A different re-execution speed can help

Anne Benoit, Aurélien Cavelan, Valentin Le Fèvre, Yves Robert, Hongyang Sun

LIP, ENS de Lyon, France

PASA Workshop, in conjunction with ICPP’16
August 16, 2016
Motivation: Resilience

- Large-scale platforms: increasingly subject to errors
- Major challenge for Exascale: frequent striking of silent errors
- How to deal with these errors? **Verification + Checkpoint/Restart**
- Verification mechanism: general-purpose (replication, triplication) or application-specific
- **Verified checkpoints**: a verification is performed just before each checkpoint

![Diagram showing the verification and checkpoint process over time](image)
Silent vs Fail-stop errors

- C: time to checkpoint; λ: error rate (platform MTBF $\mu = 1/\lambda$);
 - V: time to verify; R: time to recover
- Optimal checkpointing period W for fail-stop errors (Young/Daly):
 \[W = \sqrt{2C/\lambda} \ (V = 0) \]

![Fail-stop error diagram]

- Silent errors: $W = \sqrt{(V + C)/\lambda}$ ($C \rightarrow V + C$; missing factor 2)

![Silent error diagram]
Motivation: Energy consumption

- Power requirement of current petascale platforms = small town
- Need to reduce energy consumption of future platforms
- Popular technique: dynamic voltage and frequency scaling (DVFS)
- Lower speed \rightarrow energy savings: when computing at speed σ, power proportional to σ^3 and execution time proportional to $1/\sigma$ \rightarrow (dynamic) energy proportional to σ^2
- Also account for static energy: trade-offs to be found
- Realistic approach: minimize energy while guaranteeing a performance bound
Motivation: Energy consumption

- Power requirement of current petascale platforms = small town
- Need to reduce energy consumption of future platforms
- Popular technique: dynamic voltage and frequency scaling (DVFS)
- Lower speed \rightarrow energy savings: when computing at speed σ, power proportional to σ^3 and execution time proportional to $1/\sigma$
 \rightarrow (dynamic) energy proportional to σ^2
- Also account for static energy: trade-offs to be found
- Realistic approach: minimize energy while guaranteeing a performance bound

\Rightarrow At which speed should we execute the workload?
Outline of the talk

- Model and optimization problem
- Optimal pattern size and speeds
- Simulations
- Extensions: both fail-stop and silent errors
- Conclusion
Framework

- Divisible-load applications
- Subject to silent data corruption
- Checkpoint/restart strategy: periodic patterns that repeat over time
- Verified checkpoints
- Is it better to use two different speeds rather than only one? What are the optimal checkpointing period and optimal execution speeds?
Set of speeds $S = \{s_1, \ldots, s_K\}$:

$\sigma_1 \in S$ speed for first execution, $\sigma_2 \in S$ speed for re-executions

With a silent error
Model

- Set of speeds $S = \{s_1, \ldots, s_K\}$:
 $\sigma_1 \in S$ speed for first execution, $\sigma_2 \in S$ speed for re-executions
- Silent errors: exponential distribution of rate λ

Silent error Detection

With a silent error
Set of speeds $S = \{s_1, \ldots, s_K\}$:
- $\sigma_1 \in S$ speed for first execution, $\sigma_2 \in S$ speed for re-executions
- Silent errors: exponential distribution of rate λ
- Verif.: V units of work; checkpointing: time C; recovery: time R

With a silent error
Model

- Set of speeds $S = \{s_1, \ldots, s_K\}$:
 - $\sigma_1 \in S$ speed for first execution, $\sigma_2 \in S$ speed for re-executions
- Silent errors: exponential distribution of rate λ
- Verif.: V units of work; checkpointing: time C; recovery: time R
- P_{idle} and P_{io} constant; and $P_{cpu}(\sigma) = \kappa \sigma^3$

With a silent error

\[
\frac{V}{\sigma_1} C \quad \frac{W}{\sigma_1} \quad \frac{V}{\sigma_1} R \quad \frac{W}{\sigma_2} \quad \frac{V}{\sigma_2} C \quad \frac{W}{\sigma_1} \quad \frac{V}{\sigma_1} C
\]
Set of speeds $S = \{s_1, \ldots, s_K\}$:
- $\sigma_1 \in S$ speed for first execution, $\sigma_2 \in S$ speed for re-executions
- Silent errors: exponential distribution of rate λ
- Verif.: V units of work; checkpointing: time C; recovery: time R
- P_{idle} and P_{io} constant; and $P_{cpu}(\sigma) = \kappa\sigma^3$
- Energy for W units of work at speed σ: $\frac{W}{\sigma}(P_{idle} + \kappa\sigma^3)$
- Energy of a verification at speed σ: $\frac{V}{\sigma}(P_{idle} + \kappa\sigma^3)$
- Energy of a checkpoint: $C(P_{idle} + P_{io})$
- Energy of a recovery: $R(P_{idle} + P_{io})$

Silent error Detection

With a silent error
Optimization problem BiCrIT:

\[
\text{Minimize } \frac{\mathcal{E}(W, \sigma_1, \sigma_2)}{W} \quad \text{s.t. } \frac{\mathcal{T}(W, \sigma_1, \sigma_2)}{W} \leq \rho,
\]

- \(\mathcal{E}(W, \sigma_1, \sigma_2)\) is the **expected energy consumed** to execute \(W\) units of work at speed \(\sigma_1\), with eventual re-executions at speed \(\sigma_2\).
- \(\mathcal{T}(W, \sigma_1, \sigma_2)\) is the **expected execution time** to execute \(W\) units of work at speed \(\sigma_1\), with eventual re-executions at speed \(\sigma_2\).
- \(\rho\) is a **performance bound**, or admissible degradation factor.
Computing expected execution time

Proposition 1

For the BiCrit problem with a single speed,

\[
\mathcal{T}(W, \sigma, \sigma) = C + e^{\frac{\lambda W}{\sigma}} \left(\frac{W + V}{\sigma} \right) + \left(e^{\frac{\lambda W}{\sigma}} - 1 \right) R
\]

Proposition 2

For the BiCrit problem,

\[
\mathcal{T}(W, \sigma_1, \sigma_2) = C + \frac{W + V}{\sigma_1} + \left(1 - e^{-\frac{\lambda W}{\sigma_1}} \right) e^{\frac{\lambda W}{\sigma_2}} \left(R + \frac{W + V}{\sigma_2} \right)
\]
Proof of Proposition 1

Proof.

The recursive equation to compute $T(W, \sigma, \sigma)$ writes:

$$T(W, \sigma, \sigma) = \frac{W + V}{\sigma} + p(W/\sigma)(R + T(W, \sigma, \sigma)) + (1 - p(W/\sigma))C,$$

where $p(W/\sigma) = 1 - e^{-\frac{\lambda W}{\sigma}}$. The reasoning is as follows:

- We always execute W units of work followed by the verification, in time $\frac{W + V}{\sigma}$;
- With probability $p(W/\sigma)$, a silent error occurred and is detected, in which case we recover and start anew;
- Otherwise, with probability $1 - p(W/\sigma)$, we simply checkpoint after a successful execution.

Solving this equation leads to the expected execution time.
Proof of Proposition 2

Proof.

The recursive equation to compute $\mathcal{T}(W, \sigma_1, \sigma_2)$ writes:

$$
\mathcal{T}(W, \sigma_1, \sigma_2) = \frac{W + V}{\sigma_1} + p(W/\sigma_1) \left(R + \mathcal{T}(W, \sigma_2, \sigma_2) \right) + (1 - p(W/\sigma_1))C,
$$

where $p(W/\sigma_1) = 1 - e^{-\frac{\lambda W}{\sigma_1}}$. The reasoning is as follows:

- We always execute W units of work followed by the verification, in time $\frac{W + V}{\sigma_1}$;
- With probability $p(W/\sigma_1)$, a silent error occurred and is detected, in which case we recover and start anew at speed σ_2;
- Otherwise, with probability $1 - p(W/\sigma_1)$, we simply checkpoint after a successful execution.

Solving this equation leads to the expected execution time. \qed
Computing expected energy consumption

Proposition 3

For the BiCrit problem,

\[E(W, \sigma_1, \sigma_2) = \left(C + \left(1 - e^{-\frac{\lambda W}{\sigma_1}} \right) e^{\frac{\lambda W}{\sigma_2}} R \right) (P_{io} + P_{idle}) \]
\[+ \frac{W + V}{\sigma_1} (\kappa \sigma_1^3 + P_{idle}) \]
\[+ \frac{W + V}{\sigma_2} (1 - e^{-\frac{\lambda W}{\sigma_1}}) e^{\frac{\lambda W}{\sigma_2}} (\kappa \sigma_2^3 + P_{idle}) \]

Power spent during checkpoint or recovery: \(P_{io} + P_{idle} \); power spent during computation and verification at speed \(\sigma \): \(P_{cpu}(\sigma) + P_{idle} = \kappa \sigma^3 + P_{idle} \).

From Proposition 2, we get the expression of \(E(W, \sigma_1, \sigma_2) \).
Finding optimal pattern length (1)

To get closed-form expression for optimal value of W, use of first-order approximations, using Taylor expansion $e^{\lambda W} = 1 + \lambda W + O(\lambda^2 W^2)$:

$$\begin{align*}
\mathcal{T}(W, \sigma_1, \sigma_2) &= \frac{1}{\sigma_1} + \frac{\lambda W}{\sigma_1 \sigma_2} + \frac{\lambda R}{\sigma_1} + \frac{\lambda V}{\sigma_1 \sigma_2} + \frac{C + V/\sigma_1}{W} + O(\lambda^2 W) \quad (1) \\
\mathcal{E}(W, \sigma_1, \sigma_2) &= \frac{\kappa \sigma_1^3 + P_{idle}}{\sigma_1} + \frac{\lambda W}{\sigma_1 \sigma_2} (\kappa \sigma_2^3 + P_{idle}) \\
&+ \frac{\lambda R}{\sigma_1} (P_{io} + P_{idle}) + \frac{\lambda V}{\sigma_1 \sigma_2} (\kappa \sigma_1^3 + P_{idle}) \\
&+ \frac{C (P_{io} + P_{idle}) + V (\kappa \sigma_1^3 + P_{idle})}{W} + O(\lambda^2 W) \quad (2)
\end{align*}$$
Theorem 1

Given σ_1, σ_2 and ρ, consider the equation $aW^2 + bW + c = 0$, where

$$a = \frac{\lambda}{\sigma_1 \sigma_2}, \quad b = \frac{1}{\sigma_1} + \lambda \left(\frac{R}{\sigma_1} + \frac{V}{\sigma_1 \sigma_2} \right) - \rho \quad \text{and} \quad c = C + \frac{V}{\sigma_1}.$$

- If there is no positive solution to the equation, i.e., $b > -2\sqrt{ac}$, then \textit{BiCrit} has no solution.
- Otherwise, let W_1 and W_2 be the two solutions of the equation with $W_1 \leq W_2$ (at least W_2 is positive and possibly $W_1 = W_2$). Then, the optimal pattern size is

$$W_{\text{opt}} = \min(\max(W_1, W_e), W_2),$$

where

$$W_e = \sqrt{\frac{C(P_{io} + P_{idle}) + \frac{V}{\sigma_1}(\kappa \sigma_1^3 + P_{idle})}{\frac{\lambda}{\sigma_1 \sigma_2}(\kappa \sigma_2^3 + P_{idle})}}.$$ (4)
Proof.

Neglecting lower-order terms, Equation (2) is minimized when $W = W_e$ given by Equation (4).

Two cases:

- ρ is too small \Rightarrow no solution
- $W_2 > 0$:
 - $W_e < W_1$
 - $W_1 \leq W_e \leq W_2$
 - $W_e > W_2$

Using that the energy overhead is a convex function, we get the result (W_{opt} is in the interval $[W_1, W_2]$)
Finding optimal speed pair

- Speed pair \((s_i, s_j)\), with \(1 \leq i, j \leq K\): \(\rho_{i,j}\) is the minimum performance bound for which the BiCRIT problem with \(\sigma_1 = s_i\) and \(\sigma_2 = s_j\) admits a solution.
- For each speed pair, compute \(W_1, W_2\) the roots of \(aW^2 + bW + c\); discard pairs with \(\rho < \rho_{i,j}\).
- For each remaining speed pair \((\sigma_1, \sigma_2)\), compute \(W_{opt}\) and associated energy overhead.
- Select speed pair \((\sigma_1^*, \sigma_2^*)\) that minimizes energy overhead.
- Time \(O(K^2)\), where \(K\) is the number of available speeds, usually a small constant.
Simulation setup

- **Platform parameters**, based on *real platforms*

<table>
<thead>
<tr>
<th>Platform</th>
<th>λ</th>
<th>$C = R$</th>
<th>V</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hera</td>
<td>3.38e-6</td>
<td>300s</td>
<td>15.4</td>
</tr>
<tr>
<td>Atlas</td>
<td>7.78e-6</td>
<td>439s</td>
<td>9.1</td>
</tr>
<tr>
<td>Coastal</td>
<td>2.01e-6</td>
<td>1051s</td>
<td>4.5</td>
</tr>
<tr>
<td>Coastal SSD</td>
<td>2.01e-6</td>
<td>2500s</td>
<td>180.0</td>
</tr>
</tbody>
</table>

- **Power parameters**, determined by the processor used

<table>
<thead>
<tr>
<th>Processor</th>
<th>Normalized speeds</th>
<th>$P(\sigma)$ (mW)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intel Xscale</td>
<td>0.15, 0.4, 0.6, 0.8, 1</td>
<td>$1550\sigma^3 + 60$</td>
</tr>
<tr>
<td>Transmeta Crusoe</td>
<td>0.45, 0.6, 0.8, 0.9, 1</td>
<td>$5756\sigma^3 + 4.4$</td>
</tr>
</tbody>
</table>

- **Default values**: P_{io} equivalent to power used when running at lowest speed; $\rho = 3$
Simulation results, using Hera/XScale configuration

A different re-execution speed **does help**!
And all speed pairs can be optimal solutions (depending on ρ)!

<table>
<thead>
<tr>
<th>σ_1</th>
<th>Best σ_2</th>
<th>W_{opt}</th>
<th>$\frac{\mathcal{E}(W_{opt},\sigma_1,\sigma_2)}{W_{opt}}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.15</td>
<td>0.4</td>
<td>1711</td>
<td>466</td>
</tr>
<tr>
<td>0.4</td>
<td>0.4</td>
<td>2764</td>
<td>416</td>
</tr>
<tr>
<td>0.6</td>
<td>0.4</td>
<td>3639</td>
<td>674</td>
</tr>
<tr>
<td>0.8</td>
<td>0.4</td>
<td>4627</td>
<td>1082</td>
</tr>
<tr>
<td>1</td>
<td>0.4</td>
<td>5742</td>
<td>1625</td>
</tr>
</tbody>
</table>

$p = 8$

<table>
<thead>
<tr>
<th>σ_1</th>
<th>Best σ_2</th>
<th>W_{opt}</th>
<th>$\frac{\mathcal{E}(W_{opt},\sigma_1,\sigma_2)}{W_{opt}}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.15</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>0.4</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>0.6</td>
<td>0.8</td>
<td>4251</td>
<td>690</td>
</tr>
<tr>
<td>0.8</td>
<td>0.4</td>
<td>4627</td>
<td>1082</td>
</tr>
<tr>
<td>1</td>
<td>0.4</td>
<td>5742</td>
<td>1625</td>
</tr>
</tbody>
</table>

$p = 3$

<table>
<thead>
<tr>
<th>σ_1</th>
<th>Best σ_2</th>
<th>W_{opt}</th>
<th>$\frac{\mathcal{E}(W_{opt},\sigma_1,\sigma_2)}{W_{opt}}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.15</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>0.4</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>0.6</td>
<td>0.8</td>
<td>4251</td>
<td>690</td>
</tr>
<tr>
<td>0.8</td>
<td>0.4</td>
<td>4627</td>
<td>1082</td>
</tr>
<tr>
<td>1</td>
<td>0.4</td>
<td>5742</td>
<td>1625</td>
</tr>
</tbody>
</table>

