
http://hpc.sagepub.com

Computing Applications 
International Journal of High Performance

DOI: 10.1177/1094342007083801 
 2007; 21; 467 International Journal of High Performance Computing Applications

Alfredo Buttari, Victor Eijkhout, Julien Langou and Salvatore Filippone 
 Performance Optimization and Modeling of Blocked Sparse Kernels

http://hpc.sagepub.com/cgi/content/abstract/21/4/467
 The online version of this article can be found at:

 Published by:

http://www.sagepublications.com

 can be found at:International Journal of High Performance Computing Applications Additional services and information for 

 http://hpc.sagepub.com/cgi/alerts Email Alerts:

 http://hpc.sagepub.com/subscriptions Subscriptions:

 http://www.sagepub.com/journalsReprints.navReprints: 

 http://www.sagepub.com/journalsPermissions.navPermissions: 

 © 2007 SAGE Publications. All rights reserved. Not for commercial use or unauthorized distribution.
 by Alfredo Buttari on November 28, 2007 http://hpc.sagepub.comDownloaded from 

http://hpc.sagepub.com/cgi/alerts
http://hpc.sagepub.com/subscriptions
http://www.sagepub.com/journalsReprints.nav
http://www.sagepub.com/journalsPermissions.nav
http://hpc.sagepub.com


467MODELING OF BLOCKED SPARSE KERNELS

The International Journal of High Performance Computing Applications,
Volume 21, No. 4, Winter 2007, pp. 467–484
DOI: 10.1177/1094342007083801
© 2007 SAGE Publications Los Angeles, London, New Delhi and Singapore
Figures 1, 8–11 appear in color online: http://hpc.sagepub.com

PERFORMANCE OPTIMIZATION AND 
MODELING OF BLOCKED SPARSE 
KERNELS

Alfredo Buttari1

Victor Eijkhout2

Julien Langou3

Salvatore Filippone4

Abstract

We present a method for automatically selecting optimal
implementations of sparse matrix-vector operations. Our
software “AcCELS” (Accelerated Compress-storage Ele-
ments for Linear Solvers) involves a setup phase that
probes machine characteristics, and a run-time phase
where stored characteristics are combined with a meas-
ure of the actual sparse matrix to find the optimal kernel
implementation. We present a performance model that is
shown to be accurate over a large range of matrices.

Key words: optimization, sparse, matrix-vector product,
blocking, self-adaptivity

1 Introduction

Sparse linear algebra computations such as the matrix-
vector product or the solution of sparse linear systems lie
at the heart of many scientific disciplines ranging from
computational fluid dynamics to structural engineering,
electromagnetic analysis or even the study of econometric
models. The efficient implementation of these operations
is thus extremely important; however, it is extremely
challenging as well, since simple implementations of the
kernels typically give a performance that is only a fraction
of the peak speed.

At the heart of the performance problem is that sparse
operations are far more bandwidth-bound than dense ones.
Most processors have a memory subsystem considerably
slower than the processor, and this situation is not likely
to improve substantially any time soon. Consequently,
optimizations are needed, likely to be intricate and very
much dependent on architectural variations even between
closely related versions of the same processor.

The classical approach to the optimization problem
consists in hand tuning the software according to the
characteristics of the particular architecture which is
going to be used, and according to the expected charac-
teristics of the data. This approach yields good results but
poses a serious problems where portability is concerned,
since the software becomes tightly coupled to the under-
lying architecture.

The Self Adaptive Numerical Software efforts (Wha-
ley, Petitet and Dongarra 2001; Dongarra and Eijkhout
2003) aim to address this problem. The main idea behind
this new approach to numerical software optimization
consists in developing software that is able to adapt its
characteristics according to the properties of the underly-
ing hardware and of the input data.

