
AAECC
DOI 10.1007/s00200-007-0035-z

2LEV-D2P4: a package of high-performance
preconditioners for scientific and engineering
applications

Alfredo Buttari · Pasqua D’Ambra ·
Daniela di Serafino · Salvatore Filippone

Received: 22 December 2005 / Revised: 25 October 2006
© Springer-Verlag 2007

Abstract We present a package of parallel preconditioners which implements
one-level and two-level Domain Decomposition algorithms on the top of the
PSBLAS library for sparse matrix computations. The package, named 2LEV-
D2P4 (Two-LEVel Domain Decomposition Parallel Preconditioners Package
based on PSBLAS), currently includes various versions of additive Schwarz
preconditioners that are combined with a coarse-level correction to obtain two-
level preconditioners. A pure algebraic formulation of the preconditioners is
considered. 2LEV-D2P4 has been written in Fortran 95, exploiting features
such as abstract data type creation, functional overloading and dynamic mem-
ory management, while providing a smooth path towards the integration in
legacy application codes. The package, used with Krylov solvers implemented

A. Buttari
Innovative Computing Lab, Department of Computer Science,
University of Tennessee at Knoxville,
1122 Volunteer Blvd. Knoxville, TN 37996, USA
e-mail: buttari@cs.utk.edu

P. D’Ambra (B)
Institute for High-Performance Computing and Networking, CNR,
Via Pietro Castellino 111, 80131 Naples, Italy
e-mail: pasqua.dambra@na.icar.cnr.it

D. di Serafino
Department of Mathematics, Second University of Naples,
Via Vivaldi 43, 81100 Caserta, Italy
e-mail: daniela.diserafino@unina2.it

S. Filippone
Department of Mechanical Engineering, University of Rome “Tor Vergata”,
Viale del Politecnico, 00133 Rome, Italy
e-mail: salvatore.filippone@uniroma2.it

A. Buttari et al.

in PSBLAS, has been tested on large-scale linear systems arising from model
problems and real applications, showing its effectiveness.

Keywords Parallel numerical software · Algebraic two-level preconditioners ·
Sparse linear algebra

1 Introduction

The solution of large and sparse linear systems,

Ax = b, A ∈ �n×n, x, b ∈ �n, (1)

is often the main computational kernel of large-scale applications in science
and engineering. These systems typically arise from the discretization of partial
differential equations (PDEs), but they may also come from applications in
diverse areas such as circuits analysis, chemical engineering, queueing systems
and economic models. Krylov iterative solvers coupled with suitable precon-
ditioners are often the methods of choice for their solution, especially when
the matrix dimension reaches the order of 106–108, as in 3D multiphysics and
multiscale simulations.

Over the last few years substantial efforts have been expended in developing
parallel algorithms and software implementing Krylov methods and precon-
ditioners, in order to provide computational scientists with effective tools for
building their application codes.

In this paper, we present a package of preconditioners for high-performance
architectures, based on Domain Decomposition algorithms of Schwarz type.
It is implemented on top of Parallel Sparse BLAS (PSBLAS) [16], a library
for sparse basic linear algebra operations that provides parallel versions of the
Sparse BLAS computational kernels proposed in [15] and auxiliary routines for
the creation and management of distributed sparse matrices. Our package cur-
rently includes different versions of one-level and two-level Schwarz precondi-
tioners [6,7,9,21]; therefore, it has been named 2LEV-D2P4, that is Two-LEVel
Domain Decomposition Parallel Preconditioners Package based on PSBLAS.
It has been written in Fortran 95, to exploit modern features of this language,
while allowing an easy integration in (Fortran) legacy application codes.

The paper is organized as follows: in Sect. 2 we review the algebraic for-
mulation of the considered preconditioners; in Sect. 3 we outline the software
architecture and the data structures of 2LEV-D2P4 and in Sect. 4 we present
performance results obtained by applying to large-scale matrices different pre-
conditioners available in the package; finally, we draw our conclusions in Sect. 5.

2 Preconditioner formulation

Let G = (W, E) be the adjacency graph associated with the coefficient matrix
A of the linear system (1); here W and E are the vertex set and the edge set,

2LEV-D2P4: a package of high-performance preconditioners

respectively, and we are assuming that the sparsity pattern of A is symmetric.
Two vertices are called adjacent if there is an edge connecting them. We also say
that two matrix rows are adjacent if this property holds for the corresponding
vertices. A δ-overlap partition of W can be defined recursively. A 0-overlap par-
tition consists of m disjoint nonempty sets W0

i ⊂ W such that ∪m
i=1W0

i = W. For
δ > 0, the δ-overlap partition which corresponds to the 0-overlap one consists
of the sets Wδ

i ⊃ Wδ−1
i obtained by including the vertices that are adjacent to

any vertex in Wδ−1
i . Let nδ

i be the size of Wδ
i and Rδ

i ∈ �nδ
i ×n the restriction

operator that maps a vector v ∈ �n onto the vector vδ
i ∈ �nδ

i containing the
components of v corresponding to the vertices in Wδ

i . The transpose of Rδ
i is a

prolongation operator from �nδ
i to �n. The matrix Aδ

i = Rδ
i A(Rδ

i)
T ∈ �nδ

i ×nδ
i

can be regarded as a restriction of A corresponding to the set Wδ
i .

