint at the end of each chunk and verify result
 - **Re-execution** in case of transient failure
Energy: a crucial issue

- IGCC: Green Computing Conference!
- Real need to reduce energy dissipation in current processors
- Processor running at speed s: power s^3 watts
- Dynamic voltage and frequency scaling techniques (DVFS)

- Our goal: minimize energy consumption
 - including that of checkpointing and re-execution (if failure)
 - while enforcing a bound on execution time
Energy: a crucial issue

• IGCC: Green Computing Conference!
• Real need to reduce energy dissipation in current processors
• Processor running at speed s: power s^3 watts
• Dynamic voltage and frequency scaling techniques (DVFS)

• Our goal: minimize energy consumption
 • including that of checkpointing and re-execution (if failure)
 • while enforcing a bound on execution time
Outline

1. Framework
2. With a single chunk
3. With several chunks
4. Simulation results
5. Conclusion
Framework

- Execution of a divisible task (W operations)
- Failures may occur
 - Transient faults
 - Resilience through checkpointing
- Objective: minimize expected energy consumption $\mathbb{E}(E)$, given a deadline bound D

- Probabilistic nature of failure hits: expectation of energy consumption is natural (average cost over many executions)
- Deadline bound: two relevant scenarios (soft or hard deadline)
Soft vs hard deadline

- Soft deadline: met in expectation, i.e., $\mathbb{E}(T) \leq D$ (average response time)
- Hard deadline: met in the worst case, i.e., $T_{wc} \leq D$
Execution time, one single chunk

One single chunk of size W

- Checkpoint overhead: execution time T_C
- Instantaneous failure rate: λ

- **First execution** at speed s: $T_{\text{exec}} = \frac{W}{s} + T_C$
- Failure probability: $P_{\text{fail}} = \lambda T_{\text{exec}} = \lambda\left(\frac{W}{s} + T_C\right)$
- In case of failure: **re-execute** at speed σ: $T_{\text{reexec}} = \frac{W}{\sigma} + T_C$
- And we assume success after re-execution

- $E(T) = T_{\text{exec}} + P_{\text{fail}} T_{\text{reexec}} = \left(\frac{W}{s} + T_C\right) + \lambda\left(\frac{W}{s} + T_C\right)\left(\frac{W}{\sigma} + T_C\right)$
- $T_{wc} = T_{\text{exec}} + T_{\text{reexec}} = \left(\frac{W}{s} + T_C\right) + \left(\frac{W}{\sigma} + T_C\right)$
Energy consumption, one single chunk

One single chunk of size W

- Checkpoint overhead: energy consumption E_C

- First execution at speed s: $\frac{W}{s} \times s^3 + E_C = Ws^2 + E_C$

- Re-execution at speed σ: $W\sigma^2 + E_C$, with probability P_{fail}

\[P_{\text{fail}} = \lambda T_{\text{exec}} = \lambda \left(\frac{W}{s} + T_C \right) \]

- $\mathbb{E}(E) = (Ws^2 + E_C) + \lambda \left(\frac{W}{s} + T_C \right) (W\sigma^2 + E_C)$
Multiple chunks

- Execution times: **sum** of execution times for each chunk (worst-case or expected)
- Expected energy consumption: **sum** of expected energy for each chunk

Coherent failure model: consider two chunks $W_1 + W_2 = W$

- Probability of failure for first chunk: $P_{\text{fail}}^1 = \lambda \left(\frac{W_1}{s} + T_C \right)$
- For second chunk: $P_{\text{fail}}^2 = \lambda \left(\frac{W_2}{s} + T_C \right)$
- With a single chunk of size W: $P_{\text{fail}} = \lambda \left(\frac{W}{s} + T_C \right)$, differs from $P_{\text{fail}}^1 + P_{\text{fail}}^2$ only because of extra checkpoint

Trade-off: many small chunks (more T_C to pay, but small re-execution cost) vs few larger chunks (fewer T_C, but increased re-execution cost)
Optimization problem

- Decisions that should be taken before execution:
 - Chunks: how many (n)? which sizes (W_i for chunk i)?
 - Speeds of each chunk: first run (s_i)? re-execution (σ_i)?