We remark that the state of kernel optimization in
numerical linear algebra is more advanced in dense linear
algebra. The ATLAS software (Whaley, Petitet and Don-
garra 2001) gives near optimal performance on the
BLAS kernels. Factorizations of sparse matrices such as
MUMPS1 (Amestoy et al. 2001), SuperLU (Li 1996) and
UMFPACK2 (Davis and Duff 1999) also perform fairly
well, since these lead to gradually denser matrices through-
out the factorization. Kernel optimization leaves most to

1INNOVATIVE COMPUTING LABORATORY, UNIVERSITY 
OF TENNESSEE, KNOXVILLE, TN, 
(BUTTARI@CS.UTK.EDU)
2TEXAS ADVANCED COMPUTING LABORATORY, 
THE UNIVERSITY OF TEXAS AT AUSTIN
3DEPARTMENT OF MATHEMATICAL SCIENCES, 
UNIVERSITY OF COLORADO AT DENVER AND 
HEALTH SCIENCES CENTER, CO
4TOR VERGATA UNIVERSITY, ROME, ITALY

 © 2007 SAGE Publications. All rights reserved. Not for commercial use or unauthorized distribution.
 by Alfredo Buttari on November 28, 2007 http://hpc.sagepub.comDownloaded from 

http://hpc.sagepub.com


468 COMPUTING APPLICATIONS

be desired in the optimization of the components of itera-
tive solvers for sparse systems: the sparse matrix-vector
product and the sparse ILU solution.

In this document we describe the theory and the imple-
mentation of an adaptive strategy for sparse matrix-vec-
tor products. The optimization studied in this paper
consists in performing the operation by blocks instead of
by single entries, which allows for more optimizations,
thus possibly leading to faster performance than the sca-
lar – reference – implementation. The optimized parame-
ter is the choice of the block size, which is a function of
the particular matrix and the machine.

An approach along these lines has already been studied
by Vuduc (2003) and Im, Yelick and Vuduc (2004) and,
more recently, extended by Vuduc, Demmel and Yelik
(2005). We employ essentially the same optimizations,
but relax one restriction in that research namely block-
column alignment (see Section 3.1 for further details).
However, we have developed a more accurate perform-
ance model, which leads to better predictions of the block
size, and consequently higher performance. Both the
models presented in this paper and the model discussed by
Vuduc (2003), Im, Yelick and Vuduc (2004) and Vuduc,
Demmel and Yelik (2005) are built with a technique that
combines the results of a compile-time and a run-time
analysis phases. This approach has been first presented by
Im and Yelick (1998). We will compare the accuracy of
the models and the resulting performance numbers.

Other authors have proposed various techniques for
accelerating the sparse matrix-vector product. For instance,
Toledo (1997; and the references therein) mentions the
possibility of reordering the matrix (in particular with a
bandwidth-reducing algorithm) to reduce cache misses on
the input vector. Pinar and Heath (1999) also consider
reordering the matrix; they use it explicitly to find larger
blocks, which leads to a Traveling Salesman Problem.

While the reordering approach may undeniably yield
an improvement, we have two reasons for not consider-
ing it. Firstly, in the context of a numerical library for
sparse kernels, permuting the kernel operations has many
implications for the calling environment. Secondly, our
blocking strategy can equally well be applied to already
permuted matrices, so our discussion will be orthogonal
to this technique.

Blocking approaches have also been tried before. Both
Toledo (1997) and Vuduc (2003) proposed a solution where
a matrix is stored as a sum of differently blocked matrices,
for instance one with the 2 × 2 blocks, one with 2 × 1
blocks, and the third one with the remaining elements.

Our code will be released as the package AcCELS
(Accelerated Compressed-storage Elements for Linear
Solvers); the AcCELS package is also planned for inclu-
sion in a future release of the PSBLAS library (Filippone
and Colajanni 2000).

In addition to the matrix-vector product, we also give a
block-optimized version of the triangular solve opera-
tion. This routine is useful in direct solution methods (for
the backward and forward solve) and in the application
of some preconditioners.

In Section 2, we discuss general issues related to sparse
linear algebra. In Section 3, we present a storage format
that is appropriate for block sparse operations, and pro-
vide implementations for the matrix-vector product and
the sparse triangular solve. We then give results and a per-
formance analysis for the matrix-vector product. Because
of the very similar structure of the operations, this discus-
sion carries over to the Incomplete LU (ILU) solve.

