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1 Introduction

Dense linear algebra (DLA) forms the core of many scientific computing applications. Consequently, there
is continuous interest and demand for the development of increasingly better algorithms in the field. Here
’better’ has a broad meaning, and includes improved reliability, accuracy, robustness, ease of use, and most
importantly new or improved algorithms that would more efficiently use the available computational resources
to speed up the computation. The rapidly evolving high end computing systems and the close dependence
of DLA algorithms on the computational environment is what makes the field particularly dynamic.

A typical example of the importance and impact of this dependence is the development of LAPACK
[4] (and later ScaLAPACK [19]) as a successor to the well known and formerly widely used LINPACK [40]
and EISPACK [40] libraries. Both LINPACK and EISPACK were based, and their efficiency depended,
on optimized Level 1 BLAS [21]. Hardware development trends though, and in particular an increasing
Processor-to-Memory speed gap of approximately 50% per year, started to increasingly show the inefficiency
of Level 1 BLAS vs Level 2 and 3 BLAS, which prompted efforts to reorganize DLA algorithms to use block
matrix operations in their innermost loops. This formed LAPACK’s design philosophy. Later ScaLAPACK
extended the LAPACK library to run scalably on distributed memory parallel computers.

There are several current trends and associated challenges that influence the development of DLA soft-
ware libraries. The main purpose of this work is to identify these trends, address the new challenges, and
consequently outline a prospectus for new releases of the LAPACK and ScaLAPACK libraries.

2 Motivation

LAPACK and ScaLAPACK are widely used software libraries for numerical linear algebra. LAPACK pro-
vides routines for solving systems of simultaneous linear equations, least-squares solutions of linear systems
of equations, eigenvalue problems, and singular value problems. The ScaLAPACK (Scalable LAPACK) li-
brary includes a subset of LAPACK routines redesigned for distributed memory MIMD parallel computers.
There have been over fifty-eight million web hits at www.netlib.org (for the associated libraries LAPACK,
ScaLAPACK, CLAPACK and LAPACK95). LAPACK and ScaLAPACK are used to solve leading edge
science problems and they have been adopted by many vendors and software providers as the basis for their
own libraries, including AMD, Apple (under Mac OS X), Cray, Fujitsu, HP, IBM, Intel, NEC, SGI, several
Linux distributions (such as Debian), NAG, IMSL, the MathWorks (producers of MATLAB), InteractiveSu-
percomputing.com, and PGI. Future improvements in these libraries will therefore have a large impact on
the user communities and their ability to advance scientific and technological work.

The ScaLAPACK and LAPACK development is mostly driven by

• algorithm research

• the result of the user/vendor survey

• the demands and opportunities of new architectures and programming languages

• the enthusiastic participation of the research community in developing and offering improved versions
of existing Sca/LAPACK codes [71].
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The user base is both large and diverse, ranging from users solving the largest and most challenging
problems on leading edge architectures to the much larger class of users solving smaller problems of greater
variety.

The rest of this paper is organized as follows.

Sec. 3 discusses challenges in making current algorithms run efficiently, scalably, and reliably on future
architectures.

Sec. 4 discusses two kinds of improved algorithms: faster ones and more accurate ones. Since it is hard to
improve both simultaneously, we choose to include a new faster algorithm if it is about as accurate as
previous algorithms, and we include a new more accurate algorithm if it is at least about as fast as the
previous algorithms.

Sec. 5 describes new linear algebra functionality that will be included in the next Sca/LAPACK release.

Sec. 6 describes our proposed software structure for Sca/LAPACK.

Sec. 7 describes a few initial performance results.

3 Challenges of Future Architectures

Parallel computing is becoming ubiqitous at all scales of computation: It is no longer just exemplified by the
TOP 500 list of the fastest computers in the world, where over 400 have 513 or more processors, and over
100 have 1025 or more processors. In a few years typical laptops are predicted to have 64 cores per multicore
processor chip, and up to 256 hardware threads per chip. So unless all algorithms (not just numerical linear
algebra!) can exploit this parallelism, they will not only cease to speed up, but in fact slow down compared
to machine peak.

Furthermore, the gap between processor speed and memory speed continues to grow exponentially: pro-
cessor speeds are improving at 59% per year, main memory bandwidth at only 23%, and main memory
latency at a mere 5.5% [55]. This means that an algorithm that is efficient today, because it does enough
floating point operations per memory reference to mask slow memory speed, may not be efficient in the near
future. The same story holds for parallelism, with communication network bandwidth improving at just
26%, and network latency unimproved since the Cray T3E in 1996 until recently.

The large scale target architectures of importance for LAPACK and ScaLAPACK include platforms like
the Cray X1 at Oak Ridge National Laboratory, the Cray XT3 (Red Storm) at Sandia National Laboratory,
the IBM Blue Gene/L system at Lawrence Livermore National Laboratory, a large Opteron cluster at
Lawrence Berkeley National Laboratory (LBNL), a large Itanium-2 cluster at Pacific Northwest National
Laboratory, the IBM SP3 at LBNL, and near term procurements underway at various DOE and NSF sites.

Longer term the High Productivity Computing Systems (HPCS) program [65]. At the current time three
vendors are designing hardware and software platforms that should scale to a petaflop by 2010: Cray’s
Cascade system (with the Chapel programming language), IBM’s PERCS system (with X10) and Sun
Microsystems’ Hero system (with Fortress). Other interesting platforms include IBM’s Blue Planet [88],
and vector extensions to IBM’s Power systems called ViVA and ViVA-2.

As these examples illustrate, LAPACK and ScaLAPACK will have to run efficiently and correctly on
a much wider array of platforms than in the past. It will be a challenge to map LAPACK’s and ScaLA-
PACK’s current software hierarchy of BLAS/BLACS/PBLAS/LAPACK/ScaLAPACK efficiently to all these
platforms. For example, on a platform with multiple levels of parallelism (multicores, SMPs, distributed
memory) would it be better to treat each SMP node as a ScaLAPACK process, calling BLAS which are
themselves parallel, or should each processor within the SMP be mapped to a process, or something else?
At a minimum the many tuning parameters (currently hard-coded within ILAENV) will have to be tuned
for each platform; see sec. 6.

