Mapping pipelined applications with replication to increase throughput and reliability

Anne Benoit1,2, Loris Marchal2, Yves Robert1,2, Oliver Sinnen3

1. Institut Universitaire de France
2. LIP, École Normale Supérieure de Lyon, France
3. University of Auckland, New Zealand

SBAC-PAD, Petropolis, Rio de Janeiro, Brazil
October 27-30, 2010
Motivations

- Mapping **pipelined applications** onto **parallel platforms**: practical applications, but **difficult challenge**

- Both **performance** (throughput) and **reliability** objectives: even more difficult!

- Use of **replication**: mapping an application stage onto more than one processor
 - **redundant computations**: increase reliability
 - **round-robin computations** (over consecutive data sets): increase throughput
 - **bi-criteria problem**: need to trade-off between two kinds of replication
Motivations

- Mapping **pipelined applications** onto parallel platforms: practical applications, but **difficult challenge**

- Both **performance** (throughput) and **reliability** objectives: even more difficult!

- Use of replication: mapping an application stage onto more than one processor
 - **redundant computations**: increase reliability
 - **round-robin computations** (over consecutive data sets): increase throughput
 - **bi-criteria problem**: need to trade-off between two kinds of replication
Motivations

- Mapping **pipelined applications** onto **parallel platforms**: practical applications, but **difficult challenge**

- Both **performance** (throughput) and **reliability** objectives: even more difficult!

- Use of **replication**: mapping an application stage onto more than one processor
 - **redundant computations**: increase reliability
 - **round-robin computations** (over consecutive data sets): increase throughput
 - **bi-criteria problem**: need to trade-off between two kinds of replication
Motivations

- Mapping **pipelined applications** onto **parallel platforms**: practical applications, but **difficult challenge**

- Both **performance** (throughput) and **reliability** objectives: even more difficult!

- Use of **replication**: mapping an application stage onto more than one processor
 - **redundant** computations: increase reliability
 - **round-robin** computations (over consecutive data sets): increase throughput
 - **bi-criteria problem**: need to trade-off between two kinds of replication
Motivations

- Mapping **pipelined applications** onto parallel platforms: practical applications, but **difficult challenge**

- Both **performance** (throughput) and **reliability** objectives: even more difficult!

- Use of **replication**: mapping an application stage onto more than one processor
 - **redundant** computations: increase reliability
 - **round-robin** computations (over consecutive data sets): increase throughput
 - **bi-criteria problem**: need to trade-off between two kinds of replication
Motivations

- Mapping **pipelined applications** onto parallel platforms: practical applications, but **difficult challenge**

- Both **performance** (throughput) and **reliability** objectives: even more difficult!

- Use of **replication**: mapping an application stage onto more than one processor
 - **redundant** computations: increase reliability
 - **round-robin** computations (over consecutive data sets): increase throughput
 - **bi-criteria problem**: need to trade-off between two kinds of replication
Main contributions

- **Theoretical side:**
 assess problem hardness with different mapping rules and platform characteristics

- **Practical side:**
 heuristics on most general (NP-complete) case,
 exact algorithm based on A*,
 experiments to assess heuristics performance
Main contributions

• **Theoretical side:**
 assess problem hardness with different mapping rules and platform characteristics

• **Practical side:**
 heuristics on most general (NP-complete) case,
 exact algorithm based on A*,
 experiments to assess heuristics performance
Outline of the talk

1 Framework
 - Application
 - Platform
 - Mapping
 - Objective

2 Complexity results
 - Mono-criterion
 - Bi-criteria
 - Approximation results

3 Practical side
 - Heuristics
 - Optimal algorithm using A*
 - Evaluation results

4 Conclusion
Applicative framework

- Pipeline of n stages S_1, \ldots, S_n
- Stage S_i performs a number w_i of computations
- Communication costs are negligible in comparison with computation costs
Platform with p processors P_1, \ldots, P_p, fully interconnected as a (virtual) clique

For $1 \leq u \leq p$, processor P_u has speed s_u and failure probability $0 < f_u < 1$

Failure probability: independent of the duration of the application, meant to run for a long time (cycle-stealing scenario)

SpeedHom platform: identical speeds $s_u = s$ for $1 \leq u \leq p$ (as opposed to *SpeedHet*)

FailureHom platform: identical failure probabilities (as opposed to *FailureHet*)
Platform with p processors P_1, \ldots, P_p, fully interconnected as a (virtual) clique

For $1 \leq u \leq p$, processor P_u has speed s_u and failure probability $0 < f_u < 1$