2 Optimization of Sparse Matrix-Vector 
Operations

Matrix-vector multiplication and triangular system solv-
ing are very common operations in sparse linear algebra
computations. These two operations typically account for
more than half of the total time spent in the solution of a
linear sparse system using an iterative method; moreover,
they tend to perform very poorly on modern architec-
tures. There are several reasons for the low performance
of these two operations:

• Indirect addressing/Low ratio between floating-
point operations and memory operations: Sparse
matrices are stored in data structures where, in addi-
tion to the values of the entries, the row indices or the
column indices have to be explicitly stored. The most
common formats are Compressed Sparse Row (CSR)
and Compressed Sparse Column (CSC) storage (Barrett
et al. 1994). This means that, apart from the elements of
the matrix, the indices also have to be explicitly read
from memory which leads to a high consumption of the
CPU-memory bandwidth. Basically, there are two reads
per floating-point multiply-add operation. The ratio is
one in the dense case. Moreover retrieving and manipu-
lating the column/row indices information implies an
amount of integer operations that is not negligible.

• High per row overhead: The sparse matrix-vector
product compares unfavorably with the dense case
when we consider loop overhead. Since there typically
are far fewer elements per row in the sparse case, any
existing overhead is relatively more important in the
sparse case. This includes both the loop overhead, and
the cost of the write-back operation. Furthermore, the
inner loop has dynamically computed bounds, prevent-
ing the compiler from applying several optimizations.

• Low spatial locality: During the matrix-vector prod-
uct, in the case of CSR storage of the matrix (cf. CSC)
the discontinuous way the elements of the source vec-
tor (cf. destination vector) are accessed is a bottleneck
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469MODELING OF BLOCKED SPARSE KERNELS

that causes low spatial locality. Typically, we do not
expect any loaded cache lines to be fully utilized.

• Low temporal locality: In order to minimize memory
access, it is important to maximize the number of
times a data item is reused. During a sparse matrix-
vector product with a matrix stored in CSR format, the
elements of the matrix are accessed sequentially in
row order and are used once, while the elements of the
destination vector are accessed sequentially and each
of them is reused as many times as the number of ele-
ments in the corresponding row of the sparse matrix
which is optimal with respect to the temporal locality.
On the other hand, the elements of the source vector x
would be reused during the matrix-vector product when
their row indices belongs to two (or more) nearby rows
of the matrix A where there are elements on the corre-
sponding column. Such rows in general need not exist,
which implies that reuse of x is not guaranteed.

The optimization of the sparse matrix-vector operations
presented in this paper consists in tiling the matrix with
small dense blocks that are chosen to cover the nonzero
structure of the matrix.

Below, we will discuss in detail the way in which this
affects performance. For now we note two considerations
that need to be balanced:

• Use of small tiles causes an improvement in scalar per-
formance due to reduced indexing and consequent
reduction of data traffic, and improved spatial and tem-
poral locality. Since this is strictly a function of the archi-
tecture, albeit a nontrivial one, we evaluate this factor in
the installation phase of the AcCELS software.

• While increased block size leads to diminished over-
head in a regular manner, it also exhausts processor
resources in a less predictable way, so the installation
phase will be an empirical evaluation of the perform-
ance of different block sizes.

• Unfortunately, the number of operations increases due
to the operations performed on the zeros stored in the
dense tile blocks (this phenomenon will be referred to
as fill-in). There is then a trade-off with the theoreti-
cally optimal tile size, and this can only be decided in a
runtime phase, when the actual matrix structure is
known.

We will discuss both factors in considerable detail in the
remainder of this paper.

Previously, the ATLAS project (Whaley, Petitet and
Dongarra 2001) has been singularly successful in opti-
mizing dense linear algebra kernels. The ATLAS strategy
consists of optimizing the different algorithmic parame-
ters to the architecture in an installation phase. This optimi-
zation can be done completely at installation time, since

performance is a function only of architecture parameters,
and not of the actual matrix. In the sparse case, the struc-
ture of the matrix has a great influence on the optimal
parameters and the resulting performance, so a dynamic
phase is needed where the part of the analysis that
depends on the matrix sparsity structure is performed.