A more radical departure from current practice would be to make our algorithms asynchronous. Currently
our algorithms are block synchronous, with phases of computation followed by communication with (implicit)
barriers. But on networks than can overlap communication and computation, or on multithreaded shared
memory machines, block synchrony can leave a significant fraction of the platform idle at any time. For
example, the LINPACK benchmark version of LU decomposition exploits such asynchrony and can runs 2x
faster than its block synchronous ScaLAPACK counterpart. See section 6.3.
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Future platform are also likely to be heterogeneous, in performance and possibly floating point semantics.
One example of heterogeneous performance is a cluster purchased over time, with both old, slow processors
and new, fast processors. Varying user load can also cause performance heterogeneity. But there is even
performance heterogeneity within a single processor. The best known examples are the x86/x86-64 family
of processors with SSE and 3DNow! instruction sets, PowerPC family chips with Altivec extensions such
as IBM Cell, scalar versus vector units on the Cray X1, X1E and XD1 platforms, and platforms with both
GPUs and CPUs. In the case of Cell, single precision runs at 10x the speed of double precision. Speed
differences like this motivate us to consider using rather different algorithms than currently in use, see sec.4.

Heterogeneities can also arise in floating point semantics. This is obvious in case of clusters of different
platforms, but also within platforms. To illustrate one challenge imagine that one processor runs fastest when
handling denormalized numbers according to the IEEE 754 floating point standard [5, 66], and another runs
fastest when flushing them to zero. On such a platform sending a message containing a denormalized number
from one processor to another can change its value (to zero) or even lead to a trap. Either way, correctness
is a challenge, and not just for linear algebra.

4 Better Algorithms.

Three categories of routines are going to be addressed in Sca/LAPACK: (1) improved algorithms for functions
in LAPACK, which also need to be put in ScaLAPACK (discussed here) (2) functions now in LAPACK but
not ScaLAPACK (discussed in section 5), and (3) functions in neither LAPACK nor ScaLAPACK (also
discussed in section 5).

There are a number of faster and/or more accurate algorithms that are going to be incorporated in
Sca/LAPACK. The following is a list of each set of future improvements.

4.1 Algorithmic improvements for the solution of linear systems

1. The recent developments of extended precision arithmetic [72, 11, 22, 21] in the framework of the new
BLAS standard allow the use of higher precision iterative refinement to improve computed solutions.
Recently, it has been shown how to modify the classical algorithm of Wilkinson [102, 63] to compute
not just an error bound measured by the infinity (or max) norm, but also a component-wise, relative
error bound, i.e. a bound on the number of correct digits in each component. Both error bounds can
be computed for a tiny O(n2) extra cost after the initial O(n3) factorization [37].

2. As mentioned in sec. 3, there can be a large speed difference between different floating point units on
the same processor, with single precision running 10x faster than double precision on an IBM Cell,
and 2x faster on the SSE unit than the x86 unit on some Intel platforms. We can exploit iterative
refinement to run faster in these situations. Suppose we want to solve Ax = b where all the data
types are double. The idea is to round A to single, perform its LU factorization in single, and then do
iterative refinement with the computed solution x̂ and residual r = Ax̂ − b in double, stopping when
the residual is as small as it would be had the LU decomposition been done in double. This mean
that the O(n3) work of LU decomposition will run at the higher speed of single, and only the extra
O(n2) of refinement will run in double. This approach can get a factor of 2x speedup on a laptop with
x86 and SSE units, and promises more on Cell. Of course it only converges if A’s condition number
is less than about 1/

√
ǫ, where ǫ is machine precision, but in this common case it is worthwhile. For

algorithms beyond solving Ax = b and least squares, such as eigenvalue problems, current iterative
refinement algorithms increase the O(n3) work by a small constant factor. But if there is a factor of
10x to be gained by working in single, then they are still likely to be worthwhile.

3. Gustavson, Kågström and others have recently proposed a new set of recursive data structures for dense
matrices [58, 60, 49]. These data structures represent a matrix as a collection of small rectangular blocks
(chosen to fit inside the L1 cache), which are stored using one of several “space filling curve” orderings.
The idea is that the data structure and associated recursive matrix algorithms are cache oblivious
[50], that is they optimize cache locality without any explicit blocking such as conventionally done in
LAPACK and ScaLAPACK, or any of the tuning parameters (beyond the L1 cache size).

The reported benefits of these data structures and associated algorithms to which they apply are usually
slightly higher peak performance on large matrices and a faster increase towards peak performance as
the dimension grows. Sometimes, slightly modified, tuned BLAS are used for operations on matrices
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assumed to be in L1 cache. The biggest payoff by far is for factoring symmetric matrices stored in
packed format, where the current LAPACK routines are limited to the performance of Level 2 BLAS,
which do O(1) flops per memory reference. Whereas the recursive algorithms can use the faster Level
3 BLAS, which do O(n) flops per memory reference and can be optimized to hide slower memory
bandwidth and latencies.

The drawback of these algorithms is their use of a completely different and rather complicated data
structure, which only a few expert users could be expected to use. That leaves the possibility of
copying the input matrices in conventional column-major (or row-major) format into the recursive
data structure. Furthermore, they are only of benefit for “one-sided factorizations” (LU , LDLT ,
Cholesky, QR), but none of the “two-sided factorizations” needed for the EVD or SVD (there is a
possibility they might be useful when no eigenvectors or singular vectors are desired).

The factorization of symmetric packed matrices will be incorporated into LAPACK using the recursive
data structures, copying the usual data structure in-place to the recursive data structure. The copying
costs O(n2) contrast to the overall O(n3) operation count, so the asymptotic speeds should be the same.
Even if the recursive data structures will be used for other parts of LAPACK, the same column-major
interface data structures will be kept for the purpose of ease of use.

4. Ashcraft, Grimes and Lewis [9] proposed a variation of Bunch-Kaufman factorization for solving sym-
metric indefinite systems Ax = b by factoring A = LDLT with different pivoting. The current Bunch-
Kaufman factorization is backward stable for the solution of Ax = b but can produce unbounded L
factors. Better pivoting provides better accuracy for applications requiring bounded L factors, like
optimization and the construction of preconditioners [63, 32].