Failure probability: independent of the duration of the application, meant to run for a long time (cycle-stealing scenario)

SpeedHom platform: identical speeds $s_u = s$ for $1 \leq u \leq p$ (as opposed to *SpeedHet*)

FailureHom platform: identical failure probabilities (as opposed to *FailureHet*)
Interval mapping: consecutive stages mapped together: partition of [1..n] into $m \leq p$ intervals I_j

- I_j mapped onto set of processors A_j, organized into ℓ_j teams
 - processors within a team perform redundant computations (replication for reliability)
 - different teams assigned to same interval execute distinct data sets in a round-robin fashion (replication for performance)

- A processor cannot participate in two different teams

- $\ell = \sum_{j=1}^{m} \ell_j$ is the total number of teams
Mapping problem

- **Interval mapping**: consecutive stages mapped together: partition of $[1..n]$ into $m \leq p$ intervals I_j

- I_j mapped onto set of processors A_j, organized into ℓ_j teams
 - processors within a team perform redundant computations (replication for reliability)
 - different teams assigned to same interval execute distinct data sets in a round-robin fashion (replication for performance)

- A processor cannot participate in two different teams

- $\ell = \sum_{j=1}^{m} \ell_j$ is the total number of teams
Interval mapping: consecutive stages mapped together: partition of \([1..n]\) into \(m \leq p\) intervals \(I_j\)

- \(I_j\) mapped onto set of processors \(A_j\), organized into \(\ell_j\) teams
 - processors within a team perform redundant computations (replication for reliability)
 - different teams assigned to same interval execute distinct data sets in a round-robin fashion (replication for performance)

- A processor cannot participate in two different teams

- \(\ell = \sum_{j=1}^{m} \ell_j\) is the total number of teams
Mapping problem

- **Interval mapping**: consecutive stages mapped together: partition of \([1..n]\) into \(m \leq p\) intervals \(I_j\)

- \(I_j\) mapped onto set of processors \(A_j\), organized into \(\ell_j\) teams
 - processors within a team perform **redundant computations** (replication for reliability)
 - different teams assigned to same interval execute **distinct data sets** in a round-robin fashion (replication for performance)

- A processor cannot participate in two different teams

- \(\ell = \sum_{j=1}^{m} \ell_j\) is the total number of teams
Interval mapping: consecutive stages mapped together: partition of \([1..n]\) into \(m \leq p\) intervals \(I_j\)

- \(I_j\) mapped onto set of processors \(A_j\), organized into \(\ell_j\) teams
 - processors within a team perform redundant computations (replication for reliability)
 - different teams assigned to same interval execute distinct data sets in a round-robin fashion (replication for performance)

- A processor cannot participate in two different teams

\[\ell = \sum_{j=1}^{m} \ell_j \] is the total number of teams
Mapping problem

- **Interval mapping**: consecutive stages mapped together: partition of $[1..n]$ into $m \leq p$ intervals I_j

- I_j mapped onto set of processors A_j, organized into ℓ_j teams
 - processors within a team perform redundant computations (replication for reliability)
 - different teams assigned to same interval execute distinct data sets in a round-robin fashion (replication for performance)

- A processor cannot participate in two different teams

- $\ell = \sum_{j=1}^{m} \ell_j$ is the total number of teams
Example of mapping

$n = 5$ stages divided into $m = 3$ intervals

$p = 11$ processors organized in $\ell = 6$ teams

$\ell_1 = 3, \ell_2 = 1, \ell_3 = 2$
Example of mapping

\[n = 5 \text{ stages divided into } m = 3 \text{ intervals} \]
\[p = 11 \text{ processors organized in } \ell = 6 \text{ teams} \]
\[\ell_1 = 3, \ell_2 = 1, \ell_3 = 2 \]
Objective functions

- **Period** of the application:

\[P = \max_{1 \leq j \leq m} \left\{ \sum_{i \in I_j} w_i \frac{\ell_j \times \min_{P_u \in A_j} S_u}{\ell_j} \right\} \]

Round-robin distribution: each team compute one data set every other \(\ell_j \) ones, computation slowed down by slowest processor for interval

- **Failure probability**:

\[F = 1 - \prod_{1 \leq k \leq \ell} (1 - \prod_{P_u \in T_k} f_u) \]

Computation successful if at least one surviving processor per team
Objective functions

- **Period** of the application:

$$\mathcal{P} = \max_{1 \leq j \leq m} \left\{ \frac{\sum_{i \in I_j} w_i}{\ell_j \times \min_{P_u \in A_j} s_u} \right\}$$

