
Introduction Greedy Slack-reclaiming Tri-criteria Checkpointing Conclusion

Energy-efficient scheduling

Guillaume Aupy1, Anne Benoit1,2,
Paul Renaud-Goud1 and Yves Robert1,2,3

1. Ecole Normale Supérieure de Lyon, France
2. Institut Universitaire de France

3. University of Tennessee Knoxville, USA

Anne.Benoit@ens-lyon.fr

http://graal.ens-lyon.fr/~abenoit/

Int. Workshop on Power-aware Algorithms, Systems, and Archi.
In conjunction with ICPP’3013, Lyon, France, October 2013

Anne.Benoit@ens-lyon.fr PASA 2013 Energy-efficient scheduling 1/ 62

Anne.Benoit@ens-lyon.fr
http://graal.ens-lyon.fr/~abenoit/

Introduction Greedy Slack-reclaiming Tri-criteria Checkpointing Conclusion

Energy: a crucial issue

Data centers

330, 000, 000, 000 Watts hour in 2007: more than France
533, 000, 000 tons of CO2: in the top ten countries

Exascale computers (1018 floating operations per second)

Need effort for feasibility
1% of power saved ; 1 million dollar per year

Lambda user

1 billion personal computers
500, 000, 000, 000, 000 Watts hour per year

; crucial for both environmental and economical reasons

Anne.Benoit@ens-lyon.fr PASA 2013 Energy-efficient scheduling 2/ 62

Introduction Greedy Slack-reclaiming Tri-criteria Checkpointing Conclusion

Energy: a crucial issue

Data centers

330, 000, 000, 000 Watts hour in 2007: more than France
533, 000, 000 tons of CO2: in the top ten countries

Exascale computers (1018 floating operations per second)

Need effort for feasibility
1% of power saved ; 1 million dollar per year

Lambda user

1 billion personal computers
500, 000, 000, 000, 000 Watts hour per year

; crucial for both environmental and economical reasons

Anne.Benoit@ens-lyon.fr PASA 2013 Energy-efficient scheduling 2/ 62

Introduction Greedy Slack-reclaiming Tri-criteria Checkpointing Conclusion

Power dissipation of a processor

P = Pleak + Pdyn

• Pleak: constant

• Pdyn = B × V 2 × f

constant
supply
voltage

frequency

Standard approximation: P = Pleak + f α (2 ≤ α ≤ 3)

Energy E = P × time

Dynamic Voltage and Frequency Scaling

Real life: discrete speeds
Continuous speeds can be emulated

Anne.Benoit@ens-lyon.fr PASA 2013 Energy-efficient scheduling 3/ 62

Introduction Greedy Slack-reclaiming Tri-criteria Checkpointing Conclusion

Outline

1 Revisiting the greedy algorithm for independent jobs

2 Reclaiming the slack of a schedule

3 Tri-criteria problem: execution time, reliability, energy

4 Checkpointing and energy consumption

5 Conclusion

Anne.Benoit@ens-lyon.fr PASA 2013 Energy-efficient scheduling 4/ 62

Introduction Greedy Slack-reclaiming Tri-criteria Checkpointing Conclusion

Framework

Scheduling independent jobs

Greedy algorithm: assign next job to least-loaded processor

Two variants:
OnLine-Greedy: assign jobs on the fly
OffLine-Greedy: sort jobs before execution

Anne.Benoit@ens-lyon.fr PASA 2013 Energy-efficient scheduling 5/ 62

Introduction Greedy Slack-reclaiming Tri-criteria Checkpointing Conclusion

Classical problem

n independent jobs {Ji}1≤i≤n, ai = size of Ji

p processors {Pq}1≤q≤p

allocation function alloc : {Ji} → {Pq}
load of Pq = load(q) =

∑
{i | alloc(Ji)=Pq} ai

P1

load(1)

a1 a10 a3 a13

P2 a7 a6

P3 a9 a12 a8

P4 a4

P5 a2 a11 a5

Execution time:

max1≤q≤p load(q)

a1

a2

a3

a4

a5

a6

a7

a8

a9

a10

a11

a12

a13

Anne.Benoit@ens-lyon.fr PASA 2013 Energy-efficient scheduling 6/ 62

Introduction Greedy Slack-reclaiming Tri-criteria Checkpointing Conclusion

OnLine-Greedy

Theorem

OnLine-Greedy is a 2− 1
p approximation (tight bound)