5. A Cholesky factorization with diagonal pivoting [62, 63] that avoids a breakdown if the matrix is nearly
indefinite/rank-deficient is valuable for optimization problems (and has been requested by users) and
is also useful for the high accuracy solution of the symmetric positive definite EVD, see below. For
both this pivoting strategy and the one proposed above by Ashcraft/Grimes/Lewis, published results
indicate that, on uniprocessors (LAPACK), the extra search required (compared to Bunch-Kaufman)
has a small impact on performance. This may not be the case for distributed memory (ScaLAPACK)
in which the extra searching and pivoting may involve nonnegligible communication costs.

6. Progress has been made in the development of new algorithms for computing or estimating the condition
number of tridiagonal [39, 61] or triangular matrices [48]. These algorithms play an important role in
obtaining error bounds in matrix factorizations, and the most promising algorithms should be evaluated
and incorporated in the future release.

4.2 Algorithmic improvements for the solution of eigenvalue problems

Algorithmic improvements to the current LAPACK eigensolvers concern both accuracy and performance.

1. Braman, Byers, and Mathias proposed in their SIAM Linear Algebra Prize winning work [24, 25] an
up to 10x faster Hessenberg QR-algorithm for the nonsymmetric EVD. This is the bottleneck of the
overall nonsymmetric EVD, for which significant speedups should be expected. Byers recently spent
a sabbatical with James Demmel where he did much of the software engineering required to convert
his prototype into LAPACK format. An extension of this work with similar benefits will be extended
to the QZ algorithm for Hessenberg-triangular pencils, with collaboration from Mehrmann. Similar
techniques will be exploited to accelerate the routines for (block) companion matrices; see Sec. 5.2.

2. An early version of an algorithm based on Multiple Relatively Robust Representations (MRRR) [81,
82, 84, 83] for the tridiagonal symmetric eigenvalue problem (STEGR) was incorporated into LAPACK
version 3. This algorithm promised to replace the prior O(n3) QR algorithm (STEQR) or ≈ O(n2.3)
divide & conquer (STEDC) algorithm with an O(n2) algorithm. It should have cost O(nk) operations
to compute the nk entries of k n-dimensional eigenvectors, the minimum possible work, in a highly
parallel way. In fact, the algorithm in LAPACK v.3 did not cover all possible eigenvalue distributions
and resorted to a slower and less accurate algorithm based on classical inverse iteration for “difficult”
(highly clustered) eigenvalue distributions. The inventors of MRRR, Parlett and Dhillon, have contin-
ued to work on improving this algorithm. Very recently, Parlett and Vömel have proposed a solution
for the last hurdle [85] and now pass the Sca/LAPACK tests for the most extreme examples of highly
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multiple eigenvalues. (These arose in some tests from very many large “glued Wilkinson matrices”
constructed so that large numbers of mathematically distinct eigenvalues agreed to very high accuracy,
much more than double precision. The proposed solution involves randomization, making small ran-
dom perturbations to an intermediate representation of the matrix to force all eigenvalues to disagree
in at least 1 or 2 bits.) Given the solution to this last hurdle, this algorithm may be propagated
to all the variants of the symmetric EVD (eg., banded, generalized, packed, etc.) in LAPACK. A
parallelized version of this algorithm will be available for the corresponding ScaLAPACK symmetric
EVD routines. Currently ScaLAPACK only has parallel versions of the oldest, least efficient (or least
accurate) LAPACK routines. This final MRRR algorithm requires some care at load balancing because
the Multiple Representations used in MRRR represent subsets of the spectrum based on how clustered
they are, which may or may not correspond to a good load balance. Initial work in this area is very
promising [16].

3. The MRRR algorithm can and should also be applied to the SVD, replacing the current O(n3) or
≈ O(n2.3) bidiagonal SVD algorithms with an O(n2) algorithm. The necessary theory and a preliminary
prototype implementation have been developed [56].

4. There are three phases in the EVD (or SVD) of a dense or band matrix: (1) reduction to tridiagonal (or
bidiagonal) form, (2) the subsequent tridiagonal EVD (or bidiagonal SVD), and (3) backtransforming
the eigenvectors (or singular vectors) of the tridiagonal (or bidiagonal) to correspond to the input
matrix. If many (or all) eigenvectors (or singular vectors) are desired, the bottleneck had been phase 2.
But now the MRRR algorithm promises to make phase 2 cost just O(n2) in contrast to the O(n3) costs
of phases 1 and 3. In particular, Howell and Fulton [52] recently devised a new variant of reduction
to bidiagonal form for the SVD that has the potential to eliminate half the memory references by
reordering the floating point operations (flops). Howell and Fulton fortunately discovered this algorithm
during the deliberations of the recent BLAS standardization committee, because its implementation
required new BLAS routines (routines GEMVT and GEMVER [21]) which were then added to the
standard. These routines are called “Level 2.5 BLAS” because they do many more than O(1) but fewer
than O(n) flops per memory reference. Preliminary tests indicate speedups of up to nearly 2x.

5. For the SVD, when only left or only right singular vectors are desired, there are other variations on
phase 1 to consider that reduce both floating point operations and memory references [13, 86]. Initial
results indicate reduced operation counts by a ratio of up to .75, but at the possible cost of numerical
stability for some singular vectors.

6. When few or no vectors are desired, the bottleneck shifts entirely to phase 1. Bischof and Lang [18] have
proposed a Successive Band Reduction (SBR) algorithm that will asymptotically (for large dimension
n) change most of the Level 2 BLAS operations in phase 1 to Level 3 BLAS operations (see the attached
letter from Lang). They report speedups of almost 2.4x. This approach is not suitable when a large
number of vectors are desired because the cost of phase 3 is much larger per vector. In other words,
depending on how many vectors are desired, either the SBR approach will be used or the one-step
reduction (the Howell/Fulton variant for the SVD and the current LAPACK code for the symmetric
EVD). And if only left or only right singular vectors are desired, the algorithms described in bullet 5
might be used. This introduces a machine-dependent tuning parameter to choose the right algorithm;
see tuning of this and other parameters in Sec. 6.2. It may also be possible to use Gustavson’s recursive
data structures to accelerate SBR.