Round-robin distribution: each team compute one data set every other ℓ_j ones, computation slowed down by slowest processor for interval

- **Failure probability**:

$$\mathcal{F} = 1 - \prod_{1 \leq k \leq \ell} \left(1 - \prod_{P_u \in T_k} f_u \right)$$

Computation successful if at least one surviving processor per team
Objective functions

- **Period** of the application:

\[
P = \max_{1 \leq j \leq m} \left\{ \frac{\sum_{i \in I_j} w_i}{\ell_j \times \min_{P_u \in A_j} s_u} \right\}
\]

Round-robin distribution: each team compute one data set every other \(\ell_j \) ones, computation slowed down by slowest processor for interval

- **Failure probability**:

\[
F = 1 - \prod_{1 \leq k \leq \ell} \left(1 - \prod_{P_u \in T_k} f_u \right)
\]

Computation successful if at least one surviving processor per team
Objective functions

- **Period** of the application:

 \[
 \mathcal{P} = \max_{1 \leq j \leq m} \left\{ \frac{\sum_{i \in I_j} w_i}{\ell_j \times \min_{P_u \in A_j} s_u} \right\}
 \]

 Round-robin distribution: each team compute one data set every other \(\ell_j \) ones, computation slowed down by slowest processor for interval

- **Failure probability**:

 \[
 \mathcal{F} = 1 - \prod_{1 \leq k \leq \ell} \left(1 - \prod_{P_u \in T_k} f_u \right)
 \]

 Computation successful if at least one surviving processor per team
The problem

- Determine the best interval mapping, over all possible partitions into intervals and processor assignments

- Mono-criterion: minimize period or failure probability

- Bi-criteria: (i) given a threshold period, minimize failure probability or (ii) given a threshold failure probability, minimize period
The problem

- Determine the **best interval mapping**, over all possible partitions into intervals and processor assignments.
 - **Mono-criterion**: minimize period or failure probability
 - **Bi-criteria**: (i) given a threshold period, minimize failure probability or (ii) given a threshold failure probability, minimize period
The problem

- Determine the **best interval mapping**, over all possible partitions into intervals and processor assignments

- **Mono-criterion**: minimize period or failure probability

- **Bi-criteria**: (i) given a **threshold period**, minimize failure probability or (ii) given a **threshold failure probability**, minimize period
Outline of the talk

1. Framework
 - Application
 - Platform
 - Mapping
 - Objective

2. Complexity results
 - Mono-criterion
 - Bi-criteria
 - Approximation results

3. Practical side
 - Heuristics
 - Optimal algorithm using A*
 - Evaluation results

4. Conclusion
Mono-criterion complexity results

- **Failure probability**: easy on any kind of platforms: group all stages as a single interval, processed by one single team with all p processors.

- **Period**: one processor per team
 - *SpeedHom* platform: one interval processed by p teams
 - *SpeedHet* platforms: NP-hard in the general case, polynomial if $w_i = w$ for $1 \leq i \leq n$ (see previous work [Algorithmica2010])
Mono-criterion complexity results

- **Failure probability**: easy on any kind of platforms: group all stages as a single interval, processed by one single team with all \(p \) processors.

- **Period**: one processor per team
 - *SpeedHom* platform: one interval processed by \(p \) teams
 - *SpeedHet* platforms: NP-hard in the general case, polynomial if \(w_i = w \) for \(1 \leq i \leq n \) (see previous work [Algorithmica2010])
Bi-criteria complexity results

- **Preliminary result:** for *SpeedHom* platforms, there exists an optimal bi-criteria mapping with **one single interval**
 - **Proof:** starting from an optimal solution with several intervals, merge intervals, and the single interval is processed by all teams of optimal solution
 - Failure probability remains the same (same teams)
 - New period cannot be greater than optimal period (*SpeedHom* platform)

- Not true on *SpeedHet* platforms:
 - example with $w_1 = s_1 = 1$ and $w_2 = s_2 = 2$, $F^* = 1$
 - period 1 with two intervals
 - period 3/2 with one single interval
Preliminary result: for SpeedHom platforms, there exists an optimal bi-criteria mapping with one single interval

Proof: starting from an optimal solution with several intervals, merge intervals, and the single interval is processed by all teams of optimal solution

- Failure probability remains the same (same teams)
- New period cannot be greater than optimal period (SpeedHom platform)

Not true on SpeedHet platforms: example with \(w_1 = s_1 = 1 \) and \(w_2 = s_2 = 2 \), \(F^* = 1 \)

- period 1 with two intervals
- period 3/2 with one single interval
Bi-criteria complexity results

