Energy-efficient scheduling

Guillaume Aupyl, Anne Benoit!?,

Paul Renaud-Goud! and Yves Robert!23

1. Ecole Normale Supérieure de Lyon, France
2. Institut Universitaire de France
3. University of Tennessee Knoxville, USA

Anne.Benoit@ens-1lyon.fr

http://graal.ens-lyon.fr/~abenoit/

Int. Workshop on Power-aware Algorithms, Systems, and Archi.
In conjunction with ICPP'3013, Lyon, France, October 2013

Anne.Benoit@ens-lyon.fr PASA 2013 Energy-efficient scheduling

Anne.Benoit@ens-lyon.fr
http://graal.ens-lyon.fr/~abenoit/

Introduction
Energy: a crucial issue

Data centers

e 330,000, 000,000 Watts hour in 2007: more than France
e 533,000,000 tons of CO: in the top ten countries

e Exascale computers (10! floating operations per second)

o Need effort for feasibility
o 1% of power saved ~» 1 million dollar per year

@ Lambda user

o 1 billion personal computers
e 500,000, 000,000,000 Watts hour per year

@ ~ crucial for both environmental and economical reasons

Anne.Benoit@ens-lyon.fr PASA 2013 Energy-efficient scheduling

Introduction
Energy: a crucial issue

o Data centers
e 330,000, 00 nore than France
e 533,000, 00 h countries

@ Exascale compy - bns per second)
o Need effort .\
o 1% of powe r year

@ Lambda user

e 1 billion per
e 500,000, 00 bar

@ ~ crucial for both environmental and economical reasons

Anne.Benoit@ens-lyon.fr PASA 2013 Energy-efficient scheduling

Introduction
Power dissipation of a processor

° P:Pleak+den

® Pj..i: constant

oden—vazxf\
|
constant Supply frequency

voltage
e Standard approximation: P = Pl + ¢ (2<a<3)
@ Energy E = P X time

@ Dynamic Voltage and Frequency Scaling

o Real life: discrete speeds
e Continuous speeds can be emulated

Anne.Benoit@ens-lyon.fr PASA 2013 Energy-efficient scheduling

Greedy

Outline

@ Revisiting the greedy algorithm for independent jobs

Anne.Benoit@ens-lyon.fr PASA 2013 Energy-efficient scheduling

Greedy

Framework

@ Scheduling independent jobs

@ GREEDY algorithm: assign next job to least-loaded processor

@ Two variants:
ONLINE-GREEDY: assign jobs on the fly
OFFLINE-GREEDY: sort jobs before execution

Anne.Benoit@ens-lyon.fr PASA 2013 Energy-efficient scheduling

Greedy

Classical problem

e n independent jobs {J;}1<i<p, ai = size of J;
@ p processors {Pqt1<q<p

@ allocation function alloc : {Ji} — {Pq}
o load of Pq = load(q) = > _(; | aioc(s)=P,} i

load(1)

P ar [awo] & [a3 | l =
T R —
 E——
7| B |
Psl az | arl | as]

‘

Execution time:

maxi<q<p load(q) |

Anne.Benoit@ens-lyon.fr PASA 2013 Energy-efficient scheduling

Greedy
ONLINE-GREEDY
ONLINE-GREEDY is a 2 — 5 approximation (tight bound)

po[1]1]1]1] 5 I 5 |
annnn » AL
” CREINEEIENEY
. AnBnnn
& GREIREERENES

ONLINE-GREEDY Optimal solution

PASA 2013 Energy-efficient scheduling

Greedy

OFFLINE-GREEDY

OFFLINE-GREEDY is a % — % approximation (tight bound) \

m | | | 5 | »nl 5 | 5 | 5 |
” | | | ” | | 6 |
» | | | ™ | | 6 |
m | | | ml 8 | 7]
G I G I

Anne.Benoit@ens-lyon.fr PASA 2013 Energy-efficient scheduling

Greedy

Bi-criteria problem

e Minimizing (dynamic) power consumption:
= use slowest possible speed Payn = £ = 3

@ Bi-criteria problem:
Given bound M = 1 on execution time,
minimize power consumption while meeting the bound

Anne.Benoit@ens-lyon.fr PASA 2013 Energy-efficient scheduling

Greedy
Bi-criteria problem statement

n independent jobs {J;}1<i<n, aj = size of J;
p processors {Pg}1<q<p
allocation function alloc : {Ji} — {Pq}

load of Py = load(q) = Z{: | alloc(J;)=Pq} 9

(load(q))* power dissipated by 7,

b_1 (load(q))’ max1<q<p load(q)

Power Execution time

Anne.Benoit@ens-lyon.fr PASA 2013 Energy-efficient scheduling

Greedy

Same GREEDY algorithm . ..

@ Strategy: assign next job to least-loaded processor

@ Natural for execution-time

e smallest increment of maximum load
e minimize objective value for currently processed jobs

@ Natural for power too

o smallest increment of total power (convexity)
e minimize objective value for currently processed jobs

Anne.Benoit@ens-lyon.fr PASA 2013 Energy-efficient scheduling

Greedy
... but different optimal solution!

= % Py 81
g 2
gg P 5 5
S'=
E P 4 4 2
— Py 2 8.1
'g q%) P2 5) 4
8 &,
Ps 5) 4

@ Makespan 10, power 2531.441
@ Makespan 10.1, power 2488.301

Anne.Benoit@ens-lyon.fr PASA 2013 Energy-efficient scheduling

Greedy
GREEDY and L, norms

p r
Ny = | > (load(q))"
qg=1
o Execution time N = lim,—o Ny = maxi<q<p load(q)

e Power (N3)3

Anne.Benoit@ens-lyon.fr PASA 2013 Energy-efficient scheduling

Greedy
Known results

N>, OFFLINE-GREEDY
@ Chandra and Wong 1975: upper and lower bounds
o Leung and Wei 1995: tight approximation factor

N3, OFFLINE-GREEDY
@ Chandra and Wong 1975: upper and lower bounds

N,
@ Alon et al. 1997: PTAS for offline problem

o Avidor et al. 1998: upper bound 2 — ©('2*) for
ONLINE-GREEDY

Anne.Benoit@ens-lyon.fr PASA 2013 Energy-efficient scheduling

Greedy
Contribution

N3
@ Tight approximation factor for ONLINE-GREEDY
@ Tight approximation factor for OFFLINE-GREEDY

@ Greedy for power fully solved!

Anne.Benoit@ens-lyon.fr PASA 2013 Energy-efficient scheduling

Greedy
Approximation for ONLINE-GREEDY

Pontine _ % <(1 +(P=1)B)1+(p—-1)(1— /3)3>

> 3
Popt 53 + E;_fgz

AR)

° f(o

") has a single maximum in B € SIE

o ONLINE-GREEDY is a fp(on)(,(,OH)) approximation

e This approximation factor is tight

Anne.Benoit@ens-lyon.fr PASA 2013 Energy-efficient scheduling

Greedy
Approximation for OFFLINE-GREEDY

— _A)3
Popt 53 + 8-)_[32

N~

£ (8)

(off)

° fp(Off) has a single maximum in 5y’ € [%, 1]

o OFFLINE-GREEDY Js a fp(OH)(E,Oﬁ)) approximation

@ This approximation factor is tight

Anne.Benoit@ens-lyon.fr PASA 2013 Energy-efficient scheduling

Greedy
Numerical values of approximation ratios

p | ONLINE-GREEDY | OFFLINE-GREEDY
2 | 1.866 1.086
3 |2.008 1.081
4 12021 1.070
5 12.001 1.061
6 |1.973 1.054
7 11.943 1.048
8 |1.915 1.043
64 |1.461 1.006
512 | 1.217 1.00083
2048 | 1.104 1.00010
22% 11.006 1.000000025

Anne.Benoit@ens-lyon.fr PASA 2013 Energy-efficient scheduling

Greedy
Large values of p

Asymptotic approximation factors

ONLINE-GREEDY % 1
OrFFLINE-GREEDY 2 1
T

optimal

Anne.Benoit@ens-lyon.fr PASA 2013 Energy-efficient scheduling

Slack-reclaiming

Outline

© Reclaiming the slack of a schedule

Anne.Benoit@ens-lyon.fr PASA 2013 Energy-efficient scheduling

Slack-reclaiming
Motivation

@ Mapping of tasks is given (ordered list for each processor and
dependencies between tasks)

o If deadline not tight, why not take our time?

@ Slack: unused time slots

Goal: efficiently use speed scaling (DVFS))
—/1 e
O C—/1 EE
—1n O —_— (55555554 ,
AN Y I
I'D D

Anne.Benoit@ens-lyon.fr PASA 2013 Energy-efficient scheduling

Slack-reclaiming

Speed models

Anytime

Change speed
Beginning of tasks

[smim smax]

CONTINUOUS

Type of speeds
ype orsp {51, sm}

VDD-HOPPING

DISCRETE, INCREMENTAL

e CONTINUOUS: great for theory

@ Other "discrete” models more realistic

@ VDD-HOPPING simulates CONTINUOUS

@ INCREMENTAL is a special case of DISCRETE with
equally-spaced speeds: forall 1 < qg<m, sg41 —5q=0

Anne.Benoit@ens-lyon.fr PASA 2013

Energy-efficient scheduling

Slack-reclaiming

e DAG: G =(V,E)
e n=|V]| tasks T; of weight w; = ftfi—d,- si(t)dt

@ d;: task duration; t;: time of end of execution of T;

d;
.

Isi(t)“.

W

|
|
|
ti time

Parameters for T; scheduled on processor p;

Anne.Benoit@ens-lyon.fr PASA 2013 Energy-efficient scheduling

Slack-reclaiming
Makespan

Assume T; is executed at constant speed s;

d,' = 5X€(W;,S;) = ﬁ

Si

t; + d; < t; for each (TJ, T.) e E

Constraint on makespan:
t; < D foreach T; € V J

Anne.Benoit@ens-lyon.fr PASA 2013 Energy-efficient scheduling

Slack-reclaiming

Energy to execute task T; once at speed s;:

E,'(S,') = d,-s,-3 = W,'S2

i

— Dynamic part of classical energy models

Bi-criteria problem

@ Constraint on deadline: t; < D for each T; € V

e Minimize energy consumption: Y7 w; x s?

Anne.Benoit@ens-lyon.fr PASA 2013 Energy-efficient scheduling

Slack-reclaiming
Complexity results

Minimizing energy with fixed mapping on p processors:
@ CoONTINUOUS: Polynomial for some special graphs, geometric
optimization in the general case

@ DISCRETE: NP-complete (reduction from 2-partition);
approximation algorithm

@ INCREMENTAL: NP-complete (reduction from 2-partition);
approximation algorithm

e VDD-HOPPING: Polynomial (linear programming)

Anne.Benoit@ens-lyon.fr PASA 2013 Energy-efficient scheduling

Slack-reclaiming

Summary

@ Results for CONTINUOUS, but not very practical

@ In real life, DISCRETE model (DVFS)

@ VDD-HOPPING: good alternative, mixing two consecutive
modes, smoothes out the discrete nature of modes

e INCREMENTAL: alternate (and simpler in practice) solution,
with one unique speed during task execution; can be made
arbitrarily efficient

Anne.Benoit@ens-lyon.fr PASA 2013 Energy-efficient scheduling

Tri-criteria

Outline

© Tri-criteria problem: execution time, reliability, energy

Anne.Benoit@ens-lyon.fr PASA 2013 Energy-efficient scheduling

Tri-criteria
Framework

DAG: G = (V,E)
n=|V| tasks T; of weight w;

p identical processors fully connected

DVFS: interval of available continuous speeds [Smin, Smax|

One speed per task

e (I will not discuss results for the VDD-HOPPING model)

Anne.Benoit@ens-lyon.fr PASA 2013 Energy-efficient scheduling

Tri-criteria

Makespan

Execution time of T; at speed s;:

If T; is executed twice on the same processor at speeds s; and s;:

4 Wi
di=—+—
S; S;

Constraint on makespan:
end of execution before deadline D

Anne.Benoit@ens-lyon.fr PASA 2013 Energy-efficient scheduling

Tri-criteria
Reliability

@ Transient fault. local, no impact on the rest of the system
@ Reliability R; of task T; as a function of speed s
@ Threshold reliability (and hence speed s;e1)

R,'(S)

Ri(srell)

/ s

Smin Srel Smax

Anne.Benoit@ens-lyon.fr PASA 2013 Energy-efficient scheduling

Tri-criteria

Re-execution: a task is re-executed on the same processor, just
after its first execution

With two executions, reliability R; of task T; is:

Ri=1-(1-Ri(s))(1 - Ri(s))

1

Constraint on reliability:
RELIABILITY: R; > Rj(sre1), and at most one re-execution

Anne.Benoit@ens-lyon.fr PASA 2013 Energy-efficient scheduling

Tri-criteria

@ Energy to execute task T; once at speed s;:
2
E,'(S;) = W;S§

i

— Dynamic part of classical energy models

@ With re-executions, it is natural to take the worst-case
scenario:

ENERGY : E; = w; (5,2 + sf2)

Anne.Benoit@ens-lyon.fr PASA 2013 Energy-efficient scheduling

Tri-criteria

Energy and reliability: set of possible speeds

Energy W,'Sl-2 + W,'SI-2 = 2E,'(S,')

W,'SI-2 = E,'(S,')

Ei(srel)

Frrrry Speed

Anne.Benoit@ens-lyon.fr PASA 2013 Energy-efficient scheduling

Tri-criteria
TRI-CRIT-CONT

Given G = (V,E)

Find
@ A schedule of the tasks
@ A set of tasks | = {i | T; is executed twice}
@ Execution speed s; for each task T;

@ Re-execution speed s/ for each task in /
such that
2 2 2
D wils? +57) + D wisi
icl il

is minimized, while meeting reliability and deadline constraints

Anne.Benoit@ens-lyon.fr PASA 2013 Energy-efficient scheduling

Tri-criteria

Complexity results

One speed per task

Re-execution at same speed as first execution, i.e., s; = s,f

TRI-CRIT-CONT is NP-hard even for a linear chain, but not
known to be in NP (because of CONTINUOUS model)

Polynomial-time solution for a fork

Anne.Benoit@ens-lyon.fr PASA 2013 Energy-efficient scheduling

Tri-criteria

Energy-reducing heuristics

Two steps:
e Mapping (NP-hard) — List scheduling
@ Speed scaling + re-execution (NP-hard) — Energy reducing

@ The list-scheduling heuristic maps tasks onto processors at
speed Snax, and we keep this mapping in step two

@ Step two = slack reclamation! Use of deceleration and
re-execution

Anne.Benoit@ens-lyon.fr PASA 2013 Energy-efficient scheduling

Tri-criteria

Deceleration and re-execution

@ Deceleration: select a set of tasks that we execute at speed
max(Sre1, smax%m): slowest possible speed meeting both
reliability and deadline constraints

@ Re-execution: greedily select tasks for re-execution

Anne.Benoit@ens-lyon.fr PASA 2013 Energy-efficient scheduling

Tri-criteria

Super-weight (SW) of a task

@ SW: sum of the weights of the tasks (including T;) whose
execution interval is included into T;'s execution interval

@ SW of task slowed down = estimation of the total amount of
work that can be slowed down together with that task

®

T

®

D

u

W

L
'S] time

Anne.Benoit@ens-lyon.fr PASA 2013 Energy-efficient scheduling

Tri-criteria
Selected heuristics

@ A.SUS-Crit: efficient on DAGs with low degree of parallelism
o Set the speed of every task to max(s;e1, smax%m)
e Sort the tasks of every critical path according to their SW and
try to re-execute them
e Sort all the tasks according to their weight and try to

re-execute them

@ B.SUS-Crit-Slow: good for highly parallel tasks: re-execute,
then decelerate

e Sort the tasks of every critical path according to their SW and
try to re-execute them. If not possible, then try to slow them
down

e Sort all tasks according to their weight and try to re-execute
them. If not possible, then try to slow them down

Anne.Benoit@ens-lyon.fr PASA 2013 Energy-efficient scheduling

Tri-criteria
Results

We compare the impact of:
@ the number of processors p

@ the ratio D of the deadline over the minimum deadline Dy,
(given by the list-scheduling heuristic at speed Smax)

on the output of each heuristic

Results normalized by heuristic running each task at speed spmax;
the lower the better

Anne.Benoit@ens-lyon.fr PASA 2013 Energy-efficient scheduling

Tri-criteria

A.SUS-Crit A.SUS-Crit
B.SUS-Crit-Slow e B.SUS-Crit-Slow e

Eg/Eg_fmax
Eg/Eg_fmax
°
>
T

Number of processors Number of processors

With increasing p, D = 1.2 (left), D = 2.4 (right)

@ A better when number of processors is small

@ B better when number of processors is large

@ Superiority of B for tight deadlines: decelerates critical tasks
that cannot be re-executed

Anne.Benoit@ens-lyon.fr PASA 2013 Energy-efficient scheduling

Tri-criteria

Summary

@ Tri-criteria energy/makespan/reliability optimization problem

@ Various theoretical results

@ Two-step approach for polynomial-time heuristics:

e List-scheduling heuristic
o Energy-reducing heuristics

@ Two complementary energy-reducing heuristics for
TRI-CRIT-CONT

Anne.Benoit@ens-lyon.fr PASA 2013 Energy-efficient scheduling

Checkpointing

Outline

@ Checkpointing and energy consumption

Anne.Benoit@ens-lyon.fr PASA 2013 Energy-efficient scheduling

Checkpointing

Framework

Execution of a divisible task (W operations)

Failures may occur

e Transient faults

o Resilience through checkpointing
@ Objective: minimize expected energy consumption E(E),
given a deadline bound D

@ Probabilistic nature of failure hits: expectation of energy
consumption is natural (average cost over many executions)

Deadline bound: two relevant scenarios (soft or hard deadline)

Anne.Benoit@ens-lyon.fr PASA 2013 Energy-efficient scheduling

Checkpointing
Soft vs hard deadline

@ Soft deadline: met in expectation, i.e., E(T) < D
(average response time)

@ Hard deadline: met in the worst case, i.e., Ty < D

VS

Hard (worst-case) | Soft (expected)

Anne.Benoit@ens-lyon.fr PASA 2013 Energy-efficient scheduling

Checkpointing
Execution time, one single chunk

One single chunk of size W

@ Checkpoint overhead: execution time T¢

@ Instantaneous failure rate: \

First execution at speed s: Texec = ﬂ + Tc

o

o Failure probability: Ppj = A Texec =)\(+ T¢)

@ In case of failure: re-execute at speed 0: Treexec = % + Tc
@ And we assume success after re-execution

° E(T) = Texec + PfailTreexec = (%)"’)\(+ TC)(% + TC)
o Twc = lexec + Treexec - (% + TC) + (7 + TC)

Anne.Benoit@ens-lyon.fr PASA 2013 Energy-efficient scheduling

Checkpointing
Energy consumption, one single chunk

One single chunk of size W

@ Checkpoint overhead: energy consumption E¢

@ First execution at speed s: % X s34+ Ec=Ws?+ E¢
@ Re-execution at speed o: Wao? + Ec, with probability Pk
(Prail = ATexee = M + T¢))

o E(E) = (Ws?+ Ec) + A (% + T¢) (Wo? + E¢)

Anne.Benoit@ens-lyon.fr PASA 2013 Energy-efficient scheduling

Checkpointing
Multiple chunks

@ Execution times: sum of execution times for each chunk
(worst-case or expected)

@ Expected energy consumption: sum of expected energy for
each chunk

@ Coherent failure model: consider two chunks Wy + Wo = W
o Probability of failure for first chunk: PL; =)\(+ T¢)

o For second chunk: P2, = \(*2 + T¢)

@ With a single chunk of size W: Ppy = A(% + T¢), differs

from Pflail + Péil only because of extra checkpoint

@ Trade-off: many small chunks (more T¢ to pay, but small
re-execution cost) vs few larger chunks (fewer T¢, but
increased re-execution cost)

Anne.Benoit@ens-lyon.fr PASA 2013 Energy-efficient scheduling

Checkpointing
Optimization problem

@ Decisions that should be taken before execution:

o Chunks: how many (n)? which sizes (W; for chunk 7)?
o Speeds of each chunk: first run (s;)? re-execution (o;)?

o Input: W, T¢ (checkpointing time), Ec (energy spent for
checkpointing), A (instantaneous failure rate), D (deadline)

{ n=4

LA AL

Anne.Benoit@ens-lyon.fr PASA 2013 Energy-efficient scheduling

Checkpointing
Optimization problem

@ Decisions that should be taken before execution:

o Chunks: how many (n)? which sizes (W; for chunk 7)?
o Speeds of each chunk: first run (s;)? re-execution (o;)?

o Input: W, T¢ (checkpointing time), Ec (energy spent for
checkpointing), A (instantaneous failure rate), D (deadline)

‘ speed

Anne.Benoit@ens-lyon.fr PASA 2013 Energy-efficient scheduling

Checkpointing
Optimization problem

@ Decisions that should be taken before execution:

o Chunks: how many (n)? which sizes (W; for chunk 7)?
o Speeds of each chunk: first run (s;)? re-execution (o;)?

o Input: W, T¢ (checkpointing time), Ec (energy spent for
checkpointing), A (instantaneous failure rate), D (deadline)

speed

Anne.Benoit@ens-lyon.fr PASA 2013 Energy-efficient scheduling

Checkpointing
Models

@ Chunks
IS VS e
Single chunk of size W Multiple chunks (n and W;'s)

@ Speed per chunk

_ﬂ_ﬂi

Single speed (s) Multiple speeds (s and o)

@ Deadline bound

_ﬂﬂi

Hard (Tye < D)

Soft (E(T i

Anne.Benoit@ens-lyon.fr PASA 2013 Energy-efficient scheduling

Checkpointing
Single chunk and single speed

Consider first that s = o (single speed): need to find optimal speed

e E(E) is a function of s:

E(E)(s) = (Ws? + Ec)(1 + A% + T¢))
@ Lemma: this function is convex and has a unique minimum s*
(function of A\, W, E¢, T¢)

sF = AW —(3v3V/2712 —4a—27a+2)'/3 21/3 _1
6(1+ATc) 21/3 (3v3v/2722—4a—272+2)1/3 '

2
where a = AE¢ (%)

e E(T) and T,.: decreasing functions of s

@ Minimum speed se., and s, required to match deadline D
(function of D, W, T, and X for se,p)

— Optimal speed: maximum between s* and Se,p, OF Sy

Anne.Benoit@ens-lyon.fr PASA 2013 Energy-efficient scheduling

Checkpointing
Single chunk and multiple speeds

Consider now that s # o (multiple speeds): two unknowns

e [E(E) is a function of s and o
E(E)(s,0) = (Ws? + Ec) + N(% + T¢)(Wo? + Ec)

@ Lemma: energy minimized when deadline tight
(both for wc and exp)

@ ~ o expressed as a function of s:

Gop= — N =W
w7 —(H+ATC) (D=2T¢)s—W

S

— Minimization of single-variable function, can be solved
numerically (no expression of optimal s)

Anne.Benoit@ens-lyon.fr PASA 2013 Energy-efficient scheduling

Checkpointing
General problem with multiple chunks

Divisible task of size W
Split into n chunks of size Wj: > ; W; = W

Chunk i is executed once at speed s;, and re-executed (if
necessary) at speed o;

@ Unknowns: n, W;, s;, o}

n

N
o E(E) = (Wit +Ec)+AY. <$ + Tc> (Wio? + Ec)
i=1 !

i=1

| speed

Anne.Benoit@ens-lyon.fr PASA 2013 Energy-efficient scheduling

Checkpointing
Multiple chunks and single speed

With a single speed, o; = s; for each chunk

@ Theorem: in optimal solution, n equal-sized chunks
(W; = W), executed at same speed s; = s
e Proof by contradiction: consider two chunks W and W,
executed at speed s; and s;, with either s; # s5,
or s1 = s, and Wy # W,
e = Strictly better solution with two chunks of size
w = (Wi + W>)/2 and same speed s