7. Drmač and Veselić have made significant progress on the performance of the one-sided Jacobi algorithm
for computing singular values with high relative accuracy [36, 47]. In contrast to the algorithms
described above, their’s can compute most or all of the significant digits in tiny singular values when
these digits are determined accurately by the input data and when the above algorithms return only
roundoff noise. The early version of this algorithm introduced by James Demmel in [38, 36] was
quite slower than the conventional QR-iteration-based algorithms and much slower than the MRRR
algorithms discussed above. But recent results reported by Drmač at [67] show that a combination
of clever optimizations have finally led to an accurate algorithm that is faster than the original QR-
iteration-based algorithm. Innovations include preprocessing by QR factorizations with pivoting, block
application of Jacobi rotations, and early termination. Two immediate applications include the (full
matrix) SVD and the symmetric positive-definite EVD, by first reducing to the SVD using the Cholesky-
with-pivoting algorithm discussed earlier.
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8. Analogous, high accuracy algorithms for the symmetric indefinite EVD have also been designed. One
approach by Slapničar [90, 89] uses a J-symmetric Jacobi algorithm with hyperbolic rotations, and
another one by Dopico/Molera/Moro [46] does an SVD, which “forgets” the signs of the eigenvalues
and then reconstructs the signs. The latter can directly benefit by the Drmač/Veselič algorithm above.

5 Added Functionality

5.1 Putting more of LAPACK into ScaLAPACK.

Table 1 compares the available data types in the latest releases of LAPACK and ScaLAPACK. After the
data type description, the prefixes used in the respective libraries are listed. A blank entry indicates that
the corresponding type is not supported. The most important omissions in ScaLAPACK are as follows:
(1) There is no support for packed storage of symmetric (SP,PP) or Hermitian (HP,PP) matrices, nor the
triangular packed matrices (TP) resulting from their factorizations (using ≈ n2/2 instead of n2 storage);
these have been requested by users. The interesting question is what data structure to support. One
possibility is recursive storage as discussed in Sec. 5.2 [2, 58, 60, 49]. Alternatively the packed storage may
be partially expanded into a 2D array in order to apply Level 3 BLAS (GEMM) efficiently. Some preliminary
ScaLAPACK prototypes support packed storage for the Cholesky factorization and the symmetric eigenvalue
problem [20]. (2) ScaLAPACK only offers limited support of band matrix storage and does not specifically
take advantage of symmetry or triangular form (SB,HB,TB). (3) ScaLAPACK does not support data types
for the standard (HS) or generalized (HG, TG) nonsymmetric EVDs; see further below.

LAPACK SCALAPACK
general band GB GB, DB
general (i.e., unsymmetric, in some cases rectangular) GE GE
general matrices, generalized problem GG GG
general tridiagonal GT DT
(complex) Hermitian band HB
(complex) Hermitian HE HE
upper Hessenberg matrix, generalized problem HG
(complex) Hermitian, packed storage HP
upper Hessenberg HS LAHQR only
(real) orthogonal, packed storage OP
(real) orthogonal OR OR
positive definite band PB PB
general positive definite PO PO
positive definite, packed storage PP
positive definite tridiagonal PT PT
(real) symmetric band SB
symmetric, packed storage SP
(real) symmetric tridiagonal ST ST
symmetric SY SY
triangular band TB
generalized problem, triangular TG
triangular, packed storage TP
triangular (or in some cases quasi-triangular) TR TR
trapezoidal TZ TZ
(complex) unitary UN UN
(complex) unitary, packed storage UP

Table 1: Data types supported in LAPACK and ScaLAPACK. A blank entry indicates that the corresponding
format is not supported in ScaLAPACK.

Table 2 compares the available functions in LAPACK and ScaLAPACK. The relevant user interfaces
(’drivers’)are listed by subject and acronyms are used for the software in the respective libraries. Table 2
also shows that,in the ScaLAPACK library, the implementation of some driver routines and their specialized
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computational routines are currently missing.

LAPACK SCALAPACK
Linear Equations GESV (LU) PxGESV

POSV (Cholesky) PxPOSV
SYSV (LDLT ) missing

Least Squares (LS) GELS (QR) PxGELS
GELSY (QR w/pivoting) missing
GELSS (SVD w/QR) missing
GELSD (SVD w/D&C) missing

Generalized LS GGLSE (GRQ) missing
GGGLM (GQR) missing

Symmetric EVD SYEV (QR) PxSYEV
SYEVD (D&C) PxSYEVD
SYEVR (RRR) missing

Nonsymmetric EVD GEES (HQR) missing driver
GEEV (HQR + vectors) missing driver

SVD GESVD (QR) PxGESVD (missing complex C/Z)
GESDD (D&C) missing

Generalized Symmetric EVD SYGV (inverse iteration) PxSYGVX
SYGVD (D&C) missing

Generalized Nonsymmetric EVD GGES (HQZ) missing
GGEV (HQZ + vectors) missing

Generalized SVD GGSVD (Jacobi) missing

Table 2: LAPACK codes and the corresponding parallel version in ScaLAPACK. The underlying LAPACK
algorithm is shown in parentheses. “Missing” means both drivers and computational routines are missing.
“Missing driver” means that the underlying computational routines are present.

For inclusion in ScaLAPACK:

1. The solution of symmetric linear systems (SYSV), combined with the use of symmetric packed storage
(SPSV), will be a significant improvement with respect to both memory and computational complexity
over the currently available LU factorization. It has been requested by users and is expected to be
used widely. In addition to solving systems it is used to compute the inertia (number of positive, zero
and negative eigenvalues) of symmetric matrices.

2. EVD and SVD routines of all kinds (standard for one matrix and generalized for two matrices) are
missing from ScaLAPACK. For SYEV, ScaLAPACK has p syev (QR algorithm), p syevd (divide and
conquer), p syevx (bisection and inverse iteration); a prototype code is available for MRRR (p syevr).
For SVD, ScaLAPACK has p gesvd (QR algorithm). And for NEV, ScaLAPACK has p gehrd (re-
duction to Hessenberg form), p lahqr (reduction of a Hessenberg matrix to Schur form). This two
routines enable users to get eigenvalues of a nonsymmetric matrix but not (easily) the eigenvectors.
The MRRR algorithm is expected to be exploited for the SVD and symmetric EVD as are new algo-
rithms of Braman/Byers/Mathias for the nonsymmetric EVD (see Sec. 4), work is under way to get
the QZ algorithm for the nonsymmetric generalized eigenvalue problem.