- Input: W, T_C (checkpointing time), E_C (energy spent for checkpointing), λ (instantaneous failure rate), D (deadline)
Optimization problem

- Decisions that should be taken before execution:
 - Chunks: how many \(n \)? which sizes \(W_i \) for chunk \(i \)?
 - Speeds of each chunk: first run \(s_i \)? re-execution \(\sigma_i \)?

- Input: \(W \), \(T_C \) (checkpointing time), \(E_C \) (energy spent for checkpointing), \(\lambda \) (instantaneous failure rate), \(D \) (deadline)
Optimization problem

- Decisions that should be taken before execution:
 - Chunks: how many (n)? which sizes (W_i for chunk i)?
 - Speeds of each chunk: first run (s_i)? re-execution (σ_i)?

- Input: W, T_C (checkpointing time), E_C (energy spent for checkpointing), λ (instantaneous failure rate), D (deadline)
Models

- **Chunks**
 - Single chunk of size W
 - VS
 - Multiple chunks (n and W_i's)

- **Speed per chunk**
 - Single speed (s)
 - VS
 - Multiple speeds (s and σ)

- **Deadline bound**
 - Hard ($T_{wc} \leq D$)
 - VS
 - Soft ($\mathbb{E}(T) \leq D$)
Outline

1. Framework
2. With a single chunk
3. With several chunks
4. Simulation results
5. Conclusion
Consider first that \(s = \sigma \) (single speed): need to find optimal speed

- \(\mathbb{E}(E) \) is a function of \(s \):
 \[
 \mathbb{E}(E)(s) = (Ws^2 + E_C)(1 + \lambda(\frac{W}{s} + T_C))
 \]

- Lemma: this function is convex and has a unique minimum \(s^* \) (function of \(\lambda, W, E_c, T_c \))
 \[
 s^* = \frac{\lambda W}{6(1+\lambda T_c)} \left(\frac{-(3\sqrt{3}\sqrt{27a^2-4a-27a+2})^{1/3}}{2^{1/3}} - \frac{2^{1/3}}{(3\sqrt{3}\sqrt{27a^2-4a-27a+2})^{1/3}} - 1 \right),
 \]
 where \(a = \lambda E_C \left(\frac{2(1+\lambda T_C)}{\lambda W} \right)^2 \)

- \(\mathbb{E}(T) \) and \(T_{wc} \): decreasing functions of \(s \)

- Minimum speed \(s_{exp} \) and \(s_{wc} \) required to match deadline \(D \) (function of \(D, W, T_c, \) and \(\lambda \) for \(s_{exp} \))

- \(\rightarrow \) Optimal speed: maximum between \(s^* \) and \(s_{exp} \) or \(s_{wc} \)
Consider now that \(s \neq \sigma \) (multiple speeds): two unknowns

- \(\mathbb{E}(E) \) is a function of \(s \) and \(\sigma \):
 \[
 \mathbb{E}(E)(s, \sigma) = (Ws^2 + E_C) + \lambda \left(\frac{W}{s} + T_C \right)(W\sigma^2 + E_C)
 \]

- Lemma: energy minimized when deadline tight (both for wc and exp)

- \(\sim \) \(\sigma \) expressed as a function of \(s \):
 \[
 \sigma_{\text{exp}} = \frac{\lambda W}{\frac{W}{s} + T_C - (1+\lambda T_C)}, \quad \sigma_{\text{wc}} = \frac{W}{(D-2T_C)s - Ws}
 \]

→ Minimization of single-variable function, can be solved numerically (no expression of optimal \(s \))
Outline

1. Framework
2. With a single chunk
3. With several chunks
4. Simulation results
5. Conclusion
General problem with multiple chunks