The classical Additive Schwarz (AS) preconditioner is defined by

M−1
AS =

m∑

i=1

(Rδ
i)

T(Aδ
i)

−1Rδ
i , (2)

while the Restricted AS (RAS) and AS with Harmonic extension (ASH) variants
are defined by

M−1
RAS =

m∑

i=1

(R̃0
i)

T(Aδ
i)

−1Rδ
i , M−1

ASH =
m∑

i=1

(Rδ
i)

T(Aδ
i)

−1R̃0
i ,

where R̃0
i ∈ �nδ

i ×n is obtained by zeroing the rows of Rδ
i identified by the vertices

in Wδ
i \W0

i . For all the AS preconditioners Aδ
i is assumed to be nonsingular. The

application of the preconditioner (2) with a Krylov solver requires the solution
of a system of the form MASz = v, that corresponds to the following steps:

vi = Rδ
i v, i = 1, . . . , m, (3)

solve Aδ
i wi = vi, i = 1, . . . , m, (4)

z =
m∑

i=1

(Rδ
i)

Twi. (5)

In RAS Rδ
i in (5) is replaced by R̃0

i , while in ASH Rδ
i in (3) is replaced by R̃0

i .
The AS preconditioners exhibit an intrinsic parallelism, since the computa-

tions concerning different subdomains can be performed by different proces-
sors. On the other hand, the convergence theory for the AS preconditioners
shows that, when they are used in conjunction with a Krylov subspace method,
the convergence rapidly improves as the overlap δ increases, while it deteri-
orates as the number m of subsets Wδ

i grows. Therefore, in a parallel setting,
the AS preconditioners are often used in conjuction with some coarse space,
where the original linear system can be approximated to provide a suitable

A. Buttari et al.

improvement to the solution [8,9,21]. The use of this space introduces some
extra work that has a sequential nature, but is necessary for developing scalable
preconditioning algorithms.

In a pure algebraic setting, a coarse-space approximation AC of the matrix A
is usually built with a Galerkin approach [21]. Given a set WC of coarse vertices,
with size nC, and a suitable restriction operator RC ∈ �nC×n, AC is defined as
AC = RCART

C and the coarse-space correction matrix to be combined with the
AS preconditioners is obtained as

M−1
C = RT

CA−1
C RC, (6)

where AC is assumed to be nonsingular. WC and RC may be built by using a
smoothed aggregation technique [3,23,24]. To build WC, the vertices of W are
grouped into disjoint subsets, which are then assumed as the coarse-space verti-
ces. The transpose of RC is built starting from a piecewise constant interpolation
operator P, from �nC to �n, and applying to P a smoother, in order to remove
spurious oscillatory components from the range of the prolongator.

MC can be combined with any AS preconditioner (henceforth denoted by
M1L), in either an additive or a multiplicative way, to obtain two-level precon-
ditioners. The additive combination leads to

M−1
2LA = M−1

C + M−1
1L ,

which corresponds to applying the coarse-level correction and the basic AS
preconditioner independently and then summing up the results. An example
of multiplicative combination is given by the following hybrid preconditioner,
that we refer to as 2LH-post

M−1
2LH-post = M−1

1L +
(

I − M−1
1L A

)
M−1

C .

This corresponds to applying first the coarse-level correction and then, i.e. as
post-smoother, the basic AS preconditioner

w = M−1
C v,

z = w + M−1
1L (v − Aw).

Other two-level hybrid preconditioners are obtained by applying M1L as pre-
smoother or pre- and post-smoother.

3 Software architecture and data structures

The main thrust of our research effort has been to develop a package of parallel
Schwarz preconditioners based on standard kernels for sparse linear algebra
operations. The choice of PSBLAS has been motivated by the need of having

2LEV-D2P4: a package of high-performance preconditioners

type psb_dspmat_type
integer :: m, k
character :: fida(5), descra(10)
integer :: infoa(psb_ifa_size_)
real(kind(1.d0)), pointer :: aspk(:)=>null()
integer, pointer :: ia1(:)=>null(), ia2(:)=>null()
integer, pointer :: pr(:)=>null(), pl(:)=>null()

end type psb_dspmat_type

Fig. 1 Sparse matrix data type

a portable, efficient and modular software infrastructure, that provides also a
smooth path for integration in application codes [2,17]. 2LEV-D2P4 has been
designed to fully exploit the existing functionalities of the PSBLAS library; how-
ever, its implementation has required some extensions of the existing PSBLAS
kernels.

The package has a multi-layered software architecture where three main
layers can be identified. The lower layer consists of the original and the new
PSBLAS kernels, the middle one implements the construction and applica-
tion phases of the preconditioners and the upper one provides a uniform and
easy-to-use interface to all the preconditioners.

3.1 Lower layer

PSBLAS provides basic operators needed to implement iterative methods for
the solution of sparse linear systems on distributed-memory parallel computers.
The library is written in Fortran 95, exploiting modern features such as facilities
for data encapsulation and abstract data type creation, functional overloading
and dynamic memory management, which allow the development of a modular
source code, while maintaining the serial efficiency of Fortran kernels. Inter-
process data communications are performed using BLACS [13] and MPI [22].

PSBLAS supports a general row-block distribution of sparse matrices, with
conformal distribution of vectors and dense matrices. Two main distributed data
structures, implemented as Fortran 95 derived data types, are used to hold the
information concerning a distributed sparse matrix: the Sparse Matrix and the
Communication Descriptor.

The Sparse Matrix data type is reported in Fig. 1; the main components of the
data type include the array aspk containing the nonzero entries in the matrix
rows assigned to the local processor, while the arrays ia1 and ia2 contain the
corresponding row and column indices, in a format determined by the labels
contained in fida and descra, thus providing run-time polymorphism. Addi-
tional auxiliary information may be stored in infoa, depending on the storage
format used.