- **Preliminary result:** for SpeedHom platforms, there exists an optimal bi-criteria mapping with **one single interval**
 - **Proof:** starting from an optimal solution with several intervals, merge intervals, and the single interval is processed by all teams of optimal solution
 - **Failure probability** remains the same (same teams)
 - **New period** cannot be greater than optimal period (SpeedHom platform)

- **Not true on SpeedHet platforms:**
 example with $w_1 = s_1 = 1$ and $w_2 = s_2 = 2$, $F^* = 1$
 - period 1 with two intervals
 - period 3/2 with one single interval
Bi-criteria complexity results

- **Preliminary result**: for *SpeedHom* platforms, there exists an optimal bi-criteria mapping with one single interval
 - *Proof*: starting from an optimal solution with several intervals, merge intervals, and the single interval is processed by all teams of optimal solution
 - Failure probability remains the same (same teams)
 - New period cannot be greater than optimal period (*SpeedHom* platform)

- **Not true on *SpeedHet* platforms**: example with $w_1 = s_1 = 1$ and $w_2 = s_2 = 2$, $F^* = 1$
 - period 1 with two intervals
 - period 3/2 with one single interval
Bi-criteria complexity results

- **Preliminary result:** for *SpeedHom* platforms, there exists an optimal bi-criteria mapping with one single interval

 - **Proof:** starting from an optimal solution with several intervals, merge intervals, and the single interval is processed by all teams of optimal solution
 - **Failure probability** remains the same (same teams)
 - **New period** cannot be greater than optimal period (*SpeedHom* platform)

- **Not true on *SpeedHet* platforms:**
 example with $w_1 = s_1 = 1$ and $w_2 = s_2 = 2$, $F^* = 1$

 - period 1 with two intervals
 - period 3/2 with one single interval
$\textbf{SpeedHom-FailureHom platforms}$

- $\textbf{SpeedHom-FailureHom}$: Polynomial time algorithm

- **Fixed period \mathcal{P}^***
 - one single interval with minimum number of teams

 \[
 \ell_{\text{min}} = \left\lceil \frac{\sum_{i=1}^{n} w_i}{\mathcal{P}^* \times s} \right\rceil
 \]

 - greedily assign processors to teams to have balanced teams
 - algorithm in $O(p)$

- **Converse problem: fixed \mathcal{F}^***
 - one single interval...
 - ...but must try all possible number of teams $1 \leq \ell \leq p$
 - algorithm in $O(p \log p)$
SpeedHom-FailureHom platforms

- **SpeedHom-FailureHom**: Polynomial time algorithm

- **Fixed period** \mathcal{P}^*
 - one single interval with minimum number of teams
 \[
 \ell_{\text{min}} = \left\lceil \frac{\sum_{i=1}^{n} w_i}{\mathcal{P}^* \times s} \right\rceil
 \]
 - greedily assign processors to teams to have balanced teams
 - algorithm in $O(p)$

- **Converse problem**: fixed \mathcal{F}^*
 - one single interval...
 - ...but must try all possible number of teams $1 \leq \ell \leq p$
 - algorithm in $O(p \log p)$
SpeedHom-FailureHom platforms

- **SpeedHom-FailureHom**: Polynomial time algorithm
- **Fixed period** \mathcal{P}^*
 - one single interval with minimum number of teams

 \[
 \ell_{\text{min}} = \left\lceil \frac{\sum_{i=1}^{n} W_i}{\mathcal{P}^* \times s} \right\rceil
 \]
 - greedily assign processors to teams to have balanced teams
 - algorithm in $O(p)$

- Converse problem: fixed \mathcal{F}^*
 - one single interval...
 - ...but must try all possible number of teams $1 \leq \ell \leq p$
 - algorithm in $O(p \log p)$
- **SpeedHom-FailureHom**: Polynomial time algorithm

- **Fixed period** \mathcal{P}^*
 - one single interval with minimum number of teams

 \[
 \ell_{\text{min}} = \left\lceil \frac{\sum_{i=1}^{n} W_i}{\mathcal{P}^* \times s} \right\rceil
 \]
 - greedily assign processors to teams to have balanced teams
 - algorithm in $O(p)$

- **Converse problem**: fixed \mathcal{F}^*
 - one single interval...
 - ...but must try all possible number of teams $1 \leq \ell \leq p$
 - algorithm in $O(p \log p)$
SpeedHom-FailureHom platforms

- **SpeedHom-FailureHom**: Polynomial time algorithm
- **Fixed period \(P^* \)**
 - one single interval with minimum number of teams

\[
\ell_{\text{min}} = \left\lceil \frac{\sum_{i=1}^{n} W_i}{P^* \times s} \right\rceil
\]

