Scheduling pipeline workflows to optimize throughput, latency and reliability

Anne Benoit, Veronika Rehn-Sonigo, Yves Robert
GRAAL team, LIP, École Normale Supérieure de Lyon, France

Harald Kosch
University of Passau, Germany

University of Passau
June 26, 2008
Introduction and motivation

- Mapping applications onto parallel platforms

 Difficult challenge

- Heterogeneous clusters, fully heterogeneous platforms

 Even more difficult!

- Structured programming approach

 - Easier to program (deadlocks, process starvation)
 - Range of well-known paradigms (pipeline, farm)
 - Algorithmic skeleton: help for mapping

Mapping pipeline skeletons onto heterogeneous platforms
Introduction and motivation

- Mapping applications onto parallel platforms
 Difficult challenge

- Heterogeneous clusters, fully heterogeneous platforms
 Even more difficult!

- Structured programming approach
 - Easier to program (deadlocks, process starvation)
 - Range of well-known paradigms (pipeline, farm)
 - Algorithmic skeleton: help for mapping

Mapping pipeline skeletons onto heterogeneous platforms
Introduction and motivation

- Mapping applications onto parallel platforms
 Difficult challenge
- Heterogeneous clusters, fully heterogeneous platforms
 Even more difficult!
- Structured programming approach
 - Easier to program (deadlocks, process starvation)
 - Range of well-known paradigms (pipeline, farm)
 - Algorithmic skeleton: help for mapping

Mapping pipeline skeletons onto heterogeneous platforms
Multi-criteria scheduling of workflows

Workflow

Several consecutive data-sets enter the application graph.

Criteria to optimize?

Period \mathcal{P}: time interval between the beginning of execution of two consecutive data sets (inverse of throughput)

Latency \mathcal{L}: maximal time elapsed between beginning and end of execution of a data set

Reliability: inverse of \mathcal{FP}, probability of failure of the application (i.e. some data-sets will not be processed)

Multi-criteria!
Multi-criteria scheduling of workflows

Workflow

Several consecutive data-sets enter the application graph.

Criteria to optimize?

Period P: time interval between the beginning of execution of two consecutive data sets (inverse of throughput)

Latency L: maximal time elapsed between beginning and end of execution of a data set

Reliability: inverse of FP, probability of failure of the application (i.e. some data-sets will not be processed)
Multi-criteria scheduling of workflows

Workflow

Several consecutive data-sets enter the application graph.

Criteria to optimize?

Period \mathcal{P}: time interval between the beginning of execution of two consecutive data sets (inverse of throughput)

Latency \mathcal{L}: maximal time elapsed between beginning and end of execution of a data set

Reliability: inverse of \mathcal{FP}, probability of failure of the application (i.e. some data-sets will not be processed)
Multi-criteria scheduling of workflows

Workflow

Several consecutive data-sets enter the application graph.

Criteria to optimize?

Period \mathcal{P}: time interval between the beginning of execution of two consecutive data sets (inverse of throughput)

Latency \mathcal{L}: maximal time elapsed between beginning and end of execution of a data set

Reliability: inverse of \mathcal{FP}, probability of failure of the application (i.e. some data-sets will not be processed)
Multi-criteria scheduling of workflows

Workflow

Several consecutive data-sets enter the application graph.

Criteria to optimize?

Period \mathcal{P}: time interval between the beginning of execution of two consecutive data sets (inverse of throughput)

Latency \mathcal{L}: maximal time elapsed between beginning and end of execution of a data set

Reliability: inverse of \mathcal{FP}, probability of failure of the application (i.e. some data-sets will not be processed)

Multi-criteria!
Rule of the game

- Map each pipeline stage onto one or more processors
- Goal: minimize period/latency and maximize reliability
- Several mapping strategies

The pipeline application
Rule of the game

- Map each pipeline stage onto one or more processors
- Goal: minimize period/latency and maximize reliability
- Several mapping strategies

One-to-one Mapping
Rule of the game

- Map each pipeline stage onto one or more processors
- Goal: minimize period/latency and maximize reliability
- Several mapping strategies

Interval Mapping
Rule of the game

- Map each pipeline stage onto one or more processors
- Goal: minimize period/latency and maximize reliability
- Several mapping strategies

General Mapping
Rule of the game

- Map each pipeline stage onto one or more processors
- Goal: minimize period/latency and maximize reliability
- Several mapping strategies

![Diagram of interval mapping]

- Replication (one interval onto several processors) in order to increase reliability only: each data-set is processed by several processors
Major contributions

Theory

Definition of multi-criteria mappings
Problem complexity
Linear programming formulation

Practice

Heuristics for **INTERVAL MAPPING** on clusters
Experiments: compare heuristics, evaluate their performance
Simulation of a JPEG encoder application
Major contributions

Theory
Definition of multi-criteria mappings
Problem complexity
Linear programming formulation