The Communication Descriptor is an essential data structure for handling
communication operations pertaining to the implementation of a solver for a
specific matrix instance. It is logically associated with the sparsity pattern of
the matrix as distributed on the parallel machine. We assume that there is a

A. Buttari et al.

type psb_desc_type
integer, pointer :: matrix_data(:)=>null()
integer, pointer :: halo_index(:)=>null()
integer, pointer :: overlap_index(:)=>null(), overlap_elem(:)=>null()
integer, pointer :: loc_to_glob(:)=>null(), glob_to_loc(:)=>null()
end type psb_desc_type

Fig. 2 Communication descriptor data type

global (row) index space {1, . . . , N}, which is partitioned among the processors;
we further assume that during computations each processor p refers to its own
subset of the index space by means of a contiguous local numbering, 1, . . . , Np.

The contents of this data structure, shown in Fig. 2, are divided in three
groups

• matrix_data, that contains general information about the global matrix,
such as the total number of rows and columns, the number of rows stored on
the current processor, and the number of boundary rows, i.e. of local rows
that are adjacent to rows owned by different processors;

• halo_index, overlap_index and overlap_elem, that contain pro-
cessed lists of indices to be used in the communication operations among
processors, such as the indices of adjacent rows owned by other processors
and the indices of boundary rows that are replicated in other processors.

• loc_to_glob and glob_to_loc, that are used to handle the mapping
between local and global indices;

The contents of these data structures have been described here for the sake
of completeness, but the user actually needs never consider them directly. An
important part of the PSBLAS library is in fact devoted to auxiliary data and
environment management routines that take care of building the data struc-
tures. These routines only require from the user the choice of the global index
space allocation and a list of matrix entries.

The PSBLAS library also contains the computational kernels needed to
implement Krylov subspace iterations, such as sparse-matrix by vector product,
dot product and vector sum. All computations are performed by means of an
implementation of the serial sparse BLAS proposal of [15].

As previously mentioned, the construction of the one-level AS precondi-
tioners has required the extension of the set of auxiliary routines, to build the
matrices Aδ

i . Routines have been developed to build an extended descriptor
and to enlarge A0

i in each processor, i.e. to gather the rows of the matrix A
that correspond to the indices in Wδ

i \W0
i . This functionality can be used in a

more general context, e.g. to build extended stencils, that are often required
by numerical simulations involving PDEs. The construction of the coarse-level
matrix AC and its application has required the extension of the set of PSBLAS
sequential kernels with routines performing sparse matrix diagonal scaling,
sparse matrix transpose and sparse matrix by sparse matrix multiplication. The
last two operations have been implemented by integrating into PSBLAS the
SMMP software [1]. We note that, although the sparse matrix multiplication is
not considered in the last SBLAS standard, the possibility of its future inclusion

2LEV-D2P4: a package of high-performance preconditioners

type psb_dbaseprc_type
type(psb_dspmat_type), pointer :: av(:) => null()
real(kind(1.d0)), pointer :: d(:) => null()
type(psb_desc_type), pointer :: desc_data => null()
integer, pointer :: iprcparm(:) => null()
real(kind(1.d0)), pointer :: dprcparm(:) => null()
integer, pointer :: mlia(:) => null()
integer, pointer :: nlaggr(:) => null()
type(psb_dspmat_type), pointer :: aorig => null()
real(kind(1.d0)), pointer :: dorig(:) => null()

end type psb_dbaseprc_type

type psb_dprec_type
type(psb_dbaseprc_type), pointer :: baseprecv(:) => null()
integer :: prec, base_prec

end type psb_dprec_type

Fig. 3 Preconditioner data types

has been foreseen by the BLAS Technical Forum [14]. Further details on the
extension of PSBLAS can be found in [4,10].

3.2 Middle layer

The middle layer of 2LEV-D2P4 consists of the routines that implement the
construction and the application phases of the preconditioners. A key issue in
the implementation of this layer has been the definition of a Preconditioner data
structure (see Fig. 3), that reuses the basic PSBLAS data structures to exploit
the functionalities of the PSBLAS computational and auxiliary routines.

The basic idea is to have a psb_dbaseprc_type data type that holds
a generic one-level “base” preconditioner; its contents are described by the
entries in iprcparm, defining the type of preconditioner, how many layers of
overlap are considered, which kind of factorization is employed and so on. The
corresponding sparse factors L and U, are contained in the arrays av and d,
and the associated descriptor is in desc_data.

For the two-level preconditioners, thepsb_dprec_type data structure con-
tains an array of two base preconditioner data types, pointed by baseprecv,
that are associated to the fine and coarse levels. In the entry corresponding
to the coarse level, mlia and nlaggr hold the mapping between the lower
level indices and the upper level aggregates. When a smoothed aggregation
is employed (again signaled by the contents of iprcparm), the aggregation
operators needed to move between the levels are stored into additional entries
of av, together with the coarse matrix and its factors. Finally, we note that
aorig is a pointer to the lower level matrix A that allows the application of
the residual operator to be used in a multiplicative multilevel framework; this
avoids that the routine applying a preconditioner to a vector has to reference
explicitly in its interface the system matrix A, which would be cumbersome for
cases such as block-Jacobi (i.e. AS with overlap 0) in which there is no need
to reference it. We note that implementing the multilevel preconditioner as a

A. Buttari et al.

vector of base preconditioners enables to reuse the routines for building and
applying the preconditioner clearly separating the mapping between levels.