$p = 1.775$

<table>
<thead>
<tr>
<th>σ_1</th>
<th>Best σ_2</th>
<th>W_{opt}</th>
<th>$\frac{\mathcal{E}(W_{opt},\sigma_1,\sigma_2)}{W_{opt}}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.15</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>0.4</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>0.6</td>
<td>0.8</td>
<td>4251</td>
<td>690</td>
</tr>
<tr>
<td>0.8</td>
<td>0.4</td>
<td>4627</td>
<td>1082</td>
</tr>
<tr>
<td>1</td>
<td>0.4</td>
<td>5742</td>
<td>1625</td>
</tr>
</tbody>
</table>

$p = 1.4$
Simulations - Impact of the parameters (1)

Figure: The optimal solution (speed pair, pattern size, and energy overhead) as a function of the checkpointing time c in Atlas/Crusoe configuration.

Figure: The optimal solution (speed pair, pattern size, and energy overhead) as a function of the verification time v in Atlas/Crusoe configuration.

Dotted line: one single speed; up to 35% improvement with two speeds
Simulations - Impact of the parameters (2)

Figure: The optimal solution (speed pair, pattern size, and energy overhead) as a function of the error rate λ in Atlas/Crusoe configuration.

Figure: The optimal solution (speed pair, pattern size, and energy overhead) as a function of the performance bound ρ in Atlas/Crusoe configuration.

Two speeds: checkpoint less frequently and provide energy savings
Simulations - Impact of the parameters (3)

Figure: The optimal solution (speed pair, pattern size, and energy overhead) as a function of the idle power P_{idle} in Atlas/Crusoe configuration.

Figure: The optimal solution (speed pair, pattern size, and energy overhead) as a function of the I/O power P_{io} in Atlas/Crusoe configuration.

Increase of W and E with P_{idle} and P_{io}; P_{io} has no impact on speeds
Extensions: With fail-stop errors

- f: proportion of fail-stop errors
- s: proportion of silent errors

Proposition 4

With fail-stop and silent errors,

\[
\mathcal{T}(W, \sigma_1, \sigma_2) \cdot W = \cdots + \left(\frac{(f + s)}{\sigma_1 \sigma_2} - \frac{f}{2\sigma_1^2} \right) \lambda W + O(\lambda^2 W). \tag{5}
\]

\[
\mathcal{E}(W, \sigma_1, \sigma_2) \cdot W = \cdots + \left(\frac{(f + s)(\kappa \sigma_2^3 + P_{idle})}{\sigma_1 \sigma_2} - \frac{f(\kappa \sigma_1^3 + P_{idle})}{2\sigma_1^2} \right) \lambda W + O(\lambda^2 W) \tag{6}
\]
For BiCrit, the first-order approximation leads to a solution iff

\[
\left(2 \left(1 + \frac{s}{f}\right)\right)^{-1/2} < \frac{\sigma_2}{\sigma_1} < 2 \left(1 + \frac{s}{f}\right)
\]

Use second-order approximation? Open problem in the general case!
Interesting case

Theorem 2

When considering only fail-stop errors with rate λ, the optimal pattern size W to minimize the time overhead $\frac{T(W, \sigma, 2\sigma)}{W}$ is

$$W_{\text{opt}} = \sqrt[3]{\frac{12C}{\lambda^2 \sigma}}$$

- Young/Daly’s formula: $W_{\text{opt}} = \sqrt{\frac{2C}{\lambda \sigma}} = O(\lambda^{-1/2})$
- Here: $W_{\text{opt}} = O(\lambda^{-2/3})$
Conclusion

- A different re-execution speed indeed helps saving energy while satisfying a performance constraint.
- Silent errors: extension of Young/Daly formula → general closed-form solution to get optimal speed pair and optimal checkpointing period (first-order).
- Extensive simulations: up to 35% energy savings, any speed pair can be optimal.
- BiCrit still open for general case with both silent and fail-stop errors.
- Interesting case with fail-stop errors and double re-execution speed: $O(\lambda^{-2/3})$ vs $O(\lambda^{-1/2})$.
- New methods needed to capture the general case.