3 The Block Sparse Matrix Format

In this section we present the block sparse matrix storage
format, and the implementation of the matrix-vector mul-
tiply and the triangular solve kernels.

3.1 The BCSR Storage Format

The Block Compressed Sparse Row (BCSR) storage for-
mat for sparse matrices exploits the benefits of data
blocking in numerical computations. This format is simi-
lar to the CSR format except that single value elements
are replaced by dense blocks of general dimensions r × c.
Thus a BCSR format with parameters r = 1 and c = 1 is
equivalent to the CSR format. All the blocks are row-
aligned which implies that the first element of each block
(i.e. the upper leftmost element) has a global row index
that is a multiple of the block row dimension r. We can
choose whether or not to let the blocks also be column
aligned.

A matrix in BCSR format is thus stored as three vec-
tors: one that contains the dense blocks (whose elements
can be stored by row or by column); one that contains the
column index of each block (namely the column index of
the first element of each block); and one which contains
the pointers to the beginning of each block-row inside the
other two vectors (a block row is a row formed by blocks,
i.e. an aligned set of r consecutive rows).

Formally (in Fortran 1-based indexing),

for j=ptr[i]...ptr[i+1]-1:
 for k=1...(r*c):
      elem[(j-1)*r*c+k] contains
        A((i – 1) * r + (k – 1)/c + 1, col_ind[j] 
            + mod(k – 1, c) + 1).

All elements of the matrix A belong to a small dense
block; this means that when the number of nonzero ele-
ments is not enough to build up a block, we explicitly
store zero values to fill the empty spaces left in the
blocks. These added zero values are called fill-in ele-
ments.

Figure 1 (left) shows the tiling of a 12 × 12 matrix with
3 × 3 row and column aligned blocks. The black filled
circles are the nonzero elements of the matrix while the
empty circles are zero elements added. The fill-in ratio is
computed as the ratio between the total number of ele-
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470 COMPUTING APPLICATIONS

ments (original nonzeros plus fill-in zeros) and the
nonzero elements; for the matrix in Figure 1 (left) with 3
× 3 block size the fill-in ratio is 2.8. Performing the
matrix-vector product with the matrix in Figure 1 (left)
stored in BCSR format with 3 × 3 block size, 2.8 times as
many floating point operations as in the case of the CSR
format have to be executed.

Fortunately, in most sparse matrices the elements are
not randomly distributed, so such a block tiling often
makes sense. Either the matrices have an intrinsic block
structure (in which case the fill-in is zero), or elements
are sufficiently clustered so that it is possible to find a
block size for which the fill-in is low.

We can often get a lower fill-in ratio by relaxing the
limitation that the blocks be column aligned. Each block
inside a block row begins at a column index that is not
necessarily a multiple of the column size c. While this
choice increases the time spent during the matrix build-
ing phase since more possibilities have to be evaluated, it
has no extra overhead during the matrix-vector product
operation. Figure 1 (right) shows the tiling of the same
matrix with 3 × 3 row aligned but column unaligned
blocks. In this case the fill-in ratio is reduced to 2.36.

3.2 BCSR Kernels

In this section we describe the implementation of the
matrix-vector product and the triangular system solve for
a matrix stored in BCSR format.

3.2.1 The matrix-vector product The source code
for the matrix-vector product y ← y + Ax with A with a
tiling block size of 2 × 3 is given in Figure 2.The code
consists of two loops: the outer is over the number of
block-rows, while the inner loop is over the number of
blocks in each row. The partial result of the product of
each row is held in accumulators y0,y1 and the code for
the product of the small dense block with a piece of x is
completely unrolled. Each dense block is stored in the
array aspk in a row-wise order.

Fig. 1 Fill-in for 3 × 3 row and column aligned blocks (left) and row aligned but column unaligned blocks (right).