Practice
Heuristics for **Interval Mapping** on clusters
Experiments: compare heuristics, evaluate their performance
Simulation of a JPEG encoder application
Outline

1 Framework
2 Mono-criterion complexity results
3 Bi-criteria complexity results
4 Linear programming formulation
5 Heuristics and Experiments, Period/Latency
6 Conclusion
The application

- n stages S_k, $1 \leq k \leq n$
- S_k:
 - receives input of size δ_{k-1} from S_{k-1}
 - performs w_k computations
 - outputs data of size δ_k to S_{k+1}
- S_0 and S_{n+1}: virtual stages representing the outside world
- Classical application schema, for instance in image processing
The application

- **n** stages S_k, $1 \leq k \leq n$
- S_k:
 - receives input of size δ_{k-1} from S_{k-1}
 - performs w_k computations
 - outputs data of size δ_k to S_{k+1}
- S_0 and S_{n+1}: virtual stages representing the outside world

- **Classical application schema**, for instance in image processing
The platform

- \(p \) processors \(P_u, 1 \leq u \leq p \), fully interconnected
- \(s_u \): speed of processor \(P_u \)
- Bidirectional link \(\text{link}_{u,v} : P_u \rightarrow P_v \), bandwidth \(b_{u,v} \)
- \(\text{fp}_u \): failure probability of processor \(P_u \) (independent of the duration of the application, meant to run for a long time)
- One-port model with no overlap: each processor can either send, receive or compute at any time-step
Different platforms

Fully Homogeneous – Identical processors \((s_u = s) \) and links \((b_{u,v} = b) \): typical parallel machines

Communication Homogeneous – Different-speed processors \((s_u \neq s_v) \), identical links \((b_{u,v} = b) \): networks of workstations, clusters

Fully Heterogeneous – Fully heterogeneous architectures, \(s_u \neq s_v \) and \(b_{u,v} \neq b_{u',v'} \): hierarchical platforms, grids
Different platforms

Fully Homogeneous – Identical processors ($s_u = s$) and links
($b_{u,v} = b$): typical parallel machines

Failure Homogeneous – Identically reliable processors ($fp_u = fp_v$)

Communication Homogeneous – Different-speed processors
($s_u \neq s_v$), identical links ($b_{u,v} = b$): networks of
workstations, clusters

Fully Heterogeneous – Fully heterogeneous architectures, $s_u \neq s_v$
and $b_{u,v} \neq b_{u',v'}$: hierarchical platforms, grids

Failure Heterogeneous – Different failure probabilities ($fp_u \neq fp_v$)
Mapping problem: **Interval Mapping**

- Several consecutive stages onto the same processor(s)
- Increase computational load, reduce communications

Partition of [1..n] into m intervals $l_j = [d_j, e_j]$
(with $d_j \leq e_j$ for $1 \leq j \leq m$, $d_1 = 1$, $d_{j+1} = e_j + 1$ for $1 \leq j \leq m - 1$ and $e_m = n$)

- Interval l_j mapped onto set of processors $\text{alloc}(j)$ (replication)
- $k_j = |\text{alloc}(j)|$ processors executing l_j, $k_j \geq 1$.
Objective function?

Mono-criterion

- Minimize period P
- Minimize latency L
- Minimize failure probability FP
Objective function?

Mono-criterion

- Minimize period \mathcal{P}
- Minimize latency \mathcal{L}
- Minimize failure probability \mathcal{FP}

Multi-criteria

- How to define it?
 - Minimize $\alpha \mathcal{P} + \beta \mathcal{L} + \gamma \mathcal{FP}$?
- Values which are not comparable
Objective function?

Mono-criterion
- Minimize period P
- Minimize latency L
- Minimize failure probability FP

Multi-criteria
- How to define it?
 - Minimize $\alpha P + \beta L + \gamma FP$?
- Values which are not comparable
- Minimize P for a fixed latency and failure
- Minimize L for a fixed period and failure
- Minimize FP for a fixed period and latency
Objective function?

Mono-criterion
- Minimize period P
- Minimize latency L
- Minimize failure probability FP

Bi-criteria
- Period and Latency:
 - Minimize P for a fixed latency
 - Minimize L for a fixed period
Objective function?

Mono-criterion

- Minimize period P
- Minimize latency L
- Minimize failure probability FP

Bi-criteria

- Failure and Latency:
 - Minimize FP for a fixed latency
 - Minimize L for a fixed failure

Anne.Benoit@ens-lyon.fr Passau, June 26, 2008
Interval Mapping problem - Period/Latency

- Period/Latency: no replication
- alloc(j) reduced to a single processor
- Communication Homogeneous platforms (easy to extend)

\[
\mathcal{P} = \max_{1 \leq j \leq m} \left\{ \frac{\delta_{d_j} - 1}{b} + \frac{\sum_{i=d_j}^{e_j} w_i}{s_{\text{alloc}(j)}} + \frac{\delta_{e_j}}{b} \right\}
\]

\[
\mathcal{L} = \sum_{1 \leq j \leq m} \left\{ \frac{\delta_{d_j} - 1}{b} + \frac{\sum_{i=d_j}^{e_j} w_i}{s_{\text{alloc}(j)}} \right\} + \frac{\delta_n}{b}
\]
Interval Mapping problem - Period/Latency