OnLine-Greedy Optimal solution

Anne.Benoit@ens-lyon.fr PASA 2013 Energy-efficient scheduling 7/ 62

Introduction Greedy Slack-reclaiming Tri-criteria Checkpointing Conclusion

OffLine-Greedy

Theorem

OffLine-Greedy is a 4
3 −

1
3p approximation (tight bound)

OffLine-Greedy Optimal solution

—

Anne.Benoit@ens-lyon.fr PASA 2013 Energy-efficient scheduling 8/ 62

Introduction Greedy Slack-reclaiming Tri-criteria Checkpointing Conclusion

Bi-criteria problem

Minimizing (dynamic) power consumption:
⇒ use slowest possible speed Pdyn = f α = f 3

Bi-criteria problem:
Given bound M = 1 on execution time,
minimize power consumption while meeting the bound

Anne.Benoit@ens-lyon.fr PASA 2013 Energy-efficient scheduling 9/ 62

Introduction Greedy Slack-reclaiming Tri-criteria Checkpointing Conclusion

Bi-criteria problem statement

n independent jobs {Ji}1≤i≤n, ai = size of Ji

p processors {Pq}1≤q≤p

allocation function alloc : {Ji} → {Pq}
load of Pq = load(q) =

∑
{i | alloc(Ji)=Pq} ai

(load(q))3 power dissipated by Pq

∑p
q=1 (load(q))3 max1≤q≤p load(q)

Power Execution time

Anne.Benoit@ens-lyon.fr PASA 2013 Energy-efficient scheduling 10/ 62

Introduction Greedy Slack-reclaiming Tri-criteria Checkpointing Conclusion

Same Greedy algorithm . . .

Strategy: assign next job to least-loaded processor

Natural for execution-time

smallest increment of maximum load
minimize objective value for currently processed jobs

Natural for power too

smallest increment of total power (convexity)
minimize objective value for currently processed jobs

Anne.Benoit@ens-lyon.fr PASA 2013 Energy-efficient scheduling 11/ 62

Introduction Greedy Slack-reclaiming Tri-criteria Checkpointing Conclusion

. . . but different optimal solution!

Makespan 10, power 2531.441

Makespan 10.1, power 2488.301

Anne.Benoit@ens-lyon.fr PASA 2013 Energy-efficient scheduling 12/ 62

Introduction Greedy Slack-reclaiming Tri-criteria Checkpointing Conclusion

Greedy and Lr norms

Nr =

 p∑
q=1

(load(q))r

 1
r

Execution time N∞ = limr→∞Nr = max1≤q≤p load(q)

Power (N3)3

Anne.Benoit@ens-lyon.fr PASA 2013 Energy-efficient scheduling 13/ 62

Introduction Greedy Slack-reclaiming Tri-criteria Checkpointing Conclusion

Known results

N2, OffLine-Greedy

Chandra and Wong 1975: upper and lower bounds

Leung and Wei 1995: tight approximation factor

N3, OffLine-Greedy

Chandra and Wong 1975: upper and lower bounds

Nr

Alon et al. 1997: PTAS for offline problem

Avidor et al. 1998: upper bound 2−Θ(ln r
r) for

OnLine-Greedy

Anne.Benoit@ens-lyon.fr PASA 2013 Energy-efficient scheduling 14/ 62

Introduction Greedy Slack-reclaiming Tri-criteria Checkpointing Conclusion

Contribution

N3

Tight approximation factor for OnLine-Greedy

Tight approximation factor for OffLine-Greedy

Greedy for power fully solved!

Anne.Benoit@ens-lyon.fr PASA 2013 Energy-efficient scheduling 15/ 62

Introduction Greedy Slack-reclaiming Tri-criteria Checkpointing Conclusion

Approximation for OnLine-Greedy

Ponline

Popt
≤

1
p3

(
(1 + (p − 1)β)3 + (p − 1) (1− β)3

)
β3 + (1−β)3

(p−1)2︸ ︷︷ ︸
f

(on)
p (β)

Theorem

f
(on)
p has a single maximum in β

(on)
p ∈ [1

p , 1]

OnLine-Greedy is a f
(on)
p (β

(on)
p) approximation

This approximation factor is tight

Anne.Benoit@ens-lyon.fr PASA 2013 Energy-efficient scheduling 16/ 62

Introduction Greedy Slack-reclaiming Tri-criteria Checkpointing Conclusion

Approximation for OffLine-Greedy

Poffline

Popt
≤

1
p3

((
1 + (p−1)β

3

)3
+ (p − 1)

(
1− β

3

)3
)

β3 + (1−β)3

(p−1)2︸ ︷︷ ︸
f

(off)
p (β)

Theorem

f
(off)
p has a single maximum in β

(off)
p ∈ [1

p , 1]

OffLine-Greedy is a f
(off)
p (β

(off)
p) approximation

This approximation factor is tight

Anne.Benoit@ens-lyon.fr PASA 2013 Energy-efficient scheduling 17/ 62

Introduction Greedy Slack-reclaiming Tri-criteria Checkpointing Conclusion

Numerical values of approximation ratios

p OnLine-Greedy OffLine-Greedy
2 1.866 1.086
3 2.008 1.081
4 2.021 1.070
5 2.001 1.061
6 1.973 1.054
7 1.943 1.048
8 1.915 1.043

64 1.461 1.006
512 1.217 1.00083

2048 1.104 1.00010
224 1.006 1.000000025

Anne.Benoit@ens-lyon.fr PASA 2013 Energy-efficient scheduling 18/ 62

Introduction Greedy Slack-reclaiming Tri-criteria Checkpointing Conclusion

Large values of p

Asymptotic approximation factors

OnLine-Greedy 4
3 1

OffLine-Greedy 2 1
↑

optimal

Anne.Benoit@ens-lyon.fr PASA 2013 Energy-efficient scheduling 19/ 62

Introduction Greedy Slack-reclaiming Tri-criteria Checkpointing Conclusion

Outline

1 Revisiting the greedy algorithm for independent jobs

2 Reclaiming the slack of a schedule

3 Tri-criteria problem: execution time, reliability, energy

4 Checkpointing and energy consumption

5 Conclusion

Anne.Benoit@ens-lyon.fr PASA 2013 Energy-efficient scheduling 20/ 62

Introduction Greedy Slack-reclaiming Tri-criteria Checkpointing Conclusion

Motivation

Mapping of tasks is given (ordered list for each processor and
dependencies between tasks)

If deadline not tight, why not take our time?

Slack: unused time slots

Goal: efficiently use speed scaling (DVFS)

D D

Anne.Benoit@ens-lyon.fr PASA 2013 Energy-efficient scheduling 21/ 62

Introduction Greedy Slack-reclaiming Tri-criteria Checkpointing Conclusion

Speed models

Change speed
Anytime Beginning of tasks

Type of speeds
[smin, smax] Continuous -
{s1, ..., sm} Vdd-Hopping Discrete, Incremental

Continuous: great for theory

Other ”discrete” models more realistic

Vdd-Hopping simulates Continuous

Incremental is a special case of Discrete with
equally-spaced speeds: for all 1 ≤ q < m, sq+1 − sq = δ

Anne.Benoit@ens-lyon.fr PASA 2013 Energy-efficient scheduling 22/ 62

Introduction Greedy Slack-reclaiming Tri-criteria Checkpointing Conclusion

Tasks

DAG: G = (V ,E)

n = |V | tasks Ti of weight wi =
∫ ti
ti−di si (t)dt

di : task duration; ti : time of end of execution of Ti

time

pj · · · · · ·

di

ti

si (t)

Parameters for Ti scheduled on processor pj

Anne.Benoit@ens-lyon.fr PASA 2013 Energy-efficient scheduling 23/ 62

Introduction Greedy Slack-reclaiming Tri-criteria Checkpointing Conclusion

Makespan

Assume Ti is executed at constant speed si

di = Exe(wi , si) =
wi

si

tj + di ≤ ti for each (Tj ,Ti) ∈ E

Constraint on makespan:
ti ≤ D for each Ti ∈ V

Anne.Benoit@ens-lyon.fr PASA 2013 Energy-efficient scheduling 24/ 62

Introduction Greedy Slack-reclaiming Tri-criteria Checkpointing Conclusion

Energy

Energy to execute task Ti once at speed si :

Ei (si) = di s
3
i = wi s

2
i

→ Dynamic part of classical energy models

Bi-criteria problem

Constraint on deadline: ti ≤ D for each Ti ∈ V

Minimize energy consumption:
∑n

i=1 wi × s2
i

Anne.Benoit@ens-lyon.fr PASA 2013 Energy-efficient scheduling 25/ 62

Introduction Greedy Slack-reclaiming Tri-criteria Checkpointing Conclusion

Complexity results

Minimizing energy with fixed mapping on p processors:

Continuous: Polynomial for some special graphs, geometric
optimization in the general case

Discrete: NP-complete (reduction from 2-partition);
approximation algorithm

Incremental: NP-complete (reduction from 2-partition);
approximation algorithm

Vdd-Hopping: Polynomial (linear programming)

Anne.Benoit@ens-lyon.fr PASA 2013 Energy-efficient scheduling 26/ 62

Introduction Greedy Slack-reclaiming Tri-criteria Checkpointing Conclusion

Summary

Results for Continuous, but not very practical

In real life, Discrete model (DVFS)

Vdd-Hopping: good alternative, mixing two consecutive
modes, smoothes out the discrete nature of modes

Incremental: alternate (and simpler in practice) solution,
with one unique speed during task execution; can be made
arbitrarily efficient

Anne.Benoit@ens-lyon.fr PASA 2013 Energy-efficient scheduling 27/ 62

Introduction Greedy Slack-reclaiming Tri-criteria Checkpointing Conclusion

Outline

1 Revisiting the greedy algorithm for independent jobs

2 Reclaiming the slack of a schedule

3 Tri-criteria problem: execution time, reliability, energy

4 Checkpointing and energy consumption

5 Conclusion

Anne.Benoit@ens-lyon.fr PASA 2013 Energy-efficient scheduling 28/ 62

Introduction Greedy Slack-reclaiming Tri-criteria Checkpointing Conclusion

Framework

DAG: G = (V ,E)

n = |V | tasks Ti of weight wi

p identical processors fully connected

DVFS: interval of available continuous speeds [smin, smax]

One speed per task

(I will not discuss results for the Vdd-Hopping model)

Anne.Benoit@ens-lyon.fr PASA 2013 Energy-efficient scheduling 29/ 62

Introduction Greedy Slack-reclaiming Tri-criteria Checkpointing Conclusion

Makespan

Execution time of Ti at speed si :

di =
wi

si

If Ti is executed twice on the same processor at speeds si and s ′i :

di =
wi

si
+

wi

s ′i

Constraint on makespan:
end of execution before deadline D

Anne.Benoit@ens-lyon.fr PASA 2013 Energy-efficient scheduling 30/ 62

Introduction Greedy Slack-reclaiming Tri-criteria Checkpointing Conclusion

Reliability

Transient fault: local, no impact on the rest of the system

Reliability Ri of task Ti as a function of speed s

Threshold reliability (and hence speed srel)

s

Ri (s)

1

smin smaxsrel

Ri (srel)

Anne.Benoit@ens-lyon.fr PASA 2013 Energy-efficient scheduling 31/ 62

Introduction Greedy Slack-reclaiming Tri-criteria Checkpointing Conclusion

Re-execution: a task is re-executed on the same processor, just
after its first execution

With two executions, reliability Ri of task Ti is:

Ri = 1− (1− Ri (si))(1− Ri (s ′i))

Constraint on reliability:
Reliability: Ri ≥ Ri (srel), and at most one re-execution

Anne.Benoit@ens-lyon.fr PASA 2013 Energy-efficient scheduling 32/ 62

Introduction Greedy Slack-reclaiming Tri-criteria Checkpointing Conclusion

Energy

Energy to execute task Ti once at speed si :

Ei (si) = wi s
2
i

→ Dynamic part of classical energy models

With re-executions, it is natural to take the worst-case
scenario:

Energy : Ei = wi

(
s2
i + s ′2i

)

Anne.Benoit@ens-lyon.fr PASA 2013 Energy-efficient scheduling 33/ 62

Introduction Greedy Slack-reclaiming Tri-criteria Checkpointing Conclusion

Energy and reliability: set of possible speeds

Speed

Energy

wi s
2
i = Ei (si)

wi s
2
i + wi s

2
i = 2Ei (si)

srel

Ei (srel)

srel√
2

Anne.Benoit@ens-lyon.fr PASA 2013 Energy-efficient scheduling 34/ 62

Introduction Greedy Slack-reclaiming Tri-criteria Checkpointing Conclusion

Tri-Crit-Cont

Given G = (V ,E)
Find

A schedule of the tasks

A set of tasks I = {i | Ti is executed twice}
Execution speed si for each task Ti

Re-execution speed s ′i for each task in I

such that ∑
i∈I

wi (s2
i + s ′2i) +

∑
i /∈I

wi s
2
i

is minimized, while meeting reliability and deadline constraints

Anne.Benoit@ens-lyon.fr PASA 2013 Energy-efficient scheduling 35/ 62

Introduction Greedy Slack-reclaiming Tri-criteria Checkpointing Conclusion

Complexity results

One speed per task

Re-execution at same speed as first execution, i.e., si = s ′i

Tri-Crit-Cont is NP-hard even for a linear chain, but not
known to be in NP (because of Continuous model)

Polynomial-time solution for a fork

Anne.Benoit@ens-lyon.fr PASA 2013 Energy-efficient scheduling 36/ 62

Introduction Greedy Slack-reclaiming Tri-criteria Checkpointing Conclusion

Energy-reducing heuristics

Two steps:

Mapping (NP-hard) → List scheduling

Speed scaling + re-execution (NP-hard) → Energy reducing

The list-scheduling heuristic maps tasks onto processors at
speed smax, and we keep this mapping in step two

Step two = slack reclamation! Use of deceleration and
re-execution

Anne.Benoit@ens-lyon.fr PASA 2013 Energy-efficient scheduling 37/ 62

Introduction Greedy Slack-reclaiming Tri-criteria Checkpointing Conclusion

Deceleration and re-execution

Deceleration: select a set of tasks that we execute at speed
max(srel, smax

maxi=1..n ti
D): slowest possible speed meeting both

reliability and deadline constraints

Re-execution: greedily select tasks for re-execution

Anne.Benoit@ens-lyon.fr PASA 2013 Energy-efficient scheduling 38/ 62

Introduction Greedy Slack-reclaiming Tri-criteria Checkpointing Conclusion

Super-weight (SW) of a task

SW: sum of the weights of the tasks (including Ti) whose
execution interval is included into Ti ’s execution interval

SW of task slowed down = estimation of the total amount of
work that can be slowed down together with that task

time

p1

p2

p3

p4 Ti

s e

Anne.Benoit@ens-lyon.fr PASA 2013 Energy-efficient scheduling 39/ 62

Introduction Greedy Slack-reclaiming Tri-criteria Checkpointing Conclusion

Selected heuristics

A.SUS-Crit: efficient on DAGs with low degree of parallelism

Set the speed of every task to max(srel, smax
maxi=1..n ti

D)
Sort the tasks of every critical path according to their SW and
try to re-execute them
Sort all the tasks according to their weight and try to
re-execute them

B.SUS-Crit-Slow: good for highly parallel tasks: re-execute,
then decelerate

Sort the tasks of every critical path according to their SW and
try to re-execute them. If not possible, then try to slow them
down
Sort all tasks according to their weight and try to re-execute
them. If not possible, then try to slow them down

Anne.Benoit@ens-lyon.fr PASA 2013 Energy-efficient scheduling 40/ 62

Introduction Greedy Slack-reclaiming Tri-criteria Checkpointing Conclusion

Results

We compare the impact of:

the number of processors p

the ratio D of the deadline over the minimum deadline Dmin

(given by the list-scheduling heuristic at speed smax)

on the output of each heuristic

Results normalized by heuristic running each task at speed smax;
the lower the better

Anne.Benoit@ens-lyon.fr PASA 2013 Energy-efficient scheduling 41/ 62

Introduction Greedy Slack-reclaiming Tri-criteria Checkpointing Conclusion

Results

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

10 20 30 40 50 60 70 80 90 100

E
g

/ E
g_

fm
ax

Number of processors

A.SUS-Crit
B.SUS-Crit-Slow

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

10 20 30 40 50 60 70 80 90 100

E
g

/ E
g_

fm
ax

Number of processors

A.SUS-Crit
B.SUS-Crit-Slow

With increasing p, D = 1.2 (left), D = 2.4 (right)

A better when number of processors is small

B better when number of processors is large

Superiority of B for tight deadlines: decelerates critical tasks
that cannot be re-executed

Anne.Benoit@ens-lyon.fr PASA 2013 Energy-efficient scheduling 41/ 62

Introduction Greedy Slack-reclaiming Tri-criteria Checkpointing Conclusion

Summary

Tri-criteria energy/makespan/reliability optimization problem

Various theoretical results

Two-step approach for polynomial-time heuristics:

List-scheduling heuristic
Energy-reducing heuristics

Two complementary energy-reducing heuristics for
Tri-Crit-Cont

Anne.Benoit@ens-lyon.fr PASA 2013 Energy-efficient scheduling 42/ 62

Introduction Greedy Slack-reclaiming Tri-criteria Checkpointing Conclusion

Outline

1 Revisiting the greedy algorithm for independent jobs

2 Reclaiming the slack of a schedule

3 Tri-criteria problem: execution time, reliability, energy

4 Checkpointing and energy consumption

5 Conclusion

Anne.Benoit@ens-lyon.fr PASA 2013 Energy-efficient scheduling 43/ 62

Introduction Greedy Slack-reclaiming Tri-criteria Checkpointing Conclusion

Framework

Execution of a divisible task (W operations)

Failures may occur

Transient faults
Resilience through checkpointing

Objective: minimize expected energy consumption E(E),
given a deadline bound D

Probabilistic nature of failure hits: expectation of energy
consumption is natural (average cost over many executions)

Deadline bound: two relevant scenarios (soft or hard deadline)

Anne.Benoit@ens-lyon.fr PASA 2013 Energy-efficient scheduling 44/ 62

Introduction Greedy Slack-reclaiming Tri-criteria Checkpointing Conclusion

Soft vs hard deadline

Soft deadline: met in expectation, i.e., E(T) ≤ D
(average response time)

Hard deadline: met in the worst case, i.e., Twc ≤ D

Hard (worst-case) Soft (expected)

VS

Anne.Benoit@ens-lyon.fr PASA 2013 Energy-efficient scheduling 45/ 62

Introduction Greedy Slack-reclaiming Tri-criteria Checkpointing Conclusion

Execution time, one single chunk

One single chunk of size W

Checkpoint overhead: execution time TC

Instantaneous failure rate: λ

First execution at speed s: Texec = W
s + TC

Failure probability: Pfail = λTexec = λ(Ws + TC)

In case of failure: re-execute at speed σ: Treexec = W
σ + TC

And we assume success after re-execution

E(T) = Texec + PfailTreexec = (W
s + TC) + λ(W

s + TC)(W
σ + TC)

Twc = Texec + Treexec = (W
s + TC) + (W

σ + TC)

Anne.Benoit@ens-lyon.fr PASA 2013 Energy-efficient scheduling 46/ 62

Introduction Greedy Slack-reclaiming Tri-criteria Checkpointing Conclusion

Energy consumption, one single chunk

One single chunk of size W

Checkpoint overhead: energy consumption EC

First execution at speed s: W
s × s3 + EC = Ws2 + EC

Re-execution at speed σ: Wσ2 + EC , with probability Pfail(
Pfail = λTexec = λ(Ws + TC)

)

E(E) = (Ws2 + EC) + λ
(
W
s + TC

) (
Wσ2 + EC

)

Anne.Benoit@ens-lyon.fr PASA 2013 Energy-efficient scheduling 47/ 62

Introduction Greedy Slack-reclaiming Tri-criteria Checkpointing Conclusion

Multiple chunks

Execution times: sum of execution times for each chunk
(worst-case or expected)

Expected energy consumption: sum of expected energy for
each chunk

Coherent failure model: consider two chunks W1 + W2 = W

Probability of failure for first chunk: P1
fail = λ(W1

s + TC)

For second chunk: P2
fail = λ(W2

s + TC)

With a single chunk of size W : Pfail = λ(Ws + TC), differs
from P1

fail + P2
fail only because of extra checkpoint

Trade-off: many small chunks (more TC to pay, but small
re-execution cost) vs few larger chunks (fewer TC , but
increased re-execution cost)

Anne.Benoit@ens-lyon.fr PASA 2013 Energy-efficient scheduling 48/ 62

Introduction Greedy Slack-reclaiming Tri-criteria Checkpointing Conclusion

Optimization problem

Decisions that should be taken before execution:

Chunks: how many (n)? which sizes (Wi for chunk i)?
Speeds of each chunk: first run (si)? re-execution (σi)?

Input: W , TC (checkpointing time), EC (energy spent for
checkpointing), λ (instantaneous failure rate), D (deadline)

Anne.Benoit@ens-lyon.fr PASA 2013 Energy-efficient scheduling 49/ 62

Introduction Greedy Slack-reclaiming Tri-criteria Checkpointing Conclusion

Optimization problem

Decisions that should be taken before execution:

Chunks: how many (n)? which sizes (Wi for chunk i)?
Speeds of each chunk: first run (si)? re-execution (σi)?

Input: W , TC (checkpointing time), EC (energy spent for
checkpointing), λ (instantaneous failure rate), D (deadline)

Anne.Benoit@ens-lyon.fr PASA 2013 Energy-efficient scheduling 49/ 62

Introduction Greedy Slack-reclaiming Tri-criteria Checkpointing Conclusion

Optimization problem

Decisions that should be taken before execution:

Chunks: how many (n)? which sizes (Wi for chunk i)?
Speeds of each chunk: first run (si)? re-execution (σi)?