3. LAPACK provides software for the linearly constrained (generalized) least squares problem, and users
in the optimization community will benefit from a parallel version. In addition, algorithms for rank
deficient, standard least squares problems based on the SVD are missing from ScaLAPACK; it may be
that a completely different algorithm based on the MRRR algorithm (see Sec. 4) may be more suitable
for parallelism instead of the divide & conquer (D&C) algorithm that is fastest for LAPACK.

4. Expert drivers that provide error bounds, or other more detailed structural information about eigen-
value problems, should be provided.
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5.2 Extending current functionality.

This subsection outlines possible extensions of the functionalities available in LAPACK and ScaLAPACK.
These extensions are mostly motivated by users but also by research progress.

1. Several updating facilities are planned to be included in a new release. While updating matrix fac-
torizations like Cholesky, LDLT , LU, QR [54] have a well established theory and unblocked (i.e. non
cache optimized) implementations exist, e.g. in LINPACK [40], the efficient update of the SVD is a
current research topic [57]. Furthermore, divide & conquer based techniques are promising for a general
framework of updating eigendecompositions of submatrices.

2. Semi-separable matrices are generalizations of the inverses of banded matrices, with the property that
any rectangular submatrix lying strictly above or strictly below the diagonal has a rank bounded by a
small constant. Recent research has focused on methods exploiting semiseparability, or being a sum of
a banded matrix and a semiseparable matrix, for better efficiency [31, 98]. The development of such
algorithms is being considered in a future release. Most exciting are the recent observations of Gu,
Bini and others [17] that a companion matrix is banded plus semiseparable, and that this structure is
preserved under QR iteration to find its eigenvalues. This observation let us accelerate the standard
method used in MATLAB and other libraries for finding roots of polynomials from O(n3) to O(n2). An
initial rough prototype of this code becomes faster than the highly tuned LAPACK eigensolver for n
between 100 and 200 and then becomes arbitrarily faster for larger n. While the current algorithm has
been numerically stable on all examples tested so far, more work needs to be done to guarantee stability
in all cases. The same technique should apply to finding eigenvalues of block companion matrices, i.e.
matrix polynomials, yielding speedups proportional to the degree of the matrix polynomial.

3. Eigenvalue problems for matrix polynomials [53] are common in science and engineering. The most
common case is the quadratic eigenvalue problem (λ2M +λD + K)x = 0, where typically M is a mass
matrix, D a damping matrix, K a stiffness matrix, λ a resonant frequency, and x a mode shape. The
classical solution is to linearize this eigenproblem, asking instead for the eigenvalues of a system of twice

the size: λ ·
[

0 I
M D

]

·
[

y1

y2

]

+

[

I 0
0 K

]

·
[

y1

y2

]

= 0 where y2 = x and y1 = λx. But there are a

number of ways to linearize, and some are better at preserving symmetries in the solution of the original
problem or saving more time than others. There has been a great deal of recent work on picking the
right linearization and subsequent algorithm for its EVD to preserve desired structures. In particular,
for the general problem

∑k

i=0
λi · Ai · x = 0, the requested cases are symmetric (Ai = AT

i
, arising in

mechanical vibrations without gyroscopic terms), its even (Ai = (−1)iAT
i
) and odd (Ai = (−1)i+1AT

i
)

variations (used with gyroscopic terms), and palindromic (Ai = AT

k−i
, arising in discrete time periodic

and continuous time control). Recent references include [6, 7, 8, 73, 74, 75, 93, 94, 96, 14].

4. Matrix functions (square root, exponential, sign function) play an important role in the solution of
differential equations in both science and engineering, and have been requested by users. Recent
research progress has led to the development of several new algorithms [35, 64, 91, 80, 26, 27, 28, 69,
70, 10] that could be included in a future release.

5. The eigenvalue and singular value decomposition of products and quotients of matrices play an impor-
tant role in control theory. Such functionalities, incorporated from the software library SLICOT [15]
are being considered, using the improved underlying EVD algorithms. Efficient solvers for Sylvester
and Lyapunov equations that are also currently in SLICOT could be incorporated.

6. Multiple user requests concern the development of out-of-core versions of matrix factorizations. ScaLA-
PACK prototypes [20] are under development that implement out-of-core data management for the LU,
QR, and Cholesky factorizations [42, 41]. Users have asked for two kinds of parallel I/O: to a single file
from a sequential LAPACK program (possible with sequential I/O in the reference implementation),
and to a single file from MPI-based parallel I/O in ScaLAPACK.
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6 Software

6.1 Improving Ease of Use

“Ease of use” can be classified as follows: ease of programming (which includes the possibility to easily convert
from serial to parallel, form LAPACK to ScaLAPACK and the possiblity to use high level interfaces), ease
of obtaining predictable results in dynamic environments (for debugging and performance), and ease of
installation (including performance tuning). Each will be discussed in turn.

There are tradeoffs involved in each of these subgoals. In particular, ultimate ease of programming,
exemplified by typing x = A\b in order to solve Ax = b (paying no attention to the data type, data
structure, memory management or algorithm choice) requires an infrastructure and user interface best left
to the builders of systems like MATLAB and may come at a significant performance and reliability penalty.
In particular, many users now exercise, and want to continue to exercise, detailed control over data types,
data structures, memory management and algorithm choice, to attain both peak performance and reliability
(eg., not running out of memory unexpectedly). But some users also would like Sca/LAPACK to handle
work space allocation automatically, make it possible to call ScaLAPACK on a greater variety of user-defined
data structures, and pick the best algorithm when there is a choice.

To accomodate these “ease of programming” requests as well as requests to make the Sca/LAPACK code
accessible from other languages than Fortran, the following steps are considered:

1. Produce new F95 modules for the LAPACK drivers, for work-space allocation and algorithm selection.

2. Produce new F95 modules for the ScaLAPACK drivers, which convert, if necessary, the user input
format (eg., a simple block row layout across processors) to the optimal one for ScaLAPACK (which
may be a 2D block cyclic layout with block sizes that depend on the matrix size, algorithm and
architecture). Allocate memory as needed.