- Period/Latency: no replication
- alloc(j) reduced to a single processor
- *Communication Homogeneous* platforms (easy to extend)

\[P = \max_{1 \leq j \leq m} \left\{ \frac{\delta_{d_j-1}}{b} + \frac{\sum_{i=d_j}^{e_j} w_i}{s_{\text{alloc}(j)}} + \frac{\delta_{e_j}}{b} \right\} \]

\[L = \sum_{1 \leq j \leq m} \left\{ \frac{\delta_{d_j-1}}{b} + \frac{\sum_{i=d_j}^{e_j} w_i}{s_{\text{alloc}(j)}} \right\} + \frac{\delta_n}{b} \]
Interval Mapping problem - Period/Latency

- **Period/Latency**: no replication
- **alloc(j)** reduced to a single processor
- **Communication Homogeneous** platforms (easy to extend)

\[
P = \max_{1 \leq j \leq m} \left\{ \frac{\delta_{d_j} - 1}{b} + \frac{\sum_{i=d_j}^{e_j} w_i}{s_{\text{alloc}(j)}} + \frac{\delta_{e_j}}{b} \right\}
\]

\[
L = \sum_{1 \leq j \leq m} \left\{ \frac{\delta_{d_j} - 1}{b} + \frac{\sum_{i=d_j}^{e_j} w_i}{s_{\text{alloc}(j)}} \right\} + \frac{\delta_n}{b}
\]
Interval Mapping problem - Latency/Reliability

- Latency/Reliability
- \(\text{alloc}(j) \) is a set of \(k_j \) processors
- Communication Homogeneous platforms
- Output by only one processor (consensus between working processors)

\[
\mathcal{L} = \sum_{1 \leq j \leq m} \left\{ k_j \times \frac{\delta_{d_j-1}}{b} + \frac{\sum_{i=d_j}^{e_j} w_i}{\min_{u \in \text{alloc}(j)} (s_u)} \right\} + \frac{\delta_n}{b}
\]

\[
\mathcal{FP} = 1 - \prod_{1 \leq j \leq m} \left(1 - \prod_{u \in \text{alloc}(j)} \text{fp}_u \right)
\]
Interval Mapping problem - Latency/Reliability

- Latency/Reliability
- $\text{alloc}(j)$ is a set of k_j processors
- *Communication Homogeneous* platforms
- Output by only one processor (consensus between working processors)

\[
\mathcal{L} = \sum_{1 \leq j \leq m} \left\{ k_j \times \frac{\delta_{d_j-1}}{b} + \frac{\sum_{i=d_j}^{e_j} w_i}{\min_{u \in \text{alloc}(j)} (s_u)} \right\} + \frac{\delta_n}{b}
\]

\[
\mathcal{FP} = 1 - \prod_{1 \leq j \leq m} (1 - \prod_{u \in \text{alloc}(j)} \text{fp}_u)
\]
Interval Mapping problem - Latency/Reliability

- Latency/Reliability
- alloc(j) is a set of k_j processors
- *Communication Homogeneous* platforms
- Output by only one processor (consensus between working processors)

\[
\mathcal{L} = \sum_{1 \leq j \leq m} \left\{ k_j \times \frac{\delta_{d_j} - 1}{b} + \frac{\sum_{i=d_j}^{e_j} w_i}{\min_{u \in \text{alloc}(j)} (s_u)} \right\} + \frac{\delta_n}{b}
\]

\[
\mathcal{FP} = 1 - \prod_{1 \leq j \leq m} \left(1 - \prod_{u \in \text{alloc}(j)} \text{fp}_u \right)
\]
Working out an example: Period/Latency

\[S_1 \rightarrow S_2 \rightarrow S_3 \rightarrow S_4 \]

14 \hspace{1cm} 4 \hspace{1cm} 2 \hspace{1cm} 4

Interval mapping, 4 processors, \(s_1 = 2 \) and \(s_2 = s_3 = s_4 = 1 \)
No communications, no reliability issues

Optimal period?
Working out an example: Period/Latency

\[S_1 \rightarrow S_2 \rightarrow S_3 \rightarrow S_4 \]
\[14 \rightarrow 4 \rightarrow 2 \rightarrow 4 \]

Interval mapping, 4 processors, \(s_1 = 2 \) and \(s_2 = s_3 = s_4 = 1 \)
No communications, no reliability issues

Optimal period?
\[\mathcal{P} = 7, S_1 \rightarrow P_1, S_2S_3 \rightarrow P_2, S_4 \rightarrow P_3 (L = 17) \]