The construction of the one-level preconditioners has been implemented in
two main steps: the identification of the overlap indices needed to build Aδ

i ,
through the algorithm described in [4], and the enlargment of the matrix A0

i ,
through a new auxiliary PSBLAS routine mentioned in Sect. 3.1. For the con-
struction of the coarse matrix AC the smoothed aggregation technique [3,24]
has been chosen. This requires the implementation of three main tasks, detailed
in [10]: a parallel decoupled aggregation procedure, to build the coarse-space
vertex set WC from the original vertex set W; the application of a damped Jacobi
smoother to a simple piecewise constant interpolation operator, to obtain the
coarse-to-fine prolongation operator RC; the construction of the coarse matrix
AC = RCART

C, where AC can be distributed among the processors or replicated
on each of them. The latter two steps have been performed by using the new
sequential sparse matrix operators integrated into PSBLAS.

The application of the preconditioners has been implemented by exploiting
different PSBLAS kernels. Sparse matrix management routines are used to
perform the steps (3) and (5) of the basic AS preconditioners, while the parallel
sparse matrix by vector multiplication and dense vector sum routines are used
to apply the coarse-level correction matrix (6) and to combine it with the one-
level preconditioners. The solution of the system (4), involving the matrices
Aδ

i , is accomplished by either the ILU or the LU factorization. The sequential
ILU routine available in PSBLAS is used in the former case; an interface to
UMFPACK [12], version 4.4, has been developed to deal with the latter case.
The same options are available for the system involving AC, when this matrix is
replicated among the processors. On the other hand, to solve the coarse-level
systems when AC is distributed, a block-Jacobi routine has been developed,
that uses the ILU or the LU factorization on the coarse matrix diagonal blocks
held by the processors.

3.3 Upper layer

At the upper layer of 2LEV-D2P4, two black-box routines encapsulate all the
functionalities for the construction and the application of any of the one-level
and two-level preconditioners. The values of the parameters that define a spe-
cific preconditioner may be set by means of a third routine.

To build a preconditioner, a user of 2LEV-D2P4 first sets the preconditioner
parameters, through the routine psb_precset, and then creates and defines
the Preconditioner data structure, through psb_precbld. The APIs of these
routines are shown in Fig. 4. In the psb_precset API, the main input param-
eters are the Preconditioner data structure, named prec, and the ptype string
variable, defining the choice of the preconditioner made by the user. Currently,
the following choices are available: no preconditioner, Jacobi, block-Jacobi
(special case of one-level Schwarz), one-level Schwarz and two-level Schwarz
preconditioners. The different items of the iv optional array are used to specify

2LEV-D2P4: a package of high-performance preconditioners

subroutine psb_precset(prec,ptype,info,iv,rs,rv)
type(psb_dprec_type), intent(inout) :: prec
character(len=*), intent(in) :: ptype
integer, intent(out) :: info
integer, optional, intent(in) :: iv(:)
real(kind(1.d0)), optional, intent(in) :: rs
real(kind(1.d0)), optional, intent(in) :: rv(:)

end subroutine psb_precset

subroutine psb_precbld(a,prec,desc_a,info,upd)
integer, intent(out) :: info
type(psb_dspmat_type), intent(in), target :: a
type(psb_dprec_type),intent(inout) :: prec
type(psb_desc_type), intent(in) :: desc_a
character, intent(in), optional :: upd

end subroutine psb_precbld

Fig. 4 APIs of the routines for the preconditioner setup

subroutine psb_precaply(prec,x,y,desc_data,info,trans,work)
type(psb_desc_type), intent(in) :: desc_data
type(psb_dprec_type), intent(in) :: prec
real(kind(0.d0)), intent(inout) :: x(:), y(:)
integer, intent(out) :: info
character(len=1), optional :: trans
real(kind(0.d0)), intent(inout), optional, target :: work(:)

end subroutine psb_dprecaply

Fig. 5 API of the routine for the preconditioner application

the parameters of the Schwarz preconditioners. For the one-level precondition-
ers, the entries specify the number of overlap layers, the types of restriction
(Rδ

i or R̃0
i) and prolongation, that define the AS variants, and the type of fac-

torization to be employed. For the two-level preconditioners, the user first sets
the parameters of the fine level, and afterwards the parameters concerning the
coarse-level correction. The user may specify the type of two-level framework
(additive or multiplicative), details of the aggregation algorithm, details on the
application of the one-level preconditioner (as pre-smoother, post-smoother or
both), the coarse matrix storage (distributed or replicated), the type of solver to
be employed at the coarse level and related details. Default values are provided
for all the optional parameters.

Once the preconditioner has been built, it may be applied at each iteration of
a Krylov solver by calling the routine psb_prcaply, which has the API shown
in Fig. 5. This routine computes y = op(M−1) x, where M is the previously built
preconditioner, stored in the prec data structure, and op denotes the matrix
itself or its transpose, according to the value of trans.

An example of use of 2LH-post, using RAS with overlap 1 as basic pre-
conditioner, a distributed coarse matrix and four block-Jacobi sweeps with the
UMFPACK LU factorization on the blocks, is sketched in Fig. 6. In this exam-
ple, the preconditioner is coupled with the BiCGSTAB solver implemented
in PSBLAS. More details on the use of the routines for the setup and the
application of the preconditioners can be found in [5].

A. Buttari et al.

! 2LEV-D2P4 example program
use psb_sparse_mod

! sparse matrices
type(psb_dspmat_type) :: a
type(psb_desc_type) :: desc_a
type(psb_dprec_type) :: pre

!
...

! read and assemble matrix A and right-hand
! side vector b
...