- greedily assign processors to teams to have balanced teams
- algorithm in \(O(p) \)

- Converse problem: fixed \(F^* \)
 - one single interval...
 - ...but must try all possible number of teams \(1 \leq \ell \leq p \)
 - algorithm in \(O(p \log p) \)
With heterogeneous platforms

- \textit{SpeedHet-FailureHom} is \textsc{NP}-hard because \textit{SpeedHet} is \textsc{NP}-hard for period minimization

- \textit{SpeedHom-FailureHet} becomes \textsc{NP}-hard as well: balancing processors within teams is combinatorial; reduction from 3-PARTITION

- \textbf{Intermediate result:} best reliability always obtained by balancing failure probabilities of each team
With heterogeneous platforms

- \textit{SpeedHet-FailureHom} is \textbf{NP-hard}
 because \textit{SpeedHet} is \textbf{NP-hard} for period minimization

- \textit{SpeedHom-FailureHet} becomes \textbf{NP-hard} as well:
 balancing processors within teams is combinatorial;
 reduction from 3-PARTITION

- Intermediate result: best reliability always obtained by
 balancing failure probabilities of each team
With heterogeneous platforms

- \textit{SpeedHet-FailureHom} is NP-hard because \textit{SpeedHet} is NP-hard for period minimization.

- \textit{SpeedHom-FailureHet} becomes NP-hard as well: balancing processors within teams is combinatorial; reduction from 3-PARTITION.

- Intermediate result: best reliability always obtained by balancing failure probabilities of each team.
Approximation results

- **SpeedHom**: always optimal with single interval
- **SpeedHet**: period minimization problem (NP-hard)

The optimal single-interval mapping can be found:
- sort processors by non-increasing speeds
- for $1 \leq i \leq p$, compute period using i fastest processors
- time $O(p \log p)$

Theorem: single-interval mapping is a n-approximation algorithm for period minimization; this factor cannot be improved

Proof sketch: start from an optimal solution, with $m \leq n$ intervals, and build a single interval solution, with period $\mathcal{P}_1 \leq m \times \mathcal{P}_m$
Approximation results

- **SpeedHom**: always optimal with single interval
- **SpeedHet**: period minimization problem (NP-hard)

The optimal single-interval mapping can be found:
- sort processors by non-increasing speeds
- for \(1 \leq i \leq p\), compute period using \(i\) fastest processors
- time \(O(p \log p)\)

Theorem: single-interval mapping is a \(n\)-approximation algorithm for period minimization; this factor cannot be improved

Proof sketch: start from an optimal solution, with \(m \leq n\) intervals, and build a single interval solution, with period \(P_1 \leq m \times P_m\)
Approximation results

- **SpeedHom**: always optimal with single interval
- **SpeedHet**: period minimization problem (NP-hard)

- The optimal single-interval mapping can be found:
 - sort processors by non-increasing speeds
 - for \(1 \leq i \leq p\), compute period using \(i\) fastest processors
 - time \(O(p \log p)\)

- **Theorem**: single-interval mapping is a \(n\)-approximation algorithm for period minimization; this factor cannot be improved

 - **Proof sketch**: start from an optimal solution, with \(m \leq n\) intervals, and build a single interval solution, with period
 \(P_1 \leq m \times P_m\)
Approximation results

- **SpeedHom**: always optimal with single interval
- **SpeedHet**: period minimization problem (NP-hard)

The optimal single-interval mapping can be found:
- sort processors by non-increasing speeds
- for $1 \leq i \leq p$, compute period using i fastest processors
- time $O(p \log p)$

Theorem: single-interval mapping is a n-approximation algorithm for period minimization; this factor cannot be improved

Proof sketch: start from an optimal solution, with $m \leq n$ intervals, and build a single interval solution, with period $\mathcal{P}_1 \leq m \times \mathcal{P}_m$
Outline of the talk

1. Framework
 - Application
 - Platform
 - Mapping
 - Objective

2. Complexity results
 - Mono-criterion
 - Bi-criteria
 - Approximation results

3. Practical side
 - Heuristics
 - Optimal algorithm using A*
 - Evaluation results

4. Conclusion
Heuristics

- \textit{SpeedHet-FailureHet} platforms
- Minimize \mathcal{F} under a fixed upper period \mathcal{P}^*
- Counterpart problem: binary search over \mathcal{P}^*

Two heuristics:
- \textsc{OneInterval}: stages grouped as a single interval (motivated by complexity results)
- \textsc{MultiInterval}: solution with multiple intervals (recall that single interval may be far from optimal)
Heuristics