- **Divisible task of size** W
- **Split into** n **chunks of size** W_i: $\sum_{i=1}^{n} W_i = W$
- **Chunk** i is executed once at speed s_i, and re-executed (if necessary) at speed σ_i
- **Unknowns:** n, W_i, s_i, σ_i

$$E(E) = \sum_{i=1}^{n} (W_i s_i^2 + E_C) + \lambda \sum_{i=1}^{n} \left(\frac{W_i}{s_i} + T_C \right) (W_i \sigma_i^2 + E_C)$$
Multiple chunks and single speed

With a single speed, $\sigma_i = s_i$ for each chunk

- Theorem: in optimal solution, n equal-sized chunks $(W_i = \frac{W}{n})$, executed at same speed $s_i = s$
 - Proof by contradiction: consider two chunks W_1 and W_2
 executed at speed s_1 and s_2, with either $s_1 \neq s_2$, or $s_1 = s_2$ and $W_1 \neq W_2$
 - \Rightarrow Strictly better solution with two chunks of size $w = (W_1 + W_2)/2$ and same speed s

- Only two unknowns, s and n
- Minimum speed with n chunks: $s^*_\text{exp}(n) = \frac{W}{2} \left(1 + 2\lambda T_C + \sqrt{\frac{4\lambda D}{n}} + 1\right)
 \frac{2(D - nT_C(1 + \lambda T_C))}{2(D - nT_C(1 + \lambda T_C))}$

\[\rightarrow \text{Minimization of double-variable function, can be solved numerically both for expected and hard deadline} \]
Multiple chunks and multiple speeds

Need to find n, W_i, s_i, σ_i

- With expected deadline:
 - All re-execution speeds are equal ($\sigma_i = \sigma$) and tight deadline
 - All chunks have same size and are executed at same speed

- With hard deadline:
 - If $s_i = s$ and $\sigma_i = \sigma$, then all W_i's are equal
 - **Conjecture:** equal-sized chunks, same first-execution / re-execution speeds

- σ as a function of s, bound on s given n

→ Minimization of double-variable function, can be solved numerically
Outline

1. Framework
2. With a single chunk
3. With several chunks
4. Simulation results
5. Conclusion
Simulation settings

- Large set of simulations: illustrate differences between models
- **Maple** software to solve problems
- We plot relative energy consumption as a function of λ
 - **The lower the better**
 - Given a deadline constraint (hard or expected), normalize with the result of **single-chunk single-speed**
 - **Impact of the constraint:** normalize expected deadline with hard deadline
- Parameters varying within large ranges
Comparison with single-chunk single-speed

- Results identical for any value of W/D

- For expected deadline, with small $\lambda (< 10^{-2})$, using multiple chunks or multiple speeds do not improve energy ratio: re-execution term negligible; increasing λ: improvement with multiple chunks

- For hard deadline, better to run at high speed during second execution: use multiple speeds; use multiple chunks if frequent failures
Important differences for single speed models, confirming previous conclusions: with hard deadline, use multiple speeds

Multiple speeds: no difference for small λ: re-execution at maximum speed has little impact on expected energy consumption; increasing λ: more impact of re-execution, and expected deadline may use slower re-execution speed, hence reducing energy consumption
Outline

1. Framework
2. With a single chunk
3. With several chunks
4. Simulation results
5. Conclusion
Conclusion

- **Energy consumption** of a divisible load workload on volatile platforms
- **Soft** or **hard** deadline constraint

Theoretical side:
- Formal models for the problem
- Expression of solutions as functions to minimize
- With multiple chunks, use **same size chunks, same speed, and same re-execution speed** (conjecture for multiple-speed hard-deadline)

Simulations:
- Single-chunk single-speed is very good for expected deadline
- Hard deadline and small λ: use **multiple speeds**
- Large values of λ: use **multiple speeds and multiple chunks**
What we had:

Energy-aware checkpointing
+ frequency scaling

What we aim at: