On the complexity of multi-criteria scheduling problems for workflow applications

Anne Benoit
Fanny Dufossé, Veronika Rehn-Sonigo, Yves Robert
GRAAL team, LIP, École Normale Supérieure de Lyon, France

Kunal Agrawal, MIT, USA
Harald Kosch, University of Passau, Germany

Gotha/MAO meeting in Paris
January 9, 2009
Introduction and motivation

- Scheduling applications onto parallel platforms: difficult challenge
- Heterogeneous clusters, fully heterogeneous platforms: even more difficult!

- Target platform
 - more or less heterogeneity
 - different communication models (overlap, one- vs multi-port)

- Target application
 - Workflow: several data sets are processed by a set of tasks
 - Structured: independent tasks, linear chains, ...
 - Selectivity: some tasks filter data
Introduction and motivation

- Scheduling applications onto parallel platforms: difficult challenge
- Heterogeneous clusters, fully heterogeneous platforms: even more difficult!

- Target platform
 - more or less heterogeneity
 - different communication models (overlap, one- vs multi-port)

- Target application
 - Workflow: several data sets are processed by a set of tasks
 - Structured: independent tasks, linear chains, ...
 - Selectivity: some tasks filter data

Scheduling workflow applications onto heterogeneous platforms
Introduction and motivation

- Scheduling applications onto parallel platforms: difficult challenge
- Heterogeneous clusters, fully heterogeneous platforms: even more difficult!

- Target platform
 - more or less heterogeneity
 - different communication models (overlap, one- vs multi-port)

- Target application
 - Workflow: several data sets are processed by a set of tasks
 - Structured: independent tasks, linear chains, ...
 - Selectivity: some tasks filter data

Scheduling workflow applications onto heterogeneous platforms
Introduction and motivation

- Scheduling applications onto parallel platforms: difficult challenge
- Heterogeneous clusters, fully heterogeneous platforms: even more difficult!

- Target platform
 - more or less heterogeneity
 - different communication models (overlap, one- vs multi-port)

- Target application
 - Workflow: several data sets are processed by a set of tasks
 - Structured: independent tasks, linear chains, ...
 - Selectivity: some tasks filter data

Scheduling workflow applications onto heterogeneous platforms
Multi-criteria scheduling of workflow applications

Workflow applications?

Several consecutive data sets enter the application graph.

Multi-criteria to optimize?

Period P: time interval between the beginning of execution of two consecutive data sets (inverse of throughput)

Latency L: maximal time elapsed between beginning and end of execution of a data set

Reliability: inverse of FP, probability of failure of the application (i.e. some data sets will not be processed)
Multi-criteria scheduling of workflow applications

Workflow applications?

Several consecutive data sets enter the application graph.

Multi-criteria to optimize?

Period \mathcal{P}: time interval between the beginning of execution of two consecutive data sets (inverse of throughput)

Latency \mathcal{L}: maximal time elapsed between beginning and end of execution of a data set

Reliability: inverse of \mathcal{FP}, probability of failure of the application (i.e. some data sets will not be processed)
Multi-criteria scheduling of workflow applications

Workflow applications?

Several consecutive data sets enter the application graph.

Multi-criteria to optimize?

Period P: time interval between the beginning of execution of two consecutive data sets (inverse of throughput)

Latency L: maximal time elapsed between beginning and end of execution of a data set

Reliability: inverse of FP, probability of failure of the application (i.e. some data sets will not be processed)
Multi-criteria scheduling of workflow applications

Workflow applications?

Several consecutive data sets enter the application graph.

Multi-criteria to optimize?

- **Period P:** time interval between the beginning of execution of two consecutive data sets (inverse of throughput)
- **Latency L:** maximal time elapsed between beginning and end of execution of a data set
- **Reliability:** inverse of FP, probability of failure of the application (i.e. some data sets will not be processed)
Multi-criteria scheduling of workflow applications

Workflow applications?

Several consecutive data sets enter the application graph.

Multi-criteria to optimize?