- **SpeedHet-FailureHet** platforms
- Minimize \mathcal{F} under a fixed upper period P^*
- Counterpart problem: binary search over P^*

Two heuristics:
- **OneInterval**: stages grouped as a single interval (motivated by complexity results)
- **MultiInterval**: solution with multiple intervals (recall that single interval may be far from optimal)
One single interval

Determine number of teams: try all values ℓ between 1 and p

For a given ℓ, discard processors too slow for period

Assign processors to teams to minimize failure probability

- From complexity results: balance reliability across teams
- NP-hard problem but efficient greedy heuristic: sort processors by non-decreasing failure probability and assign next processor to team with highest failure probability

Time complexity: $O(p^2 \log p)$
OneInterval

- One single interval
- Determine number of teams: try all values \(\ell \) between 1 and \(p \)
- For a given \(\ell \), discard processors too slow for period

Assign processors to teams to minimize failure probability

- From complexity results: balance reliability across teams
- NP-hard problem but efficient greedy heuristic: sort processors by non-decreasing failure probability and assign next processor to team with highest failure probability

- Time complexity: \(O(p^2 \log p) \)
One single interval

Determine number of teams: try all values ℓ between 1 and p

For a given ℓ, discard processors too slow for period

Assign processors to teams to minimize failure probability

- From complexity results: balance reliability across teams
- NP-hard problem but efficient greedy heuristic: sort processors by non-decreasing failure probability and assign next processor to team with highest failure probability

Time complexity: $O(p^2 \log p)$
MultiInterval

• **Step 1**: create \(\min(n, p) \) intervals (one stage per processor, or balance computational load across intervals)

• **Step 2**: greedily add processors to stages, to minimize maximum ratio of interval computation load to accumulated processor speed

• **Step 3**: for each interval, use **OneInterval** to form teams; use previously unallocated processors (too slow for period); increase bound on period for the interval until valid allocation returned

• **Step 4**: if period bound not achieved for at least one interval, merge interval with largest period with previous or next interval, until bound is achieved

• **Step 5**: merge intervals with highest failure probability as long as it is beneficial

• Note that **OneInterval** is called each time we tentatively merge two intervals (steps 4 and 5)

• Time complexity: \(O(p^3 \log p) \)
MultiInterval

- **Step 1**: create $\min(n, p)$ intervals (one stage per processor, or balance computational load across intervals)

- **Step 2**: greedily add processors to stages, to minimize maximum ratio of interval computation load to accumulated processor speed

- **Step 3**: for each interval, use OneInterval to form teams; use previously unallocated processors (too slow for period); increase bound on period for the interval until valid allocation returned

- **Step 4**: if period bound not achieved for at least one interval, merge interval with largest period with previous or next interval, until bound is achieved

- **Step 5**: merge intervals with highest failure probability as long as it is beneficial

Note that OneInterval is called each time we tentatively merge two intervals (steps 4 and 5)

- Time complexity: $O(p^3 \log p)$
MultiInterval

- **Step 1**: create $\min(n, p)$ intervals (one stage per processor, or balance computational load across intervals)
- **Step 2**: greedily add processors to stages, to minimize maximum ratio of interval computation load to accumulated processor speed
- **Step 3**: for each interval, use \texttt{OneInterval} to form teams; use previously unallocated processors (too slow for period); increase bound on period for the interval until valid allocation returned
- **Step 4**: if period bound not achieved for at least one interval, merge interval with largest period with previous or next interval, until bound is achieved
- **Step 5**: merge intervals with highest failure probability as long as it is beneficial

Note that \texttt{OneInterval} is called each time we tentatively merge two intervals (steps 4 and 5)

- Time complexity: $O(p^3 \log p)$
MultiInterval

- **Step 1**: create $\min(n, p)$ intervals (one stage per processor, or balance computational load across intervals)

- **Step 2**: greedily add processors to stages, to minimize maximum ratio of interval computation load to accumulated processor speed

- **Step 3**: for each interval, use OneInterval to form teams; use previously unallocated processors (too slow for period); increase bound on period for the interval until valid allocation returned

- **Step 4**: if period bound not achieved for at least one interval, merge interval with largest period with previous or next interval, until bound is achieved

- **Step 5**: merge intervals with highest failure probability as long as it is beneficial

 - Note that OneInterval is called each time we tentatively merge two intervals (steps 4 and 5)

- Time complexity: $O(p^3 \log p)$
MultiInterval

- **Step 1**: create \(\min(n, p) \) intervals (one stage per processor, or balance computational load across intervals)