Optimal latency?
Working out an example: Period/Latency

\[S_1 \rightarrow S_2 \rightarrow S_3 \rightarrow S_4 \]
\[14 \rightarrow 4 \rightarrow 2 \rightarrow 4 \]

Interval mapping, 4 processors, \(s_1 = 2 \) and \(s_2 = s_3 = s_4 = 1 \)
No communications, no reliability issues

Optimal period?
\[\mathcal{P} = 7, S_1 \rightarrow P_1, S_2S_3 \rightarrow P_2, S_4 \rightarrow P_3 (\mathcal{L} = 17) \]

Optimal latency?
\[\mathcal{L} = 12, S_1S_2S_3S_4 \rightarrow P_1 (\mathcal{P} = 12) \]

Min. latency if \(\mathcal{P} \leq 10 \)?
Working out an example: Period/Latency

\[S_1 \rightarrow S_2 \rightarrow S_3 \rightarrow S_4 \]
14 4 2 4

Interval mapping, 4 processors, \(s_1 = 2 \) and \(s_2 = s_3 = s_4 = 1 \)
No communications, no reliability issues

Optimal period?
\[\mathcal{P} = 7, \ S_1 \rightarrow P_1, \ S_2S_3 \rightarrow P_2, \ S_4 \rightarrow P_3 \ (\mathcal{L} = 17) \]

Optimal latency?
\[\mathcal{L} = 12, \ S_1S_2S_3S_4 \rightarrow P_1 \ (\mathcal{P} = 12) \]

Min. latency if \(\mathcal{P} \leq 10 \)?
\[\mathcal{L} = 14, \ S_1S_2S_3 \rightarrow P_1, \ S_4 \rightarrow P_2 \]
Outline

1. Framework
2. Mono-criterion complexity results
3. Bi-criteria complexity results
4. Linear programming formulation
5. Heuristics and Experiments, Period/Latency
6. Conclusion
Lemma

On *Fully Homogeneous* and *Communication Homogeneous* platforms, the optimal interval mapping which minimizes latency can be determined in polynomial time.

- Assign whole pipeline to fastest processor!
- No intra communications to pay in this case.
- Only input and output com, identical for each mapping.

![Diagram](image-url)
On **Fully Homogeneous** and **Communication Homogeneous** platforms, the optimal interval mapping which minimizes latency can be determined in polynomial time.

- Assign whole pipeline to fastest processor!
- No intra communications to pay in this case.
- Only input and output com, identical for each mapping.
Complexity results: Latency - Het

- *Fully Heterogeneous* platforms
- The interval of stages may need to be split

![Diagram of pipeline workflows](image)
Complexity results: Latency - Het

- **Fully Heterogeneous** platforms
- The interval of stages may need to be split

\[w_1 = 2 \quad w_2 = 2 \]

\[s_1 = 1 \quad s_2 = 1 \]
Lemma

On *Fully Heterogeneous* platforms, the optimal general mapping which minimizes latency can be determined in polynomial time.

Dynamic programming algorithm

Theorem

On *Fully Heterogeneous* platforms, finding an optimal one-to-one or interval mapping which minimizes latency is NP-hard.

One-to-one mapping: reduction from the Traveling Salesman Problem

Interval mapping: involved reduction from another graph problem
Complexity results: Latency - Het

Lemma

On *Fully Heterogeneous* platforms, the optimal general mapping which minimizes latency can be determined in polynomial time.

Dynamic programming algorithm

Theorem

On *Fully Heterogeneous* platforms, finding an optimal one-to-one or interval mapping which minimizes latency is NP-hard.

One-to-one mapping: reduction from the Traveling Salesman Problem
Interval mapping: involved reduction from another graph problem
Complexity results: Period

- Minimize the period on *Fully Homogeneous* platforms:
 - classical *chains-on-chains* problem
 - polynomial complexity

- *Communication Homogeneous* platforms: *chains-on-chains*, but with different speed processors!
 - the problem becomes *NP-hard*
 - involved reduction

Definition (HETERO-1D-PARTITION-DEC)

Given n elements a_1, a_2, \ldots, a_n, p values s_1, s_2, \ldots, s_p and a bound K, can we find a partition of $[1..n]$ into p intervals I_1, I_2, \ldots, I_p, and a permutation σ of $\{1, 2, \ldots, p\}$, such that $\max_{1 \leq k \leq p} \frac{\sum_{i \in I_k} a_i}{s_{\sigma(k)}} \leq K$?
Complexity results: Reliability

Lemma

Minimizing the failure probability can be done in polynomial time.

- Formula computing global failure probability

\[\mathcal{FP} = 1 - \prod_{1 \leq j \leq m} \left(1 - \prod_{u \in \text{alloc}(j)} \text{fp}_u \right) \]

- Minimum reached by replicating whole pipeline as a single interval on all processors

- True for all platform types
Lemma

Minimizing the **failure probability** can be done in polynomial time.