! set preconditioner options
novr = 1
nsweep = 4
call psb_precset(pre,’asm’,iv=(/novr,halo_,none_/))
call psb_precset(pre,’ml’,&

& iv=(/mult_ml_prec_,post_smooth_,loc_aggr_,mat_distr_,&
& f_umf_,nsweep/))

!
! build preconditioner
call psb_precbld(a,pre,desc_a,info)

!
! set solver parameters
...

! solve Ax=b with preconditioned BiCGSTAB
call psb_bicgstab(a,pre,b,x,tol,desc_a,info)
...

Fig. 6 Example of use of 2LEV-D2P4

Table 1 Dimension and
number of nonzeros of the
test matrices

Matrix Dimension Nonzeros

shipsec5 179, 860 4, 598, 604
thm-rod 3, 180, 184 15, 818, 394
thm-plate 600, 000 2, 996, 800

4 Performance results

The package 2LEV-D2P4 has been tested on different large-scale matrices, aris-
ing either from real applications or from model problems. For the sake of space,
we show here only the results concerning selected matrices and preconditioners.

Three matrices are considered, named shipsec5, thm-rod and thm-plate. The
first one comes from a ship modelling application (DNV-PARASOL ship sec-
tion 5-1999-01-15) and is available from the University of Florida Sparse Matrix
Collection [11]. The matrix thm-rod arises from an industrial application, model-
ling the steady-state thermal diffusion in a copper rod; the problem is discretized
by using a finite volume cell-centered scheme on an unstructured tetrahedral
mesh. Finally, the matrix thm-plate arises from a central finite-difference discret-
ization, on a regular mesh, of the equation describing the steady-state thermal
diffusion in a homogeneous plate. The dimension and the number of nonzeros
of the three matrices are reported in Table 1.

We show the results concerning RAS and 2LH-post with RAS at the fine
level, that turn out to be the most effective among the one-level and the two-
level preconditioners, respectively. Three variants of 2LH-post are considered,

2LEV-D2P4: a package of high-performance preconditioners

differing in the coarse-space correction. In the ones named 2LH-DI and 2LH-
DU the coarse matrix is distributed among the processors and four block-Jacobi
sweeps are applied to the corresponding system; the number of sweeps has been
determined experimentally, as the one that generally minimizes the execution
time. At each block-Jacobi sweep, the ILU factorization from PSBLAS and
the LU factorization from UMFPACK are used by 2LH-DI and 2LH-DU,
respectively, to deal with the diagonal blocks of the coarse matrix held by each
processor. In the remaining variant, named 2LH-RU, the coarse-space matrix
is replicated on all the processors and the corresponding system is solved by
using the UMFPACK LU factorization. In all the preconditioners, the RAS
subdomain systems are solved by ILU. The results concerning the overlaps 0
and 1 are reported.

The preconditioners have been applied as right preconditioners with the
BiCGSTAB solver available in PSBLAS, choosing the null vector as starting
guess and the vector of all 1’s as right-hand side. The iterations have been
stopped when the ratio between the 2-norms of the residual and of the right-
hand-side is less than 10−6; a maximum number of 5,000 iterations has been
also set, but it has been never reached.

Two data distributions have been considered for each matrix: a row-block
one, where each processor holds equal-sized disjoint blocks of consecutive rows
according to the well-known BLACS one-dimensional pure-block mapping, and
a distribution obtained by using the multilevel recursive bisection graph par-
titioning algorithm implemented in Metis [19]. For each problem we show the
results for the most efficient data distribution, i.e. the Metis distribution for
shipsec5 and thm-rod and the block one for thm-plate. Conformal distributions
have been applied to the right-hand side and solution vectors. Note that the data
distributions implicitly define domain decompositions such that the number of
subdomains is equal to the number of processors.

We performed a comparison between 2LEV-D2P4 and the ML package,
included in Trilinos [18], version 6.0 that implements algebraic multilevel
preconditioners based on the smoothed aggregation. Trilinos provides a C++
object-oriented framework where ML is interfaced with various solvers and
preconditioners, that can be used as smoothers, coarse-level solvers and outer
iterative solvers. Two ML versions of 2LH-post have been run, that use the RAS
implementation provided by Trilinos-AztecOO, a parallel decoupled smoothed
aggregation algorithm and different coarse-level solvers. The ILU factorization
has been applied within RAS; the coarse matrix has been either gathered in
a single processor and factorized by the UMFPACK LU implementation, or
distributed among the processors and factorized by the LU implementation
provided by SuperLU-DIST [20]. The RAS version provided by AztecOO has
been also compared with the corresponding one available in 2LEV-D2P4. In the
following the above three Trilinos preconditioners are referred to as Tril-2LH-
U, Tril-2LH-S and Tril-RAS. The AztecOO BiCGSTAB implementation has
been used as Krylov solver. The comparison has been performed on thm-plate,
which is a reference test case for multilevel Schwarz preconditioners.