Input: W , TC (checkpointing time), EC (energy spent for
checkpointing), λ (instantaneous failure rate), D (deadline)

Anne.Benoit@ens-lyon.fr PASA 2013 Energy-efficient scheduling 49/ 62

Introduction Greedy Slack-reclaiming Tri-criteria Checkpointing Conclusion

Models

Chunks

Single chunk of size W Multiple chunks (n and Wi ’s)
VS

Speed per chunk

Single speed (s) Multiple speeds (s and σ)

VS

Deadline bound

Hard (Twc ≤ D) Soft (E(T) ≤ D)

VS

Anne.Benoit@ens-lyon.fr PASA 2013 Energy-efficient scheduling 50/ 62

Introduction Greedy Slack-reclaiming Tri-criteria Checkpointing Conclusion

Single chunk and single speed

Consider first that s = σ (single speed): need to find optimal speed

E(E) is a function of s:
E(E)(s) = (Ws2 + EC)(1 + λ(Ws + TC))

Lemma: this function is convex and has a unique minimum s?

(function of λ,W ,Ec ,Tc)

s? = λW
6(1+λTC)

(
−(3
√

3
√

27a2−4a−27a+2)1/3

21/3 − 21/3

(3
√

3
√

27a2−4a−27a+2)1/3
− 1

)
,

where a = λEC

(
2(1+λTC)
λW

)2

E(T) and Twc : decreasing functions of s

Minimum speed sexp and swc required to match deadline D
(function of D,W ,Tc , and λ for sexp)

→ Optimal speed: maximum between s? and sexp or swc

Anne.Benoit@ens-lyon.fr PASA 2013 Energy-efficient scheduling 51/ 62

Introduction Greedy Slack-reclaiming Tri-criteria Checkpointing Conclusion

Single chunk and multiple speeds

Consider now that s 6= σ (multiple speeds): two unknowns

E(E) is a function of s and σ:
E(E)(s, σ) = (Ws2 + EC) + λ(Ws + TC)(Wσ2 + EC)

Lemma: energy minimized when deadline tight
(both for wc and exp)

; σ expressed as a function of s:
σexp = λW

D
W
s

+TC
−(1+λTC)

, σwc = W
(D−2TC)s−W

s

→ Minimization of single-variable function, can be solved
numerically (no expression of optimal s)

Anne.Benoit@ens-lyon.fr PASA 2013 Energy-efficient scheduling 52/ 62

Introduction Greedy Slack-reclaiming Tri-criteria Checkpointing Conclusion

General problem with multiple chunks

Divisible task of size W

Split into n chunks of size Wi :
∑n

i=1 Wi = W

Chunk i is executed once at speed si , and re-executed (if
necessary) at speed σi

Unknowns: n, Wi , si , σi

E(E) =
n∑

i=1

(
Wi s

2
i + EC

)
+ λ

n∑
i=1

(
Wi

si
+ TC

)(
Wiσ

2
i + EC

)

Anne.Benoit@ens-lyon.fr PASA 2013 Energy-efficient scheduling 53/ 62

Introduction Greedy Slack-reclaiming Tri-criteria Checkpointing Conclusion

Multiple chunks and single speed

With a single speed, σi = si for each chunk

Theorem: in optimal solution, n equal-sized chunks
(Wi = W

n), executed at same speed si = s

Proof by contradiction: consider two chunks W1 and W2

executed at speed s1 and s2, with either s1 6= s2,
or s1 = s2 and W1 6= W2

⇒ Strictly better solution with two chunks of size
w = (W1 + W2)/2 and same speed s

Only two unknowns, s and n

Minimum speed with n chunks: s?exp(n) = W
1 + 2λTC +

√
4λD

n
+ 1

2(D − nTC (1 + λTC))

→ Minimization of double-variable function, can be solved
numerically both for expected and hard deadline

Anne.Benoit@ens-lyon.fr PASA 2013 Energy-efficient scheduling 54/ 62

Introduction Greedy Slack-reclaiming Tri-criteria Checkpointing Conclusion

Multiple chunks and multiple speeds

Need to find n, Wi , si , σi

With expected deadline:

All re-execution speeds are equal (σi = σ) and tight deadline
All chunks have same size and are executed at same speed

WIth hard deadline:

If si = s and σi = σ, then all Wi ’s are equal
Conjecture: equal-sized chunks, same first-execution /
re-execution speeds