Period P: time interval between the beginning of execution of two consecutive data sets (inverse of throughput)

Latency L: maximal time elapsed between beginning and end of execution of a data set

Reliability: inverse of FP, probability of failure of the application (i.e. some data sets will not be processed)
Major contributions

Definitions

Workflow applications
Computational platforms and communication models
Multi-criteria mappings

Theory

Problem complexity
Linear programming formulation

Practice

Heuristics for sub-problems
Experiments: compare and evaluate heuristics
Simulation of real applications (JPEG encoder)

In this talk: small examples to illustrate problem complexity
Major contributions

Definitions

Workflow applications
Computational platforms and communication models
Multi-criteria mappings

Theory

Problem complexity
Linear programming formulation

Practice

Heuristics for sub-problems
Experiments: compare and evaluate heuristics
Simulation of real applications (JPEG encoder)

In this talk: small examples to illustrate problem complexity
Major contributions

Definitions

Workflow applications
Computational platforms and communication models
Multi-criteria mappings

Theory

Problem complexity
Linear programming formulation

Practice

Heuristics for sub-problems
Experiments: compare and evaluate heuristics
Simulation of real applications (JPEG encoder)

In this talk: small examples to illustrate problem complexity
Major contributions

Definitions

Workflow applications
Computational platforms and communication models
Multi-criteria mappings

Theory

Problem complexity
Linear programming formulation

Practice

Heuristics for sub-problems
Experiments: compare and evaluate heuristics
Simulation of real applications (JPEG encoder)

In this talk: small examples to illustrate problem complexity
Outline

1. Definitions: Application, Platform and Mappings
2. Working out examples
3. Summary of complexity results
4. Conclusion
Application model

- Set of n application stages
- Workflow: each data set must be processed by all stages
- Computation cost of stage S_i: w_i
- Dependencies between stages
Application model: communication costs

- Two dependent stages $S_1 \rightarrow S_2$:
 data must be transferred from S_1 to S_2

- Fixed data size $\delta_{1,2}$, communication cost to pay only if S_1 and S_2 are mapped onto different processors
 (i.e., red arrows in the example)
Application model: adding selectivity

- Stages with selectivity: stage S_i transforms (filters) data of size δ to size $\sigma_i \times \delta$ - σ_i: stage selectivity
- Computation cost depends on the data size (previous σ)
- May add dependencies to exploit selectivity

S_1 and S_4 process file of initial size 1; S_1 removes even line numbers; S_2 removes two-third of the file
- Combined file of size $\frac{1}{2} \times \frac{1}{3} = \frac{1}{6}$ (no cost for join)
- S_2 duplicates the file
- S_3 processes but does not alter the file
Platform model

- \(p \) processors \(P_u, 1 \leq u \leq p \), fully interconnected
- \(s_u \): speed of processor \(P_u \)
- bidirectional link \(\text{link}_{u,v} : P_u \rightarrow P_v \), bandwidth \(b_{u,v} \)
- \(\text{fp}_u \): failure probability of processor \(P_u \) (independent of the duration of the application, meant to run for a long time)
- \(P_{in} \): input data – \(P_{out} \): output data
Different platforms

Fully Homogeneous – Identical processors ($s_u = s$) and links ($b_{u,v} = b$): typical parallel machines

Communication Homogeneous – Different-speed processors ($s_u \neq s_v$), identical links ($b_{u,v} = b$): networks of workstations, clusters

Fully Heterogeneous – Fully heterogeneous architectures, $s_u \neq s_v$ and $b_{u,v} \neq b_{u',v'}$: hierarchical platforms, grids
Different platforms

Fully Homogeneous – Identical processors \((s_u = s)\) and links \((b_{u,v} = b)\): typical parallel machines

Failure Homogeneous– Identically reliable processors \((fp_u = fp_v)\)

Communication Homogeneous – Different-speed processors \((s_u \neq s_v)\), identical links \((b_{u,v} = b)\): networks of workstations, clusters

Fully Heterogeneous – Fully heterogeneous architectures, \(s_u \neq s_v\) and \(b_{u,v} \neq b_{u',v'}\): hierarchical platforms, grids

Failure Heterogeneous – Different failure probabilities \((fp_u \neq fp_v)\)
Platform model: communications

no overlap vs overlap

- **no overlap:** at each time step, either computation or communication
- **overlap:** a processor can simultaneously compute and communicate

![Diagram of no overlap vs overlap](image)
Platform model: communications

one-port vs multi-port

- **one-port**: each processor can either send or receive to/from a single other processor any time-step it is communicating
- **bounded multi-port**: simultaneous send and receive, but bound on the total outgoing/incoming communication (limitation of network card)
Mapping strategies: rule of the game

- Map each application stage onto one or more processors
- Goal: minimize period/latency and maximize reliability
- The pipeline case: several mapping strategies

![Diagram of a pipeline application](image)

- Other applications: one-to-one and general always defined
- Define connected-subgraph mapping (instead of interval)
- Replication: independent sets of processors, instead of a single processor as above
Mapping strategies: rule of the game

- Map each application stage onto one or more processors
- Goal: minimize period/latency and maximize reliability
- The pipeline case: several mapping strategies

One-to-one Mapping

- Other applications: one-to-one and general always defined
- Define connected-subgraph mapping (instead of interval)
- Replication: independent sets of processors, instead of a single processor as above
Mapping strategies: rule of the game

- Map each application stage onto one or more processors
- Goal: minimize period/latency and maximize reliability
- The pipeline case: several mapping strategies

Interval Mapping

- Other applications: one-to-one and general always defined
- Define connected-subgraph mapping (instead of interval)
- Replication: independent sets of processors, instead of a single processor as above
Mapping strategies: rule of the game

- Map each application stage onto one or more processors
- Goal: minimize period/latency and maximize reliability
- The pipeline case: several mapping strategies

General Mapping

- Other applications: one-to-one and general always defined
- Define connected-subgraph mapping (instead of interval)
- Replication: independent sets of processors, instead of a single processor as above
Mapping strategies: rule of the game

- Map each application stage onto one or more processors
- Goal: minimize period/latency and maximize reliability
- The pipeline case: several mapping strategies

\[S_1 \rightarrow S_2 \rightarrow \ldots \rightarrow S_k \rightarrow \ldots \rightarrow S_n \]

General Mapping

- Other applications: one-to-one and general always defined
- Define connected-subgraph mapping (instead of interval)
- Replication: independent sets of processors, instead of a single processor as above
Mapping strategies: rule of the game

- Map each application stage onto one or more processors
- Goal: minimize period/latency and maximize reliability
- The pipeline case: several mapping strategies

\[S_1 \rightarrow S_2 \rightarrow \ldots \rightarrow S_k \rightarrow \ldots \rightarrow S_n \]

General Mapping

- Other applications: *one-to-one* and *general* always defined
- Define *connected-subgraph* mapping (instead of *interval*)
- Replication: independent sets of processors, instead of a single processor as above
Mapping: replication and stage types

- **Monolithic stages**: must be mapped on one single processor since computation for a data set may depend on result of previous computation.

- **Replicable stages**: can be replicated on several processors, but not parallel, *i.e.* a data set must be entirely processed on a single processor.

- **Data-parallel stages**: inherently parallel stages, one data set can be computed in parallel by several processors.

- Replication for reliability (also called duplication): one data set is processed several times on different processors.
Mapping: replication and stage types

- **Monolithic stages**: must be mapped on one single processor since computation for a data set may depend on result of previous computation.

- **Replicable stages**: can be replicated on several processors, but not parallel, *i.e.* a data set must be entirely processed on a single processor.

- **Data-parallel stages**: inherently parallel stages, one data set can be computed in parallel by several processors.

- **Replication for reliability** (*also called duplication*): one data set is processed several times on different processors.
Mapping: objective function?

Mono-criterion

- Minimize period P (inverse of throughput)
- Minimize latency L (time to process a data set)
- Minimize application failure probability FP
Mapping: objective function?

Mono-criterion

- Minimize period \mathcal{P} (inverse of throughput)
- Minimize latency \mathcal{L} (time to process a data set)
- Minimize application failure probability \mathcal{FP}

Multi-criteria

- How to define it?
 Minimize $\alpha \cdot \mathcal{P} + \beta \cdot \mathcal{L} + \gamma \cdot \mathcal{FP}$?
- Values which are not comparable
Mapping: objective function?

Mono-criterion

- Minimize period \mathcal{P} (inverse of throughput)
- Minimize latency \mathcal{L} (time to process a data set)
- Minimize application failure probability \mathcal{FP}

Multi-criteria

- How to define it?
 Minimize $\alpha \cdot \mathcal{P} + \beta \cdot \mathcal{L} + \gamma \cdot\mathcal{FP}$?
- Values which are not comparable
- Minimize \mathcal{P} for a fixed latency and failure
- Minimize \mathcal{L} for a fixed period and failure
- Minimize \mathcal{FP} for a fixed period and latency
Mapping: objective function?

Mono-criterion

- Minimize period P (inverse of throughput)
- Minimize latency L (time to process a data set)
- Minimize application failure probability FP

Bi-criteria

-
 Period and Latency:
 - Minimize P for a fixed latency
 - Minimize L for a fixed period
 - And so on...
An example of formal definitions

- Pipeline application, **Interval Mapping**
- Period/Latency problem with no replication
- **Communication Homogeneous**: one-port with no overlap

\[P = \max_{1 \leq j \leq m} \left\{ \frac{\delta_{d_j-1}}{b} + \frac{\sum_{i=d_j}^{e_j} w_i}{s_{alloc}(j)} + \frac{\delta_{e_j}}{b} \right\} \]
An example of formal definitions