- Formula computing global failure probability
 \[FP = 1 - \prod_{1 \leq j \leq m} (1 - \prod_{u \in \text{alloc}(j)} fp_u) \]

- Minimum reached by replicating whole pipeline as a single interval on all processors

- True for **all platform types**
Outline

1. Framework
2. Mono-criterion complexity results
3. Bi-criteria complexity results
4. Linear programming formulation
5. Heuristics and Experiments, Period/Latency
6. Conclusion
Complexity results - Latency/Period

- Interval mapping, *Fully Homogeneous* platforms
- **Polynomial**: dynamic programming algorithm

- Interval mapping, *Communication Homogeneous* platforms
- Period minimization: NP-hard
- Bi-criteria problems: NP-hard
Complexity results - Latency/Period

- Interval mapping, *Fully Homogeneous* platforms
 - Polynomial: dynamic programming algorithm

- Interval mapping, *Communication Homogeneous* platforms
 - Period minimization: NP-hard
 - Bi-criteria problems: NP-hard
Summary of Latency/Failure complexity results

- **Lemma-NoSplit**: On *Fully Homogeneous* and *Communication Homogeneous-Failure Homogeneous* platforms, there is a mapping of the pipeline as a single interval which minimizes the failure probability (resp. latency) under a fixed latency (resp. failure probability) threshold.

- **Communication Homogeneous-Failure Homogeneous**: polynomial algorithms based on Lemma-NoSplit.

- **Communication Homogeneous-Failure Heterogeneous**: lemma not true, open complexity (probably NP-hard)

- **Fully Heterogeneous**: bi-criteria (decision problems associated to the) optimization problems are NP-hard.
Outline

1. Framework
2. Mono-criterion complexity results
3. Bi-criteria complexity results
4. Linear programming formulation
5. Heuristics and Experiments, Period/Latency
6. Conclusion
Integer linear program

- Integer variables a, b
- Constraints $a \geq 0$, $b \geq 0$, $a + b \leq 10$, $2a \geq 3$
- Objective function: Maximize $(b - a)$

Optimal solution
$a = 2$, $b = 8$
Objective $\text{Obj} = 6$
Integer linear program for our problems

- Latency/Period problem
- **Integer LP** to solve **Interval Mapping** on *Communication Homogeneous* platforms
- Many integer variables: no efficient algorithm to solve
- Approach limited to small problem instances
- **Absolute performance of the heuristics for such instances**

- Latency/Failure problem: no linear formulation because of strong non-linearity of failure probability formula
Integer linear program for our problems

- Latency/Period problem
- **Integer LP** to solve **Interval Mapping** on **Communication Homogeneous** platforms
- Many integer variables: no efficient algorithm to solve
- Approach limited to small problem instances
- **Absolute performance of the heuristics for such instances**

- Latency/Failure problem: no linear formulation because of strong non-linearity of failure probability formula
Linear program: variables

- \(T_{\text{opt}} \): period or latency of the pipeline, depending on the objective function

Boolean variables:
- \(x_{k,u} \): 1 if \(S_k \) on \(P_u \)
- \(y_{k,u} \): 1 if \(S_k \) and \(S_{k+1} \) both on \(P_u \)
- \(z_{k,u,v} \): 1 if \(S_k \) on \(P_u \) and \(S_{k+1} \) on \(P_v \)

Integer variables:
- \(\text{first}_u \) and \(\text{last}_u \): integer denoting first and last stage assigned to \(P_u \) (to enforce interval constraints)
Linear program: variables

- T_{opt}: period or latency of the pipeline, depending on the objective function

Boolean variables:
- $x_{k,u}$: 1 if S_k on P_u
- $y_{k,u}$: 1 if S_k and S_{k+1} both on P_u
- $z_{k,u,v}$: 1 if S_k on P_u and S_{k+1} on P_v

Integer variables:
- first_u and last_u: integer denoting first and last stage assigned to P_u (to enforce interval constraints)
Linear program: constraints

Constraints on processors and links:
- $\forall k \in [0..n + 1], \quad \sum_u x_{k,u} = 1$
- $\forall k \in [0..n], \quad \sum_{u \neq v} z_{k,u,v} + \sum_u y_{k,u} = 1$
- $\forall k \in [0..n], \forall u, v \in [1..p] \cup \{in, out\}, u \neq v, x_{k,u} + x_{k+1,v} \leq 1 + z_{k,u,v}$
- $\forall k \in [0..n], \forall u \in [1..p] \cup \{in, out\}, \quad x_{k,u} + x_{k+1,u} \leq 1 + y_{k,u}$

Constraints on intervals:
- $\forall k \in [1..n], \forall u \in [1..p], \quad \text{first}_u \leq k.x_{k,u} + n.(1 - x_{k,u})$
- $\forall k \in [1..n], \forall u \in [1..p], \quad \text{last}_u \geq k.x_{k,u}$
- $\forall k \in [1..n - 1], \forall u, v \in [1..p], u \neq v,$
 $\quad \text{last}_u \leq k.z_{k,u,v} + n.(1 - z_{k,u,v})$
- $\forall k \in [1..n - 1], \forall u, v \in [1..p], u \neq v, \quad \text{first}_v \geq (k + 1).z_{k,u,v}$
Linear program: constraints

Constraints on processors and links:

- $\forall k \in [0..n + 1], \quad \sum_u x_{k,u} = 1$
- $\forall k \in [0..n], \quad \sum_{u \neq v} z_{k,u,v} + \sum_u y_{k,u} = 1$
- $\forall k \in [0..n], \forall u, v \in [1..p] \cup \{in, out\}, u \neq v, \quad x_{k,u} + x_{k+1,v} \leq 1 + z_{k,u,v}$
- $\forall k \in [0..n], \forall u \in [1..p] \cup \{in, out\}, \quad x_{k,u} + x_{k+1,u} \leq 1 + y_{k,u}$

Constraints on intervals:

- $\forall k \in [1..n], \forall u \in [1..p], \quad \text{first}_u \leq k.x_{k,u} + n.(1 - x_{k,u})$
- $\forall k \in [1..n], \forall u \in [1..p], \quad \text{last}_u \geq k.x_{k,u}$
- $\forall k \in [1..n - 1], \forall u, v \in [1..p], u \neq v$, \quad $\text{last}_u \leq k.z_{k,u,v} + n.(1 - z_{k,u,v})$
- $\forall k \in [1..n - 1], \forall u, v \in [1..p], u \neq v, \quad \text{first}_v \geq (k + 1).z_{k,u,v}$
Linear program: constraints

\[
\forall u \in [1..p], \sum_{k=1}^{n} \left\{ \left(\sum_{t \neq u} \frac{\delta_{k-1}}{b} z_{k-1,t,u} \right) + \frac{w_k}{s_u} x_{k,u} + \left(\sum_{v \neq u} \frac{\delta_k}{b} z_{k,u,v} \right) \right\} \leq \mathcal{P}
\]

\[
\sum_{u=1}^{p} \sum_{k=1}^{n} \left[\left(\sum_{t \neq u, t \in [1..p] \cup \{\text{in, out}\}} \frac{\delta_{k-1}}{b} z_{k-1,t,u} \right) + \frac{w_k}{s_u} x_{k,u} \right] + \left(\sum_{u \in [1..p] \cup \{\text{in}\}} \frac{\delta_n}{b} z_{n,u,\text{out}} \right) \leq \mathcal{L}
\]

Min period with fixed latency

\[T_{\text{opt}} = \mathcal{P} \]

\[\mathcal{L} \text{ is fixed} \]

Min latency with fixed period

\[T_{\text{opt}} = \mathcal{L} \]

\[\mathcal{P} \text{ is fixed} \]
Linear program: constraints

\[
\forall u \in [1..p], \sum_{k=1}^{n} \left\{ \left(\sum_{t \neq u} \frac{\delta_{k-1}}{b} z_{k-1, t, u} \right) + \frac{w_k}{s_u} x_{k, u} + \left(\sum_{v \neq u} \frac{\delta_k}{b} z_{k, u, v} \right) \right\} \leq P
\]

\[
\sum_{u=1}^{p} \sum_{k=1}^{n} \left[\left(\sum_{t \neq u, t \in [1..p] \cup \{ in, out \}} \frac{\delta_{k-1}}{b} z_{k-1, t, u} \right) + \frac{w_k}{s_u} x_{k, u} \right] + \left(\sum_{u \in [1..p] \cup \{ in \}} \frac{\delta_n}{b} z_{n, u, out} \right) \leq L
\]

Min period with fixed latency

\[T_{\text{opt}} = P \]

\[\mathcal{L} \text{ is fixed} \]

Min latency with fixed period

\[T_{\text{opt}} = L \]

\[P \text{ is fixed} \]
Outline

1. Framework
2. Mono-criterion complexity results
3. Bi-criteria complexity results
4. Linear programming formulation
5. Heuristics and Experiments, Period/Latency
6. Conclusion
Heuristics

- Back to the problem **Period/Latency**
- Target clusters: *Communication Homogeneous* platforms and **Interval Mapping**

Two sets of heuristics

- Minimizing latency for a fixed period
- Minimizing period for a fixed latency

- **Key idea**: map the pipeline as a single interval then split the interval until stop criterion is reached
- **Split**: decreases period but increases latency

► detailed heuristics
Heuristics comparison

- communication time $\delta_i = 10$, computation time $1 \leq w_i \leq 20$
- 10 processors
Heuristics comparison

- communication time $\delta_i = 10$, computation time $1 \leq w_i \leq 20$
- 10 vs. 100 processors

40 stages, 10 processors
- 😊 2-Sp mono P
- 😞 3-Sp mono P

40 stages, 100 processors
- 😊 3-Sp bi P
- 😞 3-Sp mono P
Real World Application

The JPEG encoder

- Image processing application
- JPEG: standardized interchange format
- Data compression
- 7 stages

Joint work with Harald Kosch, University of Passau, Germany
JPEG Encoder

Source Image Data → Scaling 122 → YUV Conversion 128 → Block Storage 256

Subsampling 34

FDCT 256 → Quantizer 512 → Entropy Encoder 256

Quantization Table 134

Huffman Table 158 → Compressed Image Data 26

JPEG Encoder
Simulation environment & bucket behavior

- MPI application, Message passing + sleep()
- (Homogeneous processors) - simulation of heterogeneity
- Mapping 7 stages on 10 processors

(a) Fixed P.