A. Buttari et al.

Table 2 Number of iterations on shipsec5

shipsec5

np RAS 2LH-DI 2LH-DU

ov 0 ov 1 ov 0 ov 1 ov 0 ov 1

1 402 402 396 396 367 367
2 479 436 464 386 422 367
4 461 384 498 384 464 442
8 644 457 709 436 776 430

16 818 483 717 508 630 619
32 839 488 553 412 581 513
64 963 499 561 535 732 557

Table 3 Number of iterations on thm-rod

thm-rod

np RAS 2LH-DI 2LH-DU

ov 0 ov 1 ov 0 ov 1 ov 0 ov 1

1 120 120 36 36 − −
2 143 144 44 38 − −
4 162 142 41 39 − −
8 164 140 43 41 − −

16 173 149 42 38 19 19
32 166 147 42 37 22 21
64 162 151 39 41 23 22

All the tests have been carried out on a Beowulf-class cluster installed at the
Innovative Computing Laboratory of the University of Tennessee at Knoxville.
Each node of the cluster has an AMD Opteron dual-processor (model 240,
1.4 GHz), running the Debian Linux 3.1 operating system with kernel 2.6.13,
and 2 GBytes of memory; the nodes are connected with Myrinet network inter-
faces. We used a development snapshot of the GNU Compiler Collection ver-
sion 4.2, including C, C++ and Fortran 95 compilers, and the specific MPI
implementation for the Myrinet interface.

Tables 2, 3, 4 show, for all the test problems, the number of BiCGSTAB iter-
ations with the different preconditioners on np = 1, 2, 4, 8, 16, 32, 64 processors
(note that in Table 4 there is only one column for Tril-2LH-U and Tril-2LH-S,
since they have the same iteration counts). The corresponding execution times,
in seconds, are plotted in Figs. 7, 8, 9. The data concerning 2LH-RU on shipsec
and thm-rod and 2LH-DU on thm-rod with np = 1, 2, 4, 8 are missing, since
these cases could not be run due to excessive memory requirements for the
UMFPACK LU factorization.

With shipsec5, the use of a coarse-level correction does not result in an
improvement in terms of iterations, except in a few cases; instead, the number
of iterations of 2LH-DI and 2LH-DU is often greater than that of RAS. On the

2LEV-D2P4: a package of high-performance preconditioners

Table 4 Number of iterations on thm-plate

thm-plate

RAS Tril-RAS 2LH-DI 2LH-DU 2LH-RU Tril-2LH-U/S

np ov 0 ov 1 ov 0 ov 1 ov 0 ov 1 ov 0 ov 1 ov 0 ov 1 ov 0 ov 1

1 740 740 769 769 183 183 5 5 5 5 5 5
2 802 732 690 693 205 182 19 18 6 5 6 5
4 726 870 798 762 201 177 29 26 6 5 6 5
8 729 758 813 736 200 193 44 35 6 5 6 5

16 692 783 782 832 182 191 61 56 6 5 6 5
32 765 705 827 729 196 191 81 78 7 5 7 5
64 840 844 797 737 180 171 113 103 7 5 6 5

12 4 8 16 32 64
10

0

10
1

10
2

10
3

np

).ces(
e

mit
noit ucexela tot

shipsec5 (ov 0)

RAS
2LH−DI
2LH−DU

12 4 8 16 32 64
10

0

10
1

10
2

10
3

np

).ces(
e

mit
noitucexelatot

shipsec5 (ov 1)

RAS
2LH−DI
2LH−DU

Fig. 7 Execution times on shipsec5 (left overlap 0; right overlap 1)

other hand, a significant reduction of the iterations can be observed when RAS
goes from overlap 0 to overlap 1; on more than 8 processors, RAS generally
shows a number of iterations smaller than the 2LH-post versions. Accordingly,
the smallest execution times are generally obtained by RAS with overlap 1,
followed by RAS with overlap 0. Even when 2LH-DI and 2LH-DU have an
iteration count smaller than RAS, this is not enough to balance the large exe-
cution times needed for building and applying the coarse-space corrections.

The preconditioners behave differently on thm-rod and thm-plate, that come
from pure elliptic problems. With all the versions of 2LH-post, the number of
iterations is substantially reduced with respect to RAS; as expected, the more
accurate the solution of the coarse-level system, the stronger the reduction in
the number of iterations. In particular, with the thm-plate test case, the two-level
version that uses the LU factorization on the overall coarse matrix performs
a number of iterations that is less than 1% of the RAS one; the same holds
for Trilinos. With both test cases, the execution times of all the preconditioners
do not vary significantly with the overlap. On thm-rod, the smallest execution
times are obtained with 2LH-DI, where the cost of the coarse grid correction
is offset by the time gain resulting from the reduction of the iteration count.
This is not the case for 2LH-DU, where the cost of the LU factorization inside

A. Buttari et al.

12 4 8 16 32 64
10

0

10
1

10
2

10
3

np

thm−rod (ov 0)

RAS
2LH−DI
2LH−DU

12 4 8 16 32 64
10

0

10
1

10
2

10
3

np

thm−rod (ov 1)

RAS
2LH−DI
2LH−DU

).ces(
e

mit
noit ucexela tot

).ces(
e

mit
noit ucexelatot

Fig. 8 Execution times on thm-rod (left overlap 0; right overlap 1)

12 4 8 16 32 64
10

0

10
1

10
2

10
3

np

).ces(
e

mit
noi tucex elat ot

thm−plate (ov 0)

RAS
2LH−DI
2LH−DU
2LH−RU
TRIL−RAS
TRIL−2LH−U
TRIL−2LH−S

RAS
2LH−DI
2LH−DU
2LH−RU
TRIL−RAS
TRIL−2LH−U
TRIL−2LH−S

12 4 8 16 32 64
10

0

10
1

10
2

10
3

np

).ces(
e

mit
n oi tucexel at ot

thm−plate (ov 1)

Fig. 9 Execution times on thm-plate (left overlap 0; right overlap 1)

the block-Jacobi procedure increases the execution time above that of RAS.
On thm-plate the smallest execution times are obtained with 2LH-RU when up
to 4 processors are used, and with 2LH-DU when more processors are used;
with large numbers of processors 2LH-DI also outperforms 2LH-RU. These
results show that the performance of the two-level preconditioners depends
on a tradeoff between the accuracy and the cost of the coarse-level correction.
RAS is slower than all the two-level preconditioners, except 2LH-RU on 32
and 64 processors.