- Pipeline application, **Interval Mapping**
- Period/Latency problem with no replication
- **Communication Homogeneous**: one-port with no overlap

\[
\mathcal{P} = \max_{1 \leq j \leq m} \left\{ \frac{\delta d_j - 1}{b} + \frac{\sum_{i=d_j}^{e_j} w_i}{s_{\text{alloc}(j)}} + \frac{\delta e_j}{b} \right\}
\]

\[
\mathcal{L} = \sum_{1 \leq j \leq m} \left\{ \frac{\delta d_j - 1}{b} + \frac{\sum_{i=d_j}^{e_j} w_i}{s_{\text{alloc}(j)}} \right\} + \frac{\delta n}{b}
\]
An example of formal definitions

- Pipeline application, **Interval Mapping**
- Period/Latency problem with no replication
- *Communication Homogeneous*: multi-port with overlap

\[P = \max_{1 \leq j \leq m} \left\{ \max \left\{ \frac{\sum_{i=d_j}^{e_j} w_i}{s_{\text{alloc}(j)}}, \frac{\delta_{d_j-1}}{b}, \frac{\delta_{d_j-1}}{B^i}, \frac{\delta_{e_j}}{b}, \frac{\delta_{e_j}}{B^o} \right\} \right\} \]
An example of formal definitions

- Pipeline application, **Interval Mapping**
- Period/Latency problem with no replication
- *Communication Homogeneous*: multi-port with overlap

\[P = \max_{1 \leq j \leq m} \left\{ \max \left\{ \frac{\sum_{i=d_j}^{e_j} w_i}{s_{\text{alloc}(j)}}, \frac{\delta_{d_j-1}}{b}, \frac{\delta_{d_j-1}}{B^i}, \frac{\delta_{e_j}}{b}, \frac{\delta_{e_j}}{B^o} \right\} \right\} \]

\[L = \text{the longest path of the mapping as without overlap, but does not necessarily respect previous period} \]

\[L = (2K + 1).P, \text{ where } K \text{ is the number of processor changes} \]
Outline

1. Definitions: Application, Platform and Mappings
2. Working out examples
3. Summary of complexity results
4. Conclusion
Period - No communication, no replication

\[S_1 \rightarrow S_2 \rightarrow S_3 \rightarrow S_4 \]

2 processors \((P_1 \text{ and } P_2)\) of speed 1

Optimal period?
Period - No communication, no replication

\[S_1 \rightarrow S_2 \rightarrow S_3 \rightarrow S_4 \]
\[2 \quad 1 \quad 3 \quad 4 \]

2 processors (\(P_1 \) and \(P_2 \)) of speed 1

Optimal period?
\[P = 5, \quad S_1S_3 \rightarrow P_1, \quad S_2S_4 \rightarrow P_2 \]
Perfect load-balancing in this case, but NP-hard (2-PARTITION)

Interval mapping?
Period - No communication, no replication

\[S_1 \rightarrow S_2 \rightarrow S_3 \rightarrow S_4 \]
\[2 \rightarrow 1 \rightarrow 3 \rightarrow 4 \]

2 processors \((P_1 \text{ and } P_2)\) of speed 1

Optimal period?
\(P = 5, \quad S_1S_3 \rightarrow P_1, \quad S_2S_4 \rightarrow P_2 \)
Perfect load-balancing in this case, but NP-hard \((2\text{-PARTITION})\)

Interval mapping?
\(P = 6, \quad S_1S_2S_3 \rightarrow P_1, \quad S_4 \rightarrow P_2 \quad – \quad \text{Polynomial algorithm?} \)
Period - No communication, no replication

\[S_1 \rightarrow S_2 \rightarrow S_3 \rightarrow S_4 \]
\[2 \rightarrow 1 \rightarrow 3 \rightarrow 4 \]

2 processors \((P_1 \text{ and } P_2)\) of speed 1

Optimal period?
\[\mathcal{P} = 5, \quad S_1S_3 \rightarrow P_1, \ S_2S_4 \rightarrow P_2 \]
Perfect load-balancing in this case, but NP-hard (2-PARTITION)

Interval mapping?
\[\mathcal{P} = 6, \quad S_1S_2S_3 \rightarrow P_1, \ S_4 \rightarrow P_2 \]
Polynomial algorithm?
Classical chains-on-chains problem, dynamic programming works
Period - No communication, no replication

\[S_1 \rightarrow S_2 \rightarrow S_3 \rightarrow S_4 \]

2 \rightarrow 1 \rightarrow 3 \rightarrow 4

\(P_1 \) of speed 2, and \(P_2 \) of speed 3

Optimal period?
\(P = 5, \ S_1S_3 \rightarrow P_1, \ S_2S_4 \rightarrow P_2 \)
Perfect load-balancing in this case, but NP-hard (2-PARTITION)

Interval mapping?
\(P = 6, \ S_1S_2S_3 \rightarrow P_1, \ S_4 \rightarrow P_2 \) – Polynomial algorithm?
Classical chains-on-chains problem, dynamic programming works

Heterogeneous platform?
Period - No communication, no replication

\[
S_1 \rightarrow S_2 \rightarrow S_3 \rightarrow S_4 \\
2 \rightarrow 1 \rightarrow 3 \rightarrow 4
\]

\(P_1\) of speed 2, and \(P_2\) of speed 3

Optimal period?

\(P = 5, \ S_1 S_3 \rightarrow P_1, \ S_2 S_4 \rightarrow P_2\)

Perfect load-balancing in this case, but NP-hard (2-PARTITION)

Interval mapping?

\(P = 6, \ S_1 S_2 S_3 \rightarrow P_1, \ S_4 \rightarrow P_2\)
Polynomial algorithm?

Classical chains-on-chains problem, dynamic programming works

Heterogeneous platform?

\(P = 2, \ S_1 S_2 S_3 \rightarrow P_2, \ S_4 \rightarrow P_1\)

Heterogeneous chains-on-chains, NP-hard
Latency - No replication, different comm. models

\[\begin{align*}
1 & \rightarrow S_1 & 4 & \rightarrow S_2 & 4 & \rightarrow S_3 & 1 & \rightarrow S_4 & 1 \\
2 & \rightarrow 1 & 3 & \rightarrow 4
\end{align*} \]

2 processors of speed 1

With overlap: optimal period?
Latency - No replication, different comm. models

\[
\begin{align*}
1 & \rightarrow S_1 & 4 & \rightarrow S_2 & 4 & \rightarrow S_3 & 1 & \rightarrow S_4 & 1 & \rightarrow \\
2 & & 1 & & 3 & & 4 & & \\
\end{align*}
\]

2 processors of speed 1

With overlap: optimal period?

\[
\mathcal{P} = 5, \quad S_1S_3 \rightarrow P_1, \quad S_2S_4 \rightarrow P_2
\]

Perfect load-balancing both for computation and comm.

Optimal latency?
Latency - No replication, different comm. models

\[
\begin{align*}
1 \rightarrow S_1 & \quad 4 \rightarrow S_2 & \quad 4 \rightarrow S_3 & \quad 1 \rightarrow S_4 & \quad 1 \\
2 & \quad & 1 & \quad 3 & \quad 4
\end{align*}
\]

2 processors of speed 1

With overlap: optimal period?

\[P = 5, \quad S_1S_3 \rightarrow P_1, \quad S_2S_4 \rightarrow P_2 \]

Perfect load-balancing both for computation and comm.

Optimal latency?

With only one processor, \(L = 12 \)

No internal communication to pay
Latency - No replication, different comm. models

\[\begin{array}{cccc}
1 & S_1 & 4 & S_2 & 4 & S_3 & 1 & S_4 & 1 \\
2 & 1 & 1 & 3 & 4
\end{array} \]

2 processors of speed 1

With overlap: optimal period?

\[P = 5, \quad S_1S_3 \rightarrow P_1, \quad S_2S_4 \rightarrow P_2 \]

Perfect load-balancing both for computation and comm.

Optimal latency?

Same mapping as above: \(L = 21 \) with no period constraint

\[P = 21, \text{ no conflicts} \]

\[
\begin{array}{c|ccc}
P_{in} \rightarrow P_1 & 0 & 0 & 0 \\
P_1 & 1 & 2 & 12/12 & 13 & 14 \\
P_1 \rightarrow P_2 & 3 & 4 & 5 & 6 \\
P_2 \rightarrow P_1 & 8 & 9 & 10 & 11 \\
P_2 & 7 & 16 & 17 & 18 & 19 \\
P_2 \rightarrow P_{out} & 20
\end{array}
\]
Latency - No replication, different comm. models

\[
\begin{array}{cccc}
1 & S_1 & 4 & S_2 & 4 & S_3 & 1 & S_4 & 1 \\
2 & & 1 & & 3 & & 4 & & \\
\end{array}
\]

2 processors of speed 1

With overlap: optimal period?

\(P = 5, \ S_1 S_3 \rightarrow P_1, S_2 S_4 \rightarrow P_2 \)

Perfect load-balancing both for computation and comm.

Optimal latency? with \(P = 5 \)?