(b) Fixed L.
Results

- Heuristics vs LP: a simple heuristic always finds the optimal solution
- Comparison theory/experience: good except for one heuristic which violates threshold

![Graph showing comparison between heuristic, theoretical, and simulation latency results.]
Outline

1. Framework
2. Mono-criterion complexity results
3. Bi-criteria complexity results
4. Linear programming formulation
5. Heuristics and Experiments, Period/Latency
6. Conclusion
Related work

Subhlok and Vondran— Extension of their work (pipeline on hom platforms)

Mapping pipelined computations onto clusters and grids— DAG [Taura et al.], DataCutter [Saltz et al.]

Energy-aware mapping of pipelined computations [Melhem et al.], three-criteria optimization

Mapping pipelined computations onto special-purpose architectures— FPGA arrays [Fabiani et al.]. Fault-tolerance for embedded systems [Zhu et al.]

Mapping skeletons onto clusters and grids— Use of stochastic process algebra [Benoit et al.]
Conclusion

Theoretical side

- Pipeline structured applications
- Multi-criteria mapping problem
- Complexity study: latency/period & latency/failure
- period/failure: mix difficulties of period (NP-hard) and failure (non-linear)

Practical side

- Design of several polynomial heuristics
- Simulation of a real world application
- Good results of the heuristics, even if not tuned for the JPEG application: close to LP solution
Future work

Theory

- Extension to stage replication (for period) and data-parallelism
- Extension to fork, fork-join and tree workflows
- Bounded multi-port communication model with overlap
- Add selectivity to stages (Web services)

Practice

- Design of new multi-criteria heuristics for fully heterogeneous platforms.
- Real experiments with bigger pipeline applications, using MPI
- Working on Scalable Video Coding applications in collaboration with Passau
RobSched’08

First International Workshop on Robust Scheduling
part of ICPADS'08, the 14th Int. Conf. on Parallel and Distributed Systems

December 8-10, 2008, Melbourne, Australia

- Scheduling algorithms for heterogeneous platforms
- Performance models
- Models of platform/application failures
- Fault tolerance issues
- Resource discovery and management
- Task and communication scheduling
- Task coordination and workflow
- Job scheduling
- Stochastic scheduling
- Scheduling applications for clusters and grids

Areas of scheduling, performance evaluation and fault tolerance.
Original, unpublished papers, as well as work-in-progress contributions.

July 4 - Full paper due
(6 IEEE-2-col. pages)
Aug. 22 - Notification
Sep. 9 - Final paper due
Dec. 8-10 - Workshop

http://graal.ens-lyon.fr/~abenoit/conf/robsched08.html

Anne.Benoit@ens-lyon.fr
Lemma NoSplit

On *Fully Homogeneous* and *Communication Homogeneous-Failure Homogeneous* platforms, there is a mapping of the pipeline as a single interval which minimizes the failure probability (resp. latency) under a fixed latency (resp. failure probability) threshold.

From an existing optimal solution consisting of more than one interval: easy to build a new optimal solution with a single interval.
Complexity results - Latency/Failure

- Communication Homogeneous-Failure Homogeneous: Minimizing FP for a fixed L

Order processors in non-increasing order of s_j

Find k maximum, such that

$$k \times \frac{\delta_0}{b} + \sum_{1 \leq j \leq n} \frac{w_j}{s_k} + \frac{\delta_n}{b} \leq L$$

- Replicate the whole pipeline as a single interval onto the fastest k processors

- Note that at any time s_k is the speed of the slowest processor used in the replication scheme
Complexity results - Latency/Failure

- Communication Homogeneous platforms-Failure

 Homogeneous: Minimizing L for a fixed FP

- Find k minimum, such that

 $$1 - (1 - fp^k) \leq FP$$

- Replicate the whole pipeline as a single interval onto the fastest k processors
Complexity results - Latency/Failure

- *Communication Homogeneous-Failure Heterogeneous*
- Lemma NoSplit not true: example
- One slow and reliable processor, $s = 1$, $fp = 0.1$
- Ten fast and unreliable processors, $s = 100$, $fp = 0.8$
- $\mathcal{L} \leq 22$, minimize FP

\[
L \leq 22, \quad \text{minimize } FP
\]

- One interval: $FP = (1 - (1 - 0.8^2)) = 0.64$
- Two intervals: $FP = 1 - (1 - 0.1). (1 - 0.8^{10}) < 0.2$
- Open complexity (probably NP-hard)
Complexity results - Latency/Failure