Fig. 2 Source code that implements the sparse matrix
vector product for matrices stored in BCSR format for
blocks of size 2 × 3.
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471MODELING OF BLOCKED SPARSE KERNELS

3.2.2 The triangular system solve The triangular sys-
tem solve operation can be performed on a triangular
matrix that possibly has a unit diagonal. In the case of a
unit diagonal we use the same data structure that we use
for a general sparse matrix; in the general case we force
the blocks on the diagonal to be squares of dimension r ×
r, thus we need an additional array D(:) to store them.
The code for the lower triangular system solve Lx = b in
the case of a non-unitary diagonal matrix with 2 × 3
blocks is given in Figure 3. The code is very similar to the
one for the matrix-vector product except for the fact that
at the end of each block-row there is a small triangular
system solution.

4 Performance Optimization and 
Modeling

In this section, we present a model for the performance of
the block sparse matrix-vector product. The time spent
for a matrix-vector product of a matrix A can be com-
puted as the ratio between the flop rate at which it is per-
formed and the number of floating-point operations
executed. Since the number of floating-point operations
performed is proportional to the fill-in ratio, we have:

(1)

where fillA(r, c) and perfA(r, c) are respectively the fill-in
ratio and the matrix-vector product performance rate for
a given r × c block size. Thus the best choice for the

block size (i.e. the one that results in the lowest time
spent for the matrix-vector product operation) is the one
that minimizes the ratio in equation (1). The exact knowl-
edge of the numerator and denominator in equation (1)
requires performing the matrix-vector product itself. An
exhaustive search through r, c space is thus possible, but
also quite expensive. We therefore limit ourselves to
computing some estimates for these two values instead.
We compute fill (r, c) and perf (r, c) for every relevant
block size and minimize the quantity

(2)

Section 4.1 explains how the fill-in is estimated; Section 4.2
deals with how the performance optimization is auto-
mated.

4.1 Estimating the Fill-In

The first step in predicting the performance of the matrix
vector product of a matrix A, with a r × c tiling, is esti-
mating the fill ratio fill (r, c).

We use the method proposed by Vuduc (2003): we
sample a number of matrix rows and compute their indi-
vidual fill-in. The fill-in of the whole matrix is assumed
to be the same as the fill-in of this sample. Specifically,
we introduce a parameter acc (0 ≤ acc ≤ 1) for the user to
control the number of rows used to estimate the fill-in.
Given a total number of block rows m =  for a
given value of r (the block-row dimension), the fill-in is
computed for m · acc block rows of the matrix.

Since a matrix need not be uniform in structure, we use
the following strategy to ensure that we sample fairly. First
we divide the matrix in m · acc parts; then in each of these
parts a block row is selected randomly. If A  is the subma-
trix composed of the selected m · acc block rows, the oper-
ation performed at this phase can be formalized as

(r,c) = (r,c).

A value of acc = 1 causes the whole matrix to be evalu-
ated, which is the most accurate choice, but it may be too
expensive. If the matrix has a regular pattern, or if setup
time is at a premium, a small value of acc can be taken.
The default value for acc used in AcCELS (and SPAR-
SITY) is acc = 0.2.

4.2 Modeling Block Matrix Performance

The second step in predicting the performance of the
matrix vector product of a matrix A, with a r × c tiling, is
estimating the expected performance perf  (r, c). We

Fig. 3 Source code that implements the sparse trian-
gular system solve for matrices stored in BCSR format
for blocks of size 2 × 3.

time
fillA r c,( )
perfA r c,( )
-------------------------∝

A′ A′

fillA′ r c,( )
perfA′ r c,( )
---------------------------.

′

n r⁄

′

fillA′ fillA′

A′
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472 COMPUTING APPLICATIONS

will first discuss abstractly the influence of the block size
parameters r, c, and then discuss two strategies for esti-
mating the performance of a full matrix-vector product.

4.2.1 Influence of the block size on performance
As is apparent from the code examples above, use of the
BCSR storage format improves the performance of the
matrix-vector product since r + c registers store elements
of both the source vector x and the destination vector y
for reuse, to minimize writes back to main memory.
What one would expect is that performance grows with r
and c until block size becomes too big and register spill-
ing happens. However, in practice, it is not possible to
predict the performance of using a certain block size the-
oretically, so (as we will see in the experiments in Sec-
tions 4.2.3 and 4.2.4), we have to perform an exhaustive
search through all the possible block sizes where r ranges
from 1 to rmax and c ranges from 1 to cmax. The default
values for rmax and cmax are 10. On all the matrices used in
our tests, block sizes greater than 10 give unreasonably

large fill-in, so there is no overall performance gain to be
expected.