Progress step-by-step in the pipeline \(\rightarrow \) no conflicts

\(K = 4 \) processor changes, \(L = (2K + 1).P = 9P = 45 \)

| \(in \rightarrow P_1 \) | \(P_1 \rightarrow P_2 \) | \(P_2 \rightarrow P_1 \) | \(P_2 \rightarrow out \) | \(\cdots \) | \(period \ k \) | \(ds^{(k)} \) | \(ds^{(k-1)}, ds^{(k-5)} \) | \(ds^{(k-2)}, ds^{(k-6)} \) | \(ds^{(k-3)} \) | \(ds^{(k-2)}, ds^{(k-7)} \) | \(ds^{(k-1)}, ds^{(k-4)} \) | \(ds^{(k)}, ds^{(k-4)} \) | \(ds^{(k-1)}, ds^{(k-5)} \) | \(ds^{(k-2)} \) | \(ds^{(k-2)} \) | \(ds^{(k-3)} \) | \(ds^{(k-1)} \) | \(ds^{(k-5)} \) | \(ds^{(k-2)} \) | \(ds^{(k-6)} \) | \(ds^{(k-7)} \) | \(ds^{(k-8)} \) | \(\cdots \) |
Latency - No replication, different comm. models

\[S_1 \rightarrow S_2 \rightarrow S_3 \rightarrow S_4 \]

2 processors of speed 1

With no overlap: optimal period and latency?
Latency - No replication, different comm. models

\[\begin{align*}
&1 \rightarrow S_1 \quad 4 \rightarrow S_2 \quad 4 \rightarrow S_3 \quad 1 \rightarrow S_4 \quad 1 \\
&2 \quad 1 \quad 3 \quad 4
\end{align*} \]

2 processors of speed 1

With **no overlap**: optimal period and latency?

General mappings too difficult to handle: restrict to interval mappings
Latency - No replication, different comm. models

\[\begin{align*}
1 & \rightarrow S_1 & 4 & \rightarrow S_2 & 4 & \rightarrow S_3 & 1 & \rightarrow S_4 & \rightarrow 1 \\
2 & & 1 & & 3 & & 4 & &
\end{align*} \]

2 processors of speed 1

With no overlap: optimal period and latency?

General mappings too difficult to handle: restrict to interval mappings

\[P = 8: \ S_1 S_2 S_3 \rightarrow P_1, \ S_4 \rightarrow P_2 \]
Latency - No replication, different comm. models

\[
\begin{array}{c}
1 \\
2
\end{array} \rightarrow
\begin{array}{c}
4 \\
1
\end{array} S_1
\begin{array}{c}
4 \\
1
\end{array} \rightarrow
\begin{array}{c}
4 \\
3
\end{array} S_2
\begin{array}{c}
4 \\
3
\end{array} \rightarrow
\begin{array}{c}
1 \\
4
\end{array} S_3
\begin{array}{c}
1 \\
4
\end{array} \rightarrow
\begin{array}{c}
1 \\
4
\end{array} S_4

2 \text{ processors of speed 1}
\]

With no overlap: optimal period and latency?

General mappings too difficult to handle:
restrict to interval mappings

\[\mathcal{P} = 8: \quad S_1 S_2 S_3 \rightarrow P_1, \quad S_4 \rightarrow P_2\]

\[\mathcal{L} = 12: \quad S_1 S_2 S_3 S_4 \rightarrow P_1\]
Example with replication and data-parallelism

\[S_1 \rightarrow S_2 \rightarrow S_3 \rightarrow S_4 \]

14 4 2 4

Interval mapping, 4 processors, \(s_1 = 2 \) and \(s_2 = s_3 = s_4 = 1 \)

Replicate interval \([S_u..S_v]\) on \(P_1, \ldots, P_q \)

\[S_u \ldots S_v \text{ on } P_1: \text{ data sets } 1, 4, 7, \ldots \]
\[S_u \ldots S_v \text{ on } P_2: \text{ data sets } 2, 5, 8, \ldots \]
\[S_u \ldots S_v \text{ on } P_3: \text{ data sets } 3, 5, 9, \ldots \]

\[P = \frac{\sum_{k=u}^{v} w_k}{q \times \min_i (s_i)} \text{ and } L = q \times P \]

- 😊 Efficient with similar-speed processors
- 😊 Replicate intervals and save communications
- 😞 Bottleneck: slowest processor; no impact on latency
Example with replication and data-parallelism

\[S_1 \rightarrow S_2 \rightarrow S_3 \rightarrow S_4 \]

14 4 2 4

Interval mapping, 4 processors, \(s_1 = 2 \) and \(s_2 = s_3 = s_4 = 1 \)

Data Parallelize single stage \(S_k \) on \(P_1, \ldots, P_q \)

\[S \ (w = 16) \]

\[\bullet\bullet\bullet\bullet\bullet\bullet \Rightarrow \]

\[P_1 \ (s_1 = 2) : \bullet\bullet\bullet\bullet\bullet\bullet \]

\[P_2 \ (s_2 = 1) : \bullet\bullet\bullet \]

\[P_3 \ (s_3 = 1) : \bullet\bullet\bullet \]

\[P = \frac{w_k}{\sum_{i=1}^{q} s_i} \text{ and } L = P \]