- **Step 2**: greedily add processors to stages, to minimize maximum ratio of interval computation load to accumulated processor speed

- **Step 3**: for each interval, use \texttt{OneInterval} to form teams; use previously unallocated processors (too slow for period); increase bound on period for the interval until valid allocation returned

- **Step 4**: if period bound not achieved for at least one interval, merge interval with largest period with previous or next interval, until bound is achieved

- **Step 5**: merge intervals with highest failure probability as long as it is beneficial

- Note that \texttt{OneInterval} is called each time we tentatively merge two intervals (steps 4 and 5)

- Time complexity: \(O(p^3 \log p) \)
Step 1: create $\min(n, p)$ intervals (one stage per processor, or balance computational load across intervals)

Step 2: greedily add processors to stages, to minimize maximum ratio of interval computation load to accumulated processor speed

Step 3: for each interval, use OneInterval to form teams; use previously unallocated processors (too slow for period); increase bound on period for the interval until valid allocation returned

Step 4: if period bound not achieved for at least one interval, merge interval with largest period with previous or next interval, until bound is achieved

Step 5: merge intervals with highest failure probability as long as it is beneficial

Note that OneInterval is called each time we tentatively merge two intervals (steps 4 and 5)

Time complexity: $O(p^3 \log p)$
MultiInterval

- **Step 1**: create $\min(n, p)$ intervals (one stage per processor, or balance computational load across intervals)
- **Step 2**: greedily add processors to stages, to minimize maximum ratio of interval computation load to accumulated processor speed
- **Step 3**: for each interval, use **OneInterval** to form teams; use previously unallocated processors (too slow for period); increase bound on period for the interval until valid allocation returned
- **Step 4**: if period bound not achieved for at least one interval, merge interval with largest period with previous or next interval, until bound is achieved
- **Step 5**: merge intervals with highest failure probability as long as it is beneficial

Note that **OneInterval** is called each time we tentatively merge two intervals (steps 4 and 5)

- Time complexity: $O(p^3 \log p)$
A* algorithm

- A* best-first state space search algorithm for small problem instances

- Non-linearity of failure probability: rules out the use of integer linear programming

- Search space: state s is a partial solution (i.e., partial mapping), with underestimated cost value $c(s)$

- Expansion of a partial solution with lowest $c(s)$ value, with a stage or a processor

- Complete mapping obtained: optimal solution (best-first strategy)
A* algorithm

- **A* best-first state space search algorithm** for small problem instances
- **Non-linearity** of failure probability: rules out the use of integer linear programming

- **Search space**: state s is a partial solution (i.e., partial mapping), with underestimated cost value $c(s)$
- Expansion of a partial solution with lowest $c(s)$ value, with a stage or a processor
- Complete mapping obtained: optimal solution (best-first strategy)
A* algorithm

- **A*** best-first state space search algorithm for small problem instances
- **Non-linearity** of failure probability: rules out the use of **integer linear programming**

- **Search space**: state s is a partial solution (i.e., partial mapping), with underestimated cost value $c(s)$
- Expansion of a partial solution with lowest $c(s)$ value, with a stage or a processor
- Complete mapping obtained: optimal solution (best-first strategy)
A* algorithm

- **A* best-first state space search algorithm** for small problem instances

- **Non-linearity** of failure probability: rules out the use of integer linear programming

- **Search space**: state s is a partial solution (i.e., partial mapping), with underestimated cost value $c(s)$

- Expansion of a partial solution with lowest $c(s)$ value, with a stage or a processor

- Complete mapping obtained: optimal solution (best-first strategy)
A* algorithm

- **A* best-first state space search algorithm** for small problem instances
- **Non-linearity** of failure probability: rules out the use of integer linear programming

Search space: state \(s \) is a partial solution (i.e., partial mapping), with underestimated cost value \(c(s) \)

- Expansion of a partial solution with lowest \(c(s) \) value, with a stage or a processor
- Complete mapping obtained: optimal solution (best-first strategy)
State tree for two stages on two processors

Legend

- \([S_a; S_b]\): one interval
- \([P_1, P_2]\): first team for this interval
- \([P_3, P_4]\): second team for this interval
- \(P_5, P_6\): processors not selected for the last interval
- \(\rightarrow\): expansion with a new stage
- \(\rightarrow\rightarrow\rightarrow\): expansion with a new processor
- \(\times\): invalid state
- \(\square\): goal state
Underestimate cost functions