By comparing RAS and Tril-RAS on thm-plate, we see that RAS generally
outperforms Tril-RAS with overlap 0, except on 64 processors, where they have
about the same execution time. The two preconditioners lead to very similar
execution times with overlap 1, except on 64 processors, where TRIL-RAS is
slightly faster. We also note that the number of iterations is significantly differ-
ent for the two solvers. Indeed, a detailed analysis has shown that for this test
case the number of iterations is quite sensitive to the parallel algorithm used
for the computation of the dot products, which is different in PSBLAS and
AztecOO. The situation is very different when the two-level preconditioners
are considered. The time plots of 2LH-RU and Tril-2LH-U have similar behav-
iours, but 2LH-RU is much faster than the Trilinos counterpart for both overlap

2LEV-D2P4: a package of high-performance preconditioners

12 4 8 16 32 64
0

10

20

30

40

50

60

np

pudeeps
shipsec5 (ov 0)

RAS
2LH−DI
2LH−DU

12 4 8 16 32 64
0

10

20

30

40

50

60

np

pudeeps

shipsec5 (ov 1)

RAS
2LH−DI
2LH−DU

Fig. 10 Speedup on shipsec5 (left overlap 0; right overlap 1)

0 and 1. Tril-2LH-S and 2LH-RU have close execution times, except for 4 and
8 processors, on which the time of Tril-2LH-S is much geater than expected. In
general, none of these two-level preconditioners is able to get a time decrease
as the number of processors grows: we note also that the 2LH-RU, Tril-2LH-U
and Tril-2LH-S preconditioners give essentially the same iteration counts, since
the coarse-level correction removes the dot product effects mentioned above.

In Figs. 10, 11, 12 the speedup values corresponding to the previous execu-
tion times are plotted. For thm-rod the speedup of 2LH-DU is computed with
respect to the execution time on 16 processors. On shipsec5 all the precondi-
tioners show a satisfactory speedup; in particular, RAS with overlap 1, which
leads to the smallest execution time, has a speedup of 22 on 32 processors and
of 38 on 64 processors. On thm-rod, RAS and 2LH-DI achieve good speedups;
for example, with 64 processors and overlap 0, we obtain speedups of 45 and
40, respectively. For the thm-plate test case, high speedup values are obtained
by RAS, 2LH-DI and Tril-RAS; with overlap 0, their values on 64 processors
are 54, 46 and 59, respectively. On the other hand, the fastest preconditioner,
i.e. 2LH-DU, achieves smaller speedup values (e.g. around 9 on 64 processors,
with overlap 0 and 1); this is due to the large increase in the number of iterations,
and hence in the execution time, with the number of processors. No gain in terms
of execution time is obtained with 2LH-RU and Tril-2LH-U on more than 4 pro-
cessors and with Tril-2LH-S on more than 2 processors. This confirms that the
use of distributed inexact coarse-level corrections pays off in a parallel setting.

5 Conclusions and future work

In this paper, we have described 2LEV-D2P4, a package of one-level and two-
level algebraic Schwarz preconditioners for high-performance computers, based
on the PSBLAS library. We have provided a general overview of the package,
focusing on its software architecture and data structures, functionalities and
user interface. We have also presented performance results on large-scale prob-
lems, showing the effectiveness of 2LEV-D2P4. We note that the choice of a

A. Buttari et al.

12 4 8 16 32 64
0

10

20

30

40

50

60

np

pudeeps
thm−rod (ov 0)

RAS
2LH−DI
2LH−DU

12 4 8 16 32 64
0

10

20

30

40

50

60

np

pudeeps

thm−rod (ov 1)

RAS
2LH−DI
2LH−DU

Fig. 11 Speedup on thm-rod (left overlap 0; right overlap 1)

12 4 8 16 32 64
0

10

20

30

40

50

60

np

pudeeps

pu dee ps
thm−plate (ov 0)

RAS
2LH−DI
2LH−DU
2LH−RU
TRIL−RAS
TRIL−2LH−U
TRIL−2LH−S

12 4 8 16 32 64
0

10

20

30

40

50

60

np

thm−plate (ov 1)

RAS
2LH−DI
2LH−DU
2LH−RU
TRIL−RAS
TRIL−2LH−U
TRIL−2LH−S

Fig. 12 Speedup on thm-plate (left overlap 0; right overlap 1)

portable, efficient and modular infrastructure such as PSBLAS has allowed the
development of a layered software package, that can be easily maintained and
extended.

Future work includes the extension of the package to multilevel Schwarz pre-
conditioners and the integration and testing of the preconditioners inside engi-
neering applications; we will also address the inclusion of other factorizations,
such as ILU(n) and ILU with threshold, and more sophisticated aggregation
algorithms.

Acknowledgments We thank Jack Dongarra for the usage of the machine on which the results of
Sect. 4 have been obtained. We thank also Stefano Toninel and David Schmidt for providing the
test case concerning the thermal diffusion in a copper rod. Finally, we thank the referees for their
advice, that helped us to improve the quality of the paper.