3. Produce LAPACK and ScaLAPACK wrappers in other languages. Based on current user surveys,
these languages will tentatively be C, C++, Python and MATLAB.

See section 6.2 for details on the software engineering approach to these tasks.
Ease of conversion from serial code (LAPACK) to parallel code (ScaLAPACK) is done by making the

interfaces (at least at the driver level) as similar as possible. This includes expanding ScaLAPACK’s func-
tionality to include as much of LAPACK as possible (see section 5).

Another ease-of-programming request is improved documentation. The Sca/LAPACK websites are con-
tinously developed to enable ongoing user feedback and support and the websites employ tools like bugzilla
to track reported bugs.

Obtaining predictable results in a dynamic environment is important for debugging (to get the same
answer when the code is rerun), for reproducibility, auditability (for scientific or legal purposes), and for
performance (so that run-times do not vary widely and unpredictably).

First consider getting the same answer when the problem is rerun. To establish reasonable expectations,
consider 3 cases: (1) Rerunning on different computers with different compilers. Reproducibility here is
more than one can expect. (2) Rerunning on the same platform (or cluster) but with different data layouts
or blocking parameters. Reproducibility here is also more than the user can expect, because roundoff errors
will differ as, say, matrix products are computed in different orders. (3) Just typing “a.out” again with the
same inputs. Reproducibility here should be the user goal, but it is not guaranteed because asynchronous
communication can result in, for example, dot products of distributed vectors being computed in different
orders with different roundoff errors. Using an existing switch in the BLACS to insist on the same order
of communication (with an unavoidable performance penalty) will address this particular problem, but
investigations are underway to know whether this is the only source of nonreproducibility (asynchrony in
tuned SMP BLAS is another possible source, even for “sequential” LAPACK). As more fully asynchronous
algorithms are explored to get higher performance (see section 4), this problem becomes more interesting.
Reproducibility will obviously come with a performance penalty but is important for debugging of codes
that call Sca/LAPACK and for situations where auditability is critical.

Now consider obtaining predictable performance, in the face of running on a cluster where the processor
subset that actually performs the computation may be chosen dynamically, and have a dynamically varying
load of other jobs. This difficult problem is discussed further in section 6.2.

Ease of installation, which may include platform-specific performance tuning, depends on the multiple
modes of access of the Sca/LAPACK libraries: (1) Some users may use vendor-supplied libraries prebuilt
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(and pretuned) on their platforms, so their installation needs are already well addressed. (2) Some users
may use netlib to download individual routines and the subroutines they call (but not the BLAS, which
must be supplied separately). These users have decided to perform the installations on their own (perhaps
for educational purposes). For these users, it can be made possible to select an architecture from a list, so
that the downloaded code has parameter values that are quite likely to optimize the user’s performance. (3)
Other users may download the entire package from netlib and install and tune it on their machines. The use
of autoconf and automatic performance tuning should be expected.

Different users will want different levels of installation effort since complete testing and performance
tuning can take a long time. For performance tuning, a database of pretuned parameters for various com-
puting platforms will be built, and if the user indicates that he is happy with the pretuned parameters,
performance tuning can be sidedstepped. As discussed in section 6.2, there is a spectrum of tuning effort
possible, depending on what fraction of peak performance one seeks and how long one is willing to take
to tune. Similarly, testing the installation for correctness can be done at at least 4 levels (and differently
for each part of the library): (1) No test cases need be run at all if the user does not want to. (2) A few
small test cases can be run to detect a flawed installation but not failures on difficult numerical cases. (3)
The current test set can be run, which is designed for a fairly thorough numerical testing, and in fact not
infrequently indicates error bounds exceeding tight thresholds on some problems and platforms. Some of
these test cases are known failure modes for certain algorithms. For example, inverse iteration is expected
to sometimes fail to get orthogonal eigenvectors on sufficiently clustered eigenvalues, but it depends on the
vagaries of roundoff. (4) More extensive “torture test” sets are used internally for development, which the
most demanding users (or competing algorithm developers) should use for testing. If only for the sake of
future algorithm developers, these extensive test sets should be easily available.

6.2 Improved Software Engineering

The following is a description of the Sca/LAPACK software engineering (SWE) approach. The main goals
are to keep the substantial code base maintainable, testable and evolvable into the future as architectures
and languages change. Maintaining compatibility with other software efforts and encouraging 3rd party
contributions to the efforts of the Sca/LAPACK team are also goals [71].

These goals involve tradeoffs. One could explore starting “from scratch”, using higher level ways to
express the algorithms from which specific implementations could be generated. This approach yields high
flexibility allowing the generation of code that is optimized for future computing platforms with different
layers of parallelism, different memory hierarchies, different ratios of computation rate to bandwidth to
latency, different programming languages and compilers, etc. Indeed, one can think of the problem as
implementing the following meta-program:

(1) for all linear algebra problems (linear systems, eigenproblems,...

(2) for all matrix types (general, symmetric, banded, ...)

(3) for all data types (real, complex, single, double, higher precision)

(4) for all machine architectures and communication topologies

(5) for all programming interfaces

(6) provide the best algorithm(s) available in terms of performance and accuracy

(‘‘algorithms’’ is plural because sometimes no single one is always best)

The potential scope can appear quite large, requiring a judicious mixture of prioritization and automation.
Indeed, there is prior work in automation [59], but so far this work has addressed only part of the range
of algorithmic techniques Sca/LAPACK needs (eg., not eigenproblems), it may not easily extend to more
asynchronous algorithms and still needs to be coupled to automatic performance tuning techniques. Still,
some phases of the meta-program are at least partly automatable now, namely steps (3) through (5) (see
below).

Note that line (5) of the meta-program is “programming interfaces” not “programming languages,”
because the question of the best implementation language is separate from providing ways to call it (from
multiple languages). Currently Sca/LAPACK is written in F77. Over the years, the Sca/LAPACK team
and others have built on this to provide interfaces or versions in other languages: LAPACK95 [12] and
LAPACK3E [3] for F95 (LAPACK3E providing a straightforward wrapper, and LAPACK95 using F95 arrays
to simplify the interfaces at some memory and performance costs), CLAPACK in C [33] (translated, mostly
automatically, using f2c [51]), LAPACK++ [43], TNT [95] in C++, and JLAPACK in Java [68] (translated
using f2j).
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First is the SWE development plan and then the SWE research plan.