- ☀ Perfect load-balance, no idle time of processors
- ☀ Decreases both period and latency
- ☹ Works only for a single stage: more communications to pay
Example with replication and data-parallelism

$S_1 \rightarrow S_2 \rightarrow S_3 \rightarrow S_4$

14 4 2 4

Interval mapping, 4 processors, $s_1 = 2$ and $s_2 = s_3 = s_4 = 1$

Optimal period?
Example with replication and data-parallelism

\[S_1 \rightarrow S_2 \rightarrow S_3 \rightarrow S_4 \]

14 4 2 4

Interval mapping, 4 processors, \(s_1 = 2 \) and \(s_2 = s_3 = s_4 = 1 \)

Optimal period?

\[S_1 \overset{\text{DP}}{\rightarrow} P_1P_2, \quad S_2S_3S_4 \overset{\text{REP}}{\rightarrow} P_3P_4 \]

\[\mathcal{P} = \max\left(\frac{14}{2+1}, \frac{4+2+4}{2 \times 1}\right) = 5, \quad \mathcal{L} = 14.67 \]

Optimal latency?
Example with replication and data-parallelism

\[S_1 \rightarrow S_2 \rightarrow S_3 \rightarrow S_4 \]
\[14 \quad 4 \quad 2 \quad 4 \]

Interval mapping, 4 processors, \(s_1 = 2 \) and \(s_2 = s_3 = s_4 = 1 \)

Optimal period?

\[S_1 \xrightarrow{DP} P_1 P_2, \quad S_2 S_3 S_4 \xrightarrow{REP} P_3 P_4 \]

\[\mathcal{P} = \max(\frac{14}{2+1}, \frac{4+2+4}{2\times1}) = 5, \quad \mathcal{L} = 14.67 \]

Optimal latency?

\[S_1 \xrightarrow{DP} P_2 P_3 P_4, \quad S_2 S_3 S_4 \rightarrow P_1 \]

\[\mathcal{P} = \max(\frac{14}{1+1+1}, \frac{4+2+4}{2}) = 5, \quad \mathcal{L} = 9.67 \text{ (optimal)} \]
Outline

1. Definitions: Application, Platform and Mappings
2. Working out examples
3. Summary of complexity results
4. Conclusion
Filters: stages with selectivity

- One-to-one mappings
 - No communication, homogeneous processors: period, latency and bi-criteria problems polynomial (with precedence constraints)
 - With heterogeneous processors: all problems NP-hard, even for independent tasks. Inapproximability results both for period and latency minimization problems
 - With homogeneous communication, overlap or no-overlap: all problems become NP-hard

- General mappings: NP-hard already on fully homogeneous platforms with no communications and for independent tasks (reduction from 2-partition)
Filters: stages with selectivity

- **One-to-one mappings**
 - No communication, homogeneous processors: period, latency and bi-criteria problems **polynomial** (with precedence constraints)
 - With heterogeneous processors: all problems **NP-hard**, even for independent tasks. **Inapproximability results** both for period and latency minimization problems
 - With homogeneous communication, overlap or no-overlap: all problems become **NP-hard**

- **General mappings**: **NP-hard** already on fully homogeneous platforms with no communications and for independent tasks (reduction from 2-partition)
Pipeline: minimizing period or latency

<table>
<thead>
<tr>
<th></th>
<th>Period</th>
<th>Latency</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>o2o</td>
<td>int</td>
</tr>
<tr>
<td>noc hom</td>
<td>P(t)</td>
<td>P(DP)</td>
</tr>
<tr>
<td>het</td>
<td>P(g)</td>
<td>NPC(*)</td>
</tr>
<tr>
<td>noo fhom</td>
<td>P(t)</td>
<td>P(DP)</td>
</tr>
<tr>
<td>chom</td>
<td>P(bs)</td>
<td>NPC(-)</td>
</tr>
<tr>
<td>fhet</td>
<td>NPC(CT)</td>
<td>NPC(-)</td>
</tr>
<tr>
<td>wov fhom</td>
<td>P(t)</td>
<td>P(DP)</td>
</tr>
<tr>
<td>chom</td>
<td>P(g)</td>
<td>NPC(-)</td>
</tr>
<tr>
<td>fhet</td>
<td>NPC(TC)</td>
<td>NPC(-)</td>
</tr>
</tbody>
</table>

noc: No comm – noo: Comm, no overlap – wov: Comm, with overlap

P: Polynomial (t) trivial – (g) greedy algorithm – (DP) dynamic programming algorithm – (bs) binary search algorithm