- **Failure probability \mathcal{F}**
 - Partial mapping: *adding team* increases failure probability
 - Underestimate: *add remaining processors to existing teams*
 - NP-hard problem: consider *amount of reliability* available and distribute it to the existing teams to *balance* their reliability

- **Period \mathcal{P}**
 - Need to check that *partial solution does not exceed the bound*: can be computed exactly
 - Second underestimate: *optimal period achieved by remaining processors on remaining stages*
 - NP-hard problem: consider *perfect load balance*: $\mathcal{P} \leq \frac{\sum w_i}{\sum s_u}$
Underestimate cost functions

- **Failure probability \mathcal{F}**
 - Partial mapping: *adding team* increases failure probability
 - Underestimate: *add remaining processors to existing teams*
 - NP-hard problem: consider *amount of reliability* available and distribute it to the existing teams to balance their reliability

- **Period \mathcal{P}**
 - Need to check that *partial solution does not exceed the bound*: can be computed exactly
 - Second underestimate: *optimal period achieved by remaining processors on remaining stages*
 - NP-hard problem: consider *perfect load balance*: $\mathcal{P} \leq \frac{\sum w_i}{\sum s_u}$
Heuristics vs A*

- Randomly generated workload scenarios
- Both heuristics close to optimal solution
- OneInterval is better than MultiInterval in a few cases
- A* much slower, but main limitation is memory
Performance of heuristics

- Distribution of ratio between failure probability obtained by a heuristic (OneInterval in red, MultiInterval in blue) and optimal failure probability (A*) (optimal: ratio 1)
- On average, heuristics 20% above optimal
- Ratio 10: cases in which heuristics find no solution (\approx 10%)
Larger scenarios

- **OneInterval** better in 61% of the cases
- **MultiInterval** better in 20% of the cases

On average, failure probability of **OneInterval** 2% above **MultiInterval**

Comparison of **OneInterval** with optimal single-interval solution (easy to compute with A*): in average, 0.05% above optimal, and 5% in the worst case
Larger scenarios

- **OneInterval** better in 61% of the cases
- **MultiInterval** better in 20% of the cases

On average, failure probability of **OneInterval** 2% above **MultiInterval**

Comparison of **OneInterval** with optimal single-interval solution (easy to compute with A*): in average, 0.05% above optimal, and 5% in the worst case
Larger scenarios

- **OneInterval** better in 61% of the cases
- **MultiInterval** better in 20% of the cases
- On average, failure probability of **OneInterval** 2% above **MultiInterval**
- Comparison of **OneInterval** with optimal single-interval solution (easy to compute with A*): in average, 0.05% above optimal, and 5% in the worst case
Outline of the talk

1. Framework
 - Application
 - Platform
 - Mapping
 - Objective

2. Complexity results
 - Mono-criterion
 - Bi-criteria
 - Approximation results

3. Practical side
 - Heuristics
 - Optimal algorithm using A*
 - Evaluation results

4. Conclusion
Conclusion and future work

- **Exhaustive complexity study**
 - polynomial time algorithm for *SpeedHom-FailureHom* platforms
 - NP-completeness with one level of heterogeneity
 - approximation results to compare single interval solution with any other solution

- **Practical solution to the problem**
 - efficient heuristics (inspired by theoretical study) for *SpeedHet-FailureHet* platforms
 - A* algorithm with non-trivial underestimate functions
 - experimental results: very good behaviour of heuristics

- **Future work**
 - further approximation results
 - enhanced multiple interval heuristics
 - improved A* techniques
Conclusion and future work

- **Exhaustive complexity study**
 - polynomial time algorithm for $SpeedHom$-$FailureHom$ platforms
 - NP-completeness with one level of heterogeneity
 - approximation results to compare single interval solution with any other solution

- **Practical solution to the problem**
 - efficient heuristics (inspired by theoretical study) for $SpeedHet$-$FailureHet$ platforms
 - A* algorithm with non-trivial underestimate functions
 - experimental results: very good behaviour of heuristics

- **Future work**
 - further approximation results
 - enhanced multiple interval heuristics
 - improved A* techniques
Conclusion and future work

- Exhaustive complexity study
 - polynomial time algorithm for SpeedHom-FailureHom platforms
 - NP-completeness with one level of heterogeneity
 - approximation results to compare single interval solution with any other solution

- Practical solution to the problem
 - efficient heuristics (inspired by theoretical study) for SpeedHet-FailureHet platforms
 - A* algorithm with non-trivial underestimate functions
 - experimental results: very good behaviour of heuristics

- Future work
 - further approximation results
 - enhanced multiple interval heuristics
 - improved A* techniques