1. the core of Sca/LAPACK will be maintained in Fortran, adopting those features of F95 that most
improve ease-of-use and ease-of-development, but do not prevent the most demanding users from
attaining the highest performance and reliable control over the run-time environment. Keeping Fortran
is justified for cost and continuity reasons, as well as the fact that the most effective optimizing compilers
still work best on Fortran (even when they share “back ends” with the C compiler, because of the added
difficulty of discerning the absence of aliasing in C) [34].

The F95 features adopted include recursion (to support new matrix data structures and associated
algorithms discussed in section 4), modules (to support production of versions for different precisions,
beyond single and double), and environmental enquiries (to replace xLAMCH), but not automatic
workspace allocation (see the next bullet).

2. F95 versions of the Sca/LAPACK drivers will be provided (which will usually be wrappers) to im-
prove ease-of-use, possibly at some performance and reliability costs. For example, automatically
allocating workspace using assumed-size arrays (as in the more heavily used LAPACK95, as opposed
to LAPACK3E), and performing algorithm selection when appropriate (based on performance models
described below) may be done.

3. ScaLAPACK drivers will be provided that take a variety of parallel matrix layouts and automatically
identify and convert to the optimal layout for the problem to be solved. Many users have requested
accomodation of simpler or more general input formats, which may be quite different from the more
complicated performance-optimized 2D block-cycle (and possibly recursive) layouts used internally.
Using the performance models described below, these drivers will determine the optimal layout for
the input problem, estimate the cost of solving “in-place” versus converting to the optimal layout,
solving, and converting back, and choose the fastest solution. Separate layout conversion routines will
be provided to help the user identify and convert to better layouts.

4. Wrappers for the Sca/LAPACK drivers in other languages will be provided, with interfaces that are
“natural” for those languages, chosen based on importance and demand from the user survey. Currently
this list includes C, Python and MATLAB.

In particular, no native implementations in these languages will be provided, depending instead on
interoperability of these languages with the F95 subset used in (1).

5. The new Sca/LAPACK routines will be converted to use the latest BLAS standard [23, 21, 11], which
also provides new high precision functionality necessary for new routines required in section 4 [11, 37],
systematically ensure thread-safety, and deprecate superseded routines.

6. Appropriate tools will be used (eg., autoconf, bugzilla, svn, automatic overnight build and test, etc.) to
streamline installation and development and encourage third party contributions. Appropriate source
control and module techniques will be used to minimize the number of versions of each code, reducing
the number of versions in the cross product {real,complex} × {single, double, quad, ...} to one or two.

7. Performance tuning will be done systematically. Initial experiments are showing up to 10x speedups
using different communication schemes that can be applied in the BLACS [77, 97]. In addition to tuning
the BLAS [101, 100] and BLACS, there are over 1300 calls to the ILAENV routine in LAPACK, many of
which return tuning parameters that have never been systematically tuned. Some of these parameters
are block sizes for blocked algorithms, some are problem size thresholds for choosing between different
algorithms, and yet others are numerical convergence thresholds. ScaLAPACK has yet more parameters
associated with parallel data layouts and communication algorithms.

As described in section 6.1, there are different levels of effort possible for performance tuning, and
it may also be done at different times. For example, as part of the development process, a database
of pretuned parameters and performance models will be built for various computing platforms, which
will be good enough for many users [79]. Still, a tool is needed that at user-install time systematically
searches a very large parameter space of tuning parameters to pick the best values, where users can
“dial” the search effort from quick to exhaustive and then choose different levels of search effort for
different routines depending on which are more important. Sophisticated data modeling techniques
may be used to minimize search time [99].
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Beyond these development activities, the following research tasks are being performed, which should
influence and improve the development.

1. As discussed in section 3 emerging architectures offer parallelism at many different levels, from multi-
core chips to vector processors to SMPs to distributed memory machines to clusters, many of which
will appear simultaneously in one computing system. Alongside these layers is the current software hi-
erarchy in ScaLAPACK: BLAS, BLACS, PBLAS, LAPACK and ScaLAPACK. An investigation needs
to be done to decide how to best map these software layers to the hardware layers. For example, should
a single BLAS call use all the parallelism available in an SMP and its multicore chips, or should the
BLAS call just use the multicore chips with individual ScaLAPACK processes mapping to different
SMP nodes? The number of possible combinations is large and growing. These mappings have to
be explored to identify the most effective ones, using performance modeling to both measure progress
(what fraction of peak is reached?) and limit the search space.

2. There is extensive research in other high performance programming languages funded by DOE, NSA
and the DARPA HPCS program. UPC [30], Titanium [103], CAF [78], Fortress [1], X10 [87] and
Cascade [29] are all languages under active development, and are being designed for high productivity
SWE on high peformance machines. It is natural to ask if these are appropriate programming languages
for ScaLAPACK, especially for the more asynchronous algorithms that may be fastest and for more
fine-grained architectures like Blue Gene. Prototype selected ScaLAPACK codes will be provided in
some of these languages to assess their utility.

3. Further automating the production of the Sca/LAPACK software is a worthy goal. One can envision
expressing each algorithm once in a sufficiently high level language and then having a compiler (or
source-to-source translator) automatically produce versions for any architecture or programming in-
terface. Work in this direction includes [59]. The hope is that by limiting the scope to dense linear
algebra, the translation problem will be so simplified that writing the translator pays off in being able
to create the many needed versions of the code. But there are a number of open research problems
that need to be solved for such an approach to work. First, it has been demonstrated for one-sided
factorizations (eg LU, Cholesky and QR) but not on more complex algorithms like some two-sided
ones needed by eigenproblems, including the successive-band-reduction (SBR) schemes discussed in
section 4. Secondly, much if not most of Sca/LAPACK involves iterative algorithms for eigenproblems
with different styles of parallelism, and it is not clear how to extend to these cases. Third, it is not
clear how to best express the more asynchronous algorithms that can achieve the highest performance;
this appears to involve either more sophisticated compiler analysis of more synchronous code (which
this approach hoped to avoid) or a different way of expressing dependencies. In particular, one may
want to use one of the programming languages mentioned above. Finally, it is not clear how to best
exploit the multiple levels of parallelism discussed above, i.e. which should be handled by the high-level
algorithm, the programming language, the compiler, the various library levels (BLAS, PBLAS) and so
on. These are worthy research goals to solve before using this technique for development.