@ Only two unknowns, s and n

1+ 2XTc + /420 11

@ Minimum speed with n chunks: 53, = TG e
—nic c

— Minimization of double-variable function, can be solved
numerically both for expected and hard deadline

Anne.Benoit@ens-lyon.fr PASA 2013 Energy-efficient scheduling

Checkpointing
Multiple chunks and multiple speeds

Need to find n, W;, s;, o}

@ With expected deadline:

o All re-execution speeds are equal (0; = o) and tight deadline
o All chunks have same size and are executed at same speed

@ WIth hard deadline:

o If s; =s and o; = o, then all W;'s are equal
o Conjecture: equal-sized chunks, same first-execution /
re-execution speeds

@ o as a function of s, bound on s given n

— Minimization of double-variable function, can be solved
numerically

Anne.Benoit@ens-lyon.fr PASA 2013 Energy-efficient scheduling

Checkpointing

Simulation settings

@ Large set of simulations: illustrate differences between models

@ Maple software to solve problems

@ We plot relative energy consumption as a function of A
e The lower the better

o Given a deadline constraint (hard or expected), normalize with
the result of single-chunk single-speed

e Impact of the constraint: normalize expected deadline with
hard deadline

@ Parameters varying within large ranges

Anne.Benoit@ens-lyon.fr PASA 2013 Energy-efficient scheduling

Checkpointing

Comparison with single-chunk single-speed

@ Results identical for any value
of W/D

SCMSed -»~ MCSSed MCMSed

SCMShd o= MCSShd -+ MCMShd @ For expected deadline, with
small A (< 1072), using
multiple chunks or multiple
{ speeds do not improve energy

7] ratio: re-execution term
w negligible;
increasing A: improvement
with multiple chunks

Model (/SCSS)

100-¢% @@ 8o 46 eb 4@ LR

025+ @ For hard deadline, better to run

e+00 at high speed during second
execution: use multiple speeds;
use multiple chunks if frequent
failures

1e-03
lambda

Anne.Benoit@ens-lyon.fr PASA 2013 Energy-efficient scheduling

Checkpointing

Expected vs hard deadline constraint

@ Important differences for single
L scss wcss speed models, confirming
RS2 sows oS previous conclusions: with hard
Lo0Sg g deadline, use multiple speeds

@ Multiple speeds: no difference
: for small A: re-execution at
. maximum speed has little
impact on expected energy
consumption;
. increasing A: more impact of
1eic0 re-execution, and expected
deadline may use slower
re-execution speed, hence
reducing energy consumption

Anne.Benoit@ens-lyon.fr PASA 2013 Energy-efficient scheduling

Conclusion

Outline

© Conclusion

noit@ens-lyon.fr PASA 2013 Energy-efficient scheduling

Conclusion
Conclusion

@ ONLINE-GREEDY and OFFLINE-GREEDY for power: tight
approximation factor for any p, extends long series of papers
and completely solves N3 minimization problem ©

e Different energy models, from continuous to discrete (through
VDD-hopping and incremental)

o Tri-criteria heuristics with re-execution to deal with reliability

@ Checkpointing techniques for reliability while minimizing
energy consumption

Anne.Benoit@ens-lyon.fr PASA 2013 Energy-efficient scheduling

Conclusion
On-going and future research directions

@ Investigate other reliability models (for instance, local
constraints on reliability of each task, or global reliability of
success of the execution of the DAG)

e Consider both re-execution and replication (recent results for
linear chains and independent tasks: approximation
algorithms)

@ Checkpointing at the exascale: find the optimal checkpointing
period (with the goal of minimizing the energy consumption)

Anne.Benoit@ens-lyon.fr PASA 2013 Energy-efficient scheduling

Conclusion

What we had:

Energy-efficient
scheduling
+
frequency
scaling

What we aim at: E’ ~ 4

Anne.Benoit@ens-lyon.fr PASA 2013 Energy-efficient scheduling

	Revisiting the greedy algorithm for independent jobs
	Reclaiming the slack of a schedule
	Tri-criteria problem: execution time, reliability, energy
	Checkpointing and energy consumption
	Conclusion