σ as a function of s, bound on s given n

→ Minimization of double-variable function, can be solved
numerically

Anne.Benoit@ens-lyon.fr PASA 2013 Energy-efficient scheduling 55/ 62

Introduction Greedy Slack-reclaiming Tri-criteria Checkpointing Conclusion

Simulation settings

Large set of simulations: illustrate differences between models

Maple software to solve problems

We plot relative energy consumption as a function of λ

The lower the better

Given a deadline constraint (hard or expected), normalize with
the result of single-chunk single-speed

Impact of the constraint: normalize expected deadline with
hard deadline

Parameters varying within large ranges

Anne.Benoit@ens-lyon.fr PASA 2013 Energy-efficient scheduling 56/ 62

Introduction Greedy Slack-reclaiming Tri-criteria Checkpointing Conclusion

Comparison with single-chunk single-speed

●

●

●●●

●

●

●

●●●

●

●

●

●●●

●

●

●

●●●

●

●

●

●●●

●

●

●

●●●

●

●

●

●●●

●

●

●

●

●

●

●

●
●

●

●

●

●

0.25

0.50

0.75

1.00

1e−06 1e−03 1e+00
lambda

E

Model (/SCSS)
●

●

●

●

●

●

SCMSed

SCMShd

MCSSed

MCSShd

MCMSed

MCMShd

Results identical for any value
of W /D

For expected deadline, with
small λ (< 10−2), using
multiple chunks or multiple
speeds do not improve energy
ratio: re-execution term
negligible;
increasing λ: improvement
with multiple chunks

For hard deadline, better to run
at high speed during second
execution: use multiple speeds;
use multiple chunks if frequent
failures

Anne.Benoit@ens-lyon.fr PASA 2013 Energy-efficient scheduling 57/ 62

Introduction Greedy Slack-reclaiming Tri-criteria Checkpointing Conclusion

Expected vs hard deadline constraint

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

0.25

0.50

0.75

1.00

1e−06 1e−03 1e+00
lambda

E

Model
●

●

●

●

SCSS

SCMS

MCSS

MCMS

Important differences for single
speed models, confirming
previous conclusions: with hard
deadline, use multiple speeds

Multiple speeds: no difference
for small λ: re-execution at
maximum speed has little
impact on expected energy
consumption;
increasing λ: more impact of
re-execution, and expected
deadline may use slower
re-execution speed, hence
reducing energy consumption

Anne.Benoit@ens-lyon.fr PASA 2013 Energy-efficient scheduling 58/ 62

Introduction Greedy Slack-reclaiming Tri-criteria Checkpointing Conclusion

Outline

1 Revisiting the greedy algorithm for independent jobs

2 Reclaiming the slack of a schedule

3 Tri-criteria problem: execution time, reliability, energy

4 Checkpointing and energy consumption

5 Conclusion

Anne.Benoit@ens-lyon.fr PASA 2013 Energy-efficient scheduling 59/ 62

Introduction Greedy Slack-reclaiming Tri-criteria Checkpointing Conclusion

Conclusion

OnLine-Greedy and OffLine-Greedy for power: tight
approximation factor for any p, extends long series of papers
and completely solves N3 minimization problem ,

Different energy models, from continuous to discrete (through
VDD-hopping and incremental)

Tri-criteria heuristics with re-execution to deal with reliability

Checkpointing techniques for reliability while minimizing
energy consumption

Anne.Benoit@ens-lyon.fr PASA 2013 Energy-efficient scheduling 60/ 62

Introduction Greedy Slack-reclaiming Tri-criteria Checkpointing Conclusion

On-going and future research directions

Investigate other reliability models (for instance, local
constraints on reliability of each task, or global reliability of
success of the execution of the DAG)

Consider both re-execution and replication (recent results for
linear chains and independent tasks: approximation
algorithms)

Checkpointing at the exascale: find the optimal checkpointing
period (with the goal of minimizing the energy consumption)

Anne.Benoit@ens-lyon.fr PASA 2013 Energy-efficient scheduling 61/ 62

Introduction Greedy Slack-reclaiming Tri-criteria Checkpointing Conclusion

What we had:

What we aim at:

Energy-efficient
scheduling

+
frequency

scaling

Anne.Benoit@ens-lyon.fr PASA 2013 Energy-efficient scheduling 62/ 62

	Revisiting the greedy algorithm for independent jobs
	Reclaiming the slack of a schedule
	Tri-criteria problem: execution time, reliability, energy
	Checkpointing and energy consumption
	Conclusion