4. Performance tuning may be very time consuming if implemented in a brute force manner, by running
and timing many algorithms for all parameter values in a large search space. A number of users have
already expressed concern about installation time and difficulty, when this additional tuning may occur.
Based on earlier experience [99], it is possible to use statistical models to both limit the search space
and more accurately determine the optimal parameters at run time.

5. In a dynamically changing cluster environment, a call to Sca/LAPACK might be run locally and
sequentially, or remotely on one or more processors chosen at call-time. The use of performance
models will be available with dynamically updated parameters (based on system load) to choose the
right subset of the cluster to use, including the cost of moving the problem to a different subset and
moving the answer back. This will help achieve performance predictability.

6.3 Multithreading

With the number of cores on multicore chips expected to reach tens in a few years, efficient implementations
of numerical libraries using shared memory programming models is of high interest. The current message
passing paradigm used in ScaLAPACK and elsewhere introduces unnecessary memory overhead and memory
copy operations, which degrade performance, along with the making it harder to schedule operations that
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Figure 1: Different possible factorization schemes: right-looking with no lookahead, right-looking with a
lookahead of 1, left-looking (right-looking with maximum lookahead). Arrows show data dependencies.

could be done in parallel. Limiting the use of shared memory to fork-join parallelism (perhaps with OpenMP)
or to its use within the BLAS does not address all these issues.

On the other hand, a number of goals can be achieved much more easily in shared memory than on
distributed memory systems. The most striking simplification is no need for data partitioning, which can
be replaced by work partitioning. Still, cache locality has to be preserved and, in this aspect, the locality of
the two dimensional block cyclic (or perhaps recursive) layout cannot be eliminated.

There are several established programming models for shared memory systems appropriate for different
levels of parallelism in the applications with the the client/server, work-crew, and pipeline being the most
established ones. Since matrix factorizations are rich in data dependencies, the pipeline seems to be the most
applicable model. Another advantage of pipelining is its match to hardware for streaming data processing,
like the IBM Cell Broadband Engine. To achieve efficiency we must avoid pipeline stalls (also called bubbles)
when data dependencies block execution. The next paragraph illustrates this approach for LU factorization.

LU and other matrix factorization have left-looking and right-looking formulations [44]. It has even been
observed that transition between the two can be done by automatic code transformations [76], although
more powerful methods than simple dependency analysis is necessary. It is known that lookahead can be
used to improve performance, by performing panel factorizations in parallel with the update to the trailing
matrix from the previous step of the algorithm [92]. The lookahead can be of arbitrary depth; this fact is
exploiting by the LINPACK benchmark [45].

We observe that the right-looking and the left-looking formulations are two extremes of a spectrum of
possible execution paths, with the lookahead providing a smooth transition between them. We regard the
right-looking formulation as having zero lookahead, and the left-looking formulation as having maximum
lookahead; see figure 1.

The deeper the lookahead, the faster panels can be factorized and the more matrix multiplications are
accumulated at the end of a factorization. Shallow lookaheads introduce pipeline stalls, or bubbles, at the end
of a factorization. On the other hand, deep lookaheads introduce bubbles at the beginning of a factorization.
Any fixed depth lookahead may stall the pipeline at both the beginning and at the end of execution.

Recent experiments show that pipeline stalls can be greatly reduced if unlimited lookahead is allowed
and the lookahead panel factorizations are dynamically scheduled in such a way that their issues do not stall
the pipeline. Dynamic work scheduling can easily and elegantly be implemented on shared memory, whereas
it is a much more complex undertaking in a distributed memory arrangements. It is also worth observing
that distributed memory implementations do not favor deep lookaheads due to storage overhead, which is

13



1 2 4 8 16 32 64
10

0

10
1

10
2

LU factorization, n=8000

# of processors

tim
e 

(s
)

Figure 2: Scalability of the LU factorization for ScaLAPACK (pdgetrf) for a matrix of size n = 8, 000.

1 2 4 8 16
10

1

10
2

10
3

num. of processors

T
im

e 
(s

ec
.)

Eigenvalue problem for n=4000

 

 

bx
dc
qr
mrrr

4 8 16 32 64
10

2

10
3

10
4

10
5

num. of processors

T
im

e 
(s

ec
.)

Eigenvalue problem for n=12000

 

 

bx
dc
qr
mrrr

Figure 3: Scalability of the Symmetric Eigenvalue Solver routines in ScaLAPACK (pdsyev) with a matrix
of size 4,000 (left) and one of size 12,000 (right). Four different methods for the tridiagonal eigensolve have
been tested: the BX (pdsyevx), QR (pdsyev), DC (pdsyevd) and MRRR (pdsyevr).

not a problem in shared memory environments.

7 Performance

We give a few recent performance results for ScaLAPACK driver routines on recent architectures. We discuss
strong scalability, i.e. we keep the problem size constant while increasing the number of processors.

Figure 2 gives the time to solution for a factoring a linear system of equations of size n = 8, 000 on a
cluster of dual processor 64 bit AMD Opterons interconnected with a Gigabit ethernet. As the number of
processors increases from 1 to 64, the time decreases from 110 sec (3.1 GFlops) to 9 sec (37.0 GFlops1.)

Figure 3 gives the time to solution to find the eigenvalue and eigenvectors of two symmetric matrices,
one of size n = 4, 000, the other of size 12, 000. The number of processors grows from 1 to 16 in the n = 4000
case and from 4 to 64 in the n = 12000 case. The machine used a cluster of dual processor 64 bit Intel
Xeon EMTs interconnected with a Myrinet MX interconnect. The matrices are generated randomly using
the same generator as in the Linpack Benchmark, and so have random eigenvalue distributions with no tight
clusters.

1Thanks to Emmanuel Jeannot for sharing the result.
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[47] Z. Drmač and K. Veselić. New fast and accurate Jacobi SVD algorithm. Technical report, Dept. of
Mathematics, University of Zagreb, 2004.
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