References

1. Bank, R.E., Douglas, C.C.: SMMP: sparse matrix multiplication package. Adv. Comput.
Math. 1, 127–137 (1993)

2. Bella, G., Filippone, S., De Maio, A., Testa, M.: A simulation model for forest fires. In: Dongarra,
K.M.J., Wasniewski, J. (eds.) Proceedings of PARA04 Workshop on State of the Art in Scientific
Computing, pp. 546–553. Springer, Heidelberg (2005)

2LEV-D2P4: a package of high-performance preconditioners

3. Brezina, M., Vaněk, P.: A black-box iterative solver based on a two-level Schwarz
method. Computing 63, 233–263 (1999)

4. Buttari, A., D’Ambra, P., di Serafino, D., Filippone, S.: Extending PSBLAS to build parallel
schwarz preconditioners. In: Dongarra, K.M.J., Wasniewski, J. (eds.) Proceedings of PARA04
Workshop on State of the Art in Scientific Computing, pp. 593–602. Springer, Heidelberg
(2005)

5. Buttari, A., D’Ambra, P., di Serafino, D., Filippone, S.: 2LEV-D2P4 User’s Guide (in
preparation)

6. Cai, X.C., Saad, Y.: Overlapping domain decomposition algorithms for general sparse matri-
ces. Num. Linear Algebra Appl. 3(3), 221–237 (1996)

7. Cai, X.C., Sarkis, M.: A restricted additive Schwarz preconditioner for general sparse linear
systems. SIAM J. Sci. Comput. 21(2), 792–797 (1999)

8. Cai, X.C., Widlund, O.B.: Domain decomposition algorithms for indefinite elliptic prob-
lems. SIAM J. Sci. Stat. Comput. 13(1), 243–258 (1992)

9. Chan, T., Mathew, T.: Domain decomposition algorithms. In: Iserles, A. (ed.) Acta Numerica,
pp. 61–143. Cambridge University Press, Cambridge (1994)

10. D’Ambra, P., di Serafino, D., Filippone, S.: On the development of PSBLAS-based parallel
two-level Schwarz preconditioners. Appl. Num. Math. (to appear) (2007)

11. Davis, T.: University of Florida sparse matrix collection home page. http://www.cise.ufl.edu/
research/sparse/matrices

12. Davis, T.A.: Algorithm 832: UMFPACK—an unsymmetric-pattern multifrontal method with
a column pre-ordering strategy. ACM Trans. Math. Softw. 30, 196–199 (2004)

13. Dongarra, J., Whaley, R.: A user’s guide to the BLACS v1.0. LAPACK working note #94
CS-95-281, University of Tennessee (1995) http://www.netlib.org/lapack/lawns

14. Duff, I., Heroux, M., Pozo, R.: An overview of the sparse basic linear algebra subprograms: the
new standard from the BLAS technical forum. ACM Trans. Math. Softw. 28(2), 239–267 (2002)

15. Duff, I., Marrone, M., Radicati, G., Vittoli, C.: Level 3 basic linear algebra subprograms for
sparse matrices: a user level interface. ACM Trans. Math. Softw. 23(3), 379–401 (1997)

16. Filippone, S., Colajanni, M.: PSBLAS: A library for parallel linear algebra computation on
sparse matrices. ACM Trans. Math. Softw. 26(4), 527–550 (2000)

17. Filippone, S., D’Ambra, P., Colajanni, M.: Using a parallel library of sparse linear algebra
in a fluid dynamics applications code on linux clusters. In: Joubert, G., Murli, A., Peters, F.,
Vanneschi, M. (eds.) Proceedings of Parallel Computing—Advances and Current Issues, pp.
441–448. Imperial College Press, London (2002)

18. Heroux, M.A., Bartlett, R.A., Howle, V.E., Hoekstra, R.J., Hu, J.J., Kolda, T.G., Lehoucq, R.B.,
Long, K.R., Pawlowski, R.P., Phipps, E.T., Salinger, A.G., Thornquist, H.K., Tuminaro, R.S.,
Willenbring, J.M., Williams, A., Stanley, K.S.: An overview of the Trilinos project. ACM Trans.
Math. Softw. 31(3), 397–423 (2005)

19. Karypis, G., Kumar, V.: A fast and high quality multilevel scheme for partitioning irregular
graphs. SIAM J. Sci. Comput. 20(1), 359–392 (1999)

20. Li, X.S., Demmel, J.W.: SuperLU-DIST: a scalable distributed-memory sparse direct solver for
unsymmetric linear systems. ACM Trans. Math. Softw. 29(2), 110–140 (2003)

21. Smith, B., Bjorstad, P., Gropp, W.: Domain decomposition: parallel multilevel Methods for
Elliptic Partial Differential Equations. Cambridge University Press, Cambridge (1996)

22. Snir, M., Otto, S., Huss-Lederman, S., Walker, D., Dongarra, J.: MPI: The Complete Reference,
The MPI Core, vol. 1, 2nd edn. MIT, Cambridge (1998)

23. Tuminaro, R.S., Tong, C.: Parallel smoothed aggregation multigrid: aggregation strategies on
massively parallel machines. In: Donnelley, J. (ed.) Proceedings of SuperComputing 2000.
Dallas, (2000)

24. Vaněk, P., Mandel, J., Brezina, M.: Algebraic multigrid by smoothed aggregation for second
and fourth order elliptic problems. Computing 56, 179–196 (1996)

	2LEV-D2P4: a package of high-performance preconditioners for scientific and engineering applications
	Abstract
	Introduction
	Preconditioner formulation
	Software architecture and data structures
	Lower layer
	Middle layer
	Upper layer
	Performance results
	Conclusions and future work
	Acknowledgments

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e00640065002f007000640066002f000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