- Communication Homogeneous-Failure Heterogeneous

- Lemma NoSplit not true: example
- One slow and reliable processor, $s = 1$, $fp = 0.1$
- Ten fast and unreliable processors, $s = 100$, $fp = 0.8$

- $\mathcal{L} \leq 22$, minimize \mathcal{FP}

- One interval: $\mathcal{FP} = (1 - (1 - 0.8^2)) = 0.64$

- Two intervals: $\mathcal{FP} = 1 - (1 - 0.1)(1 - 0.8^{10}) < 0.2$

- Open complexity (probably NP-hard)
Communication Homogeneous-Failure Heterogeneous

Lemma NoSplit not true: example

One slow and reliable processor, \(s = 1, \ fp = 0.1 \)

Ten fast and unreliable processors, \(s = 100, \ fp = 0.8 \)

\(L \leq 22, \) minimize \(\mathcal{FP} \)

\[
\begin{align*}
\text{One interval:} & \quad \mathcal{FP} = (1 - (1 - 0.8^2)) = 0.64 \\
\text{Two intervals:} & \quad \mathcal{FP} = 1 - (1 - 0.1).(1 - 0.8^{10}) < 0.2
\end{align*}
\]

Open complexity (probably NP-hard)
Complexity results - Latency/Failure

- Communication Homogeneous-Failure Heterogeneous
- Lemma NoSplit not true: example
 - One slow and reliable processor, $s = 1$, $fp = 0.1$
 - Ten fast and unreliable processors, $s = 100$, $fp = 0.8$
- $L \leq 22$, minimize FP

\[
\begin{array}{c}
\text{10} \\
\downarrow \quad 1 \\
S_1 \\
w_1 = 1 \\
\end{array} \quad \begin{array}{c}
1 \\
\downarrow \\
S_2 \\
w_2 = 100 \\
\end{array}
\]

- One interval: $FP = (1 - (1 - 0.8^2)) = 0.64$
- Two intervals: $FP = 1 - (1 - 0.1) \cdot (1 - 0.8^{10}) < 0.2$

- Open complexity (probably NP-hard)
Complexity results - Latency/Failure

- **Fully Heterogeneous platforms**

Theorem

On *Fully Heterogeneous* platforms, the bi-criteria (decision problems associated to the) optimization problems are NP-hard.

Reduction from 2-PARTITION: one single stage, processors of identical speed and $fp_j = e^{-a_j}$, $b_{in,j} = 1/a_j$ and $b_{j, out} = 1$
Complexity results - Latency/Failure

- *Fully Heterogeneous* platforms

Theorem

On *Fully Heterogeneous* platforms, the bi-criteria (decision problems associated to the) optimization problems are NP-hard.

- Reduction from 2-PARTITION: one single stage, processors of identical speed and $\text{fp}_j = e^{-a_j}$, $b_{in,j} = 1/a_j$ and $b_{j,\text{out}} = 1$
2-Sp mono P: Splitting mono-criterion

- Map the whole pipeline on the fastest processor.
- At each step, select used processor j with largest period.
- Try to split its stage interval into 2 intervals, giving some stages to the next fastest processor j' in the list (not yet used).
- Split interval at any place, and either assign the first part of the interval on j and the remainder on j', or the other way round. Solution which minimizes $\max(\text{period}(j), \text{period}(j'))$ is chosen if better than original solution.
- Break-conditions:
 Fixed period is reached or period cannot be improved anymore.
Minimizing Latency for a Fixed Period (2/2)

3-Sp mono P: 3-Splitting mono-criterion — Select used processor j with largest period and split its interval into three parts.

3-Sp bi P: 3-Splitting bi-criteria — More elaborated choice where to split: split the interval with largest period so that $\max_{i \in \{j, j', j''\}} \left(\frac{\Delta \text{latency}}{\Delta \text{period}(i)} \right)$ is minimized.

2-Sp bi P: Splitting bi criteria — Binary search over latency: at each step choose split that minimizes $\max_{i \in \{j, j'\}} \left(\frac{\Delta \text{latency}}{\Delta \text{period}(j)} \right)$ within the authorized latency increase.

$\Delta \text{latency} : \mathcal{L}$ after split - \mathcal{L} before split

$\Delta \text{period} : \mathcal{P}(j)$ before split - $\mathcal{P}(j)$ after split
Minimizing Period for a Fixed Latency

2-Sp mono L: Splitting mono-criterion – Similar to 2-Sp mono P with different break condition: splitting is performed as long as fixed latency is not exceeded.

2-Sp bi L: Splitting bi criteria – Similar to 2-Sp mono L, but at each step choose solution that minimizes \(\max_{i \in \{j, j'\}} \left(\frac{\Delta \text{latency}}{\Delta \text{period}(i)} \right) \) while fixed latency is not exceeded.