NPC: NP-complete (-) comes from simpler case – (2P) 2-Partition – (CT) Chinese traveller – (T) TSP – (*) involved reduction
Pipeline: minimizing period and latency

<table>
<thead>
<tr>
<th>noc hom</th>
<th>Bi-criteria o2o</th>
<th>noc hom</th>
<th>Bi-criteria int</th>
<th>noc hom</th>
<th>Bi-criteria gen</th>
</tr>
</thead>
<tbody>
<tr>
<td>het</td>
<td>P(t)</td>
<td>het</td>
<td>P(DP)</td>
<td>het</td>
<td>NPC(-)</td>
</tr>
<tr>
<td></td>
<td>P(g)</td>
<td></td>
<td>NPC(-)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>noo fhom</td>
<td>P(t)</td>
<td>noo fhom</td>
<td>P(DP)</td>
<td>noo fhom</td>
<td>NPC(-)</td>
</tr>
<tr>
<td>chom fhet</td>
<td>P(m)</td>
<td>chom fhet</td>
<td>P(DP)</td>
<td>chom fhet</td>
<td>NPC(-)</td>
</tr>
<tr>
<td></td>
<td>NPC(-)</td>
<td></td>
<td>NPC(-)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>wov fhom</td>
<td>P(t)</td>
<td>wov fhom</td>
<td>P(DP)</td>
<td>wov fhom</td>
<td>NPC(-)</td>
</tr>
<tr>
<td>chom fhet</td>
<td>P(g)</td>
<td>chom fhet</td>
<td>P(DP)</td>
<td>chom fhet</td>
<td>NPC(-)</td>
</tr>
<tr>
<td></td>
<td>NPC(-)</td>
<td></td>
<td>NPC(-)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- noc: No comm – noo: Comm, no overlap – wov: Comm, with overlap
- P: Polynomial (t) trivial – (g) greedy algorithm – (DP) dynamic programming algorithm – (m) matching + binary search algorithm
- NPC: NP-complete (-) comes from mono-criterion
Complexity results....

- ... more cases I did not talk about
- **period**: rapidly NP-hard
- **latency**: difficult to define
- **reliability**: non-linear formula
- replication for period or reliability, data-parallelism, ...
- **mix everything**: even more exciting problems 😊
- ... please ask me for details and references ...
... more cases I did not talk about

- **period**: rapidly NP-hard
- **latency**: difficult to define
- **reliability**: non-linear formula

- replication for period or reliability, data-parallelism, ...

- mix everything: even more exciting problems 😊

- ... please ask me for details and references ...
Complexity results....

- ... more cases I did not talk about
- **period**: rapidly NP-hard
- **latency**: difficult to define
- **reliability**: non-linear formula
- replication for period or reliability, data-parallelism, ...
- **mix everything**: even more exciting problems 😊

- ... please ask me for details and references ...
... more cases I did not talk about

- **period**: rapidly NP-hard
- **latency**: difficult to define
- **reliability**: non-linear formula

 replication for period or reliability, data-parallelism, ...

- **mix everything**: even more exciting problems 😊

... *please ask me for details and references* ...
Outline

1. Definitions: Application, Platform and Mappings
2. Working out examples
3. Summary of complexity results
4. Conclusion
Related work

Qishi Wu et al— Directed platform graphs (WAN); unbounded multi-port with overlap; mono-criterion problems

Subhlok and Vondran— Pipeline on hom platforms: extended Chains-to-chains— Heterogeneous, replicate/data-parallelize Mapping pipelined computations onto clusters and grids— DAG [Taura et al.], DataCutter [Saltz et al.]

Energy-aware mapping of pipelined computations— [Melhem et al.], three-criteria optimization

Scheduling task graphs on heterogeneous platforms— Acyclic task graphs scheduled on different speed processors [Topcuoglu et al.]. Communication contention: 1-port model [Beaumont et al.]

Mapping skeletons onto clusters and grids— Use of stochastic process algebra [Benoit et al.]
Definitions:

- Applications, platforms, and multi-criteria mappings

Theoretical side:

- Working out examples to show insight of problem complexity
- Full complexity study
- Linear program formulations for NP-hard instances

Practical side (not showed in this talk):

- Several polynomial heuristics and simulations
- JPEG application, good results of the heuristics (close to LP solution)
Future work

- Extend to other application graphs
- In particular, define latency for general DAGs (order communications)
- Multiple applications setting: even more criteria to optimize (fairness between applications)
- New heuristics for NP-hard cases, further experiments on practical applications.