In Figure 4 we plot the speed of the matrix-vector prod-
uct operation measured in Mflop/s obtained for all the
possible r × c block sizes from 1 × 1 to 10 × 10 on an
Itanium2 machine. The matrix used is a 1500 × 1500
dense matrix stored in BCSR format. The highest speedup
with respect to the reference CSR implementation (or the
1 × 1 BCSR) is obtained for the 8 × 8 block size, with a
value of 4.32. The effect of the register spilling is visible
on the upper rightmost part of the graph. With increasing
r there is increasing reuse of the source vector x, so we
expect an increase in performance.

The behavior observed here can be explained qualita-
tively to a degree, but is not easily modeled and predicted
quantitatively, hence the need for an exhaustive test. Fig-
ure 5 shows the same information as the previous image
for a SGI octane machine with a R12000 processor; also
in this case considerable speedup over the reference case
can be observed (specifically, 2.13 for 10 × 10 blocks).

Fig. 4 Matrix-vector product flop rate for a 1500 × 1500 dense matrix stored in BCSR format on an Itanium2 archi-
tecture.
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473MODELING OF BLOCKED SPARSE KERNELS

4.2.2 Interaction between block performance and
fill-in The results above do not by themselves deter-
mine the reduction of the time required to perform a
matrix-vector product operation on a real sparse matrix.
Sparse matrices, in fact, are affected by the presence of
fill-in elements when stored in the BCSR storage format.
This means that the amount of floating point operations
needed to perform the matrix-vector product operation
increases by a factor that is equal to the fill-in ratio. Fig-
ure 6 reports the flop rate (top left), fill-in ratio (top right)
and the matrix-vector product execution time (bottom
left) for a sparse matrix from a real world application
(matrix venkat01) on an Itanium2 machine.

Comparing the graphs in Figure 6 we can see that even
if the highest flop rate is for block dimension 8 × 8 (4.09
Mflop/s), the fastest matrix-vector product is for block
dimension 4 × 2 because of lower fill-in.

4.2.3 Performance modeling by dense matrix In this
section we present the implementation of the perform-
ance prediction method that is used by Vuduc (2003). In

that research the performance of a matrix-vector product
with a r × c tiled matrix is estimated to be that of a dense
matrix tiled with those values of r and c:

perf (r, c) = perfDense(r, c).

In effect, this ignores the influence of the sparsity struc-
ture, an assumption that we will argue below is unwar-
ranted.

Once perfDense(r, c) has been evaluated for the different
block sizes, the resulting flop rates of these tests are stored
in a file and then accessed during the preprocessing phase
of the matrix-vector products.

The block size selection (performed at run-time) for
this strategy consists of:

1. Reading the file built at installation-time phase that
contains the performance information perf (r, c)
for each r and c.

2. Estimating the fill-in fill (r, c) for each r and c,
as described in Section 4.1.

Fig. 5 Matrix-vector product flop rate for a 1500 × 1500 dense matrix stored in BCSR format on a MIPS architecture.

A′

A′

A′
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3. Selecting the block size for which 
has the minimum value.

We add an optimization to the strategy of Vuduc (2003).
Considering two block sizes r × c and r × c  such that (a)
c  is a sub-multiple of c and (b) the performance obtained
for the r × c  block is higher than the one for the r × c
block, then there is no point in considering the block size
r × c. If, for example, the 4 × 2 blocks size gives better
performance than the 4 × 4, it is not worth considering
this last block size because each small 4 × 4 block is the
same as two 4 × 2 blocks and then we would have exactly
the same fill-in but lower performance. The gain of
applying this tuning can be considerable.

4.2.4 AcCELS performance model The main rea-
son why the performance prediction method described
above might be inaccurate is that the performance of the
matrix-vector product is affected by the sparsity structure
of the matrix. Tests we have done show the influence of
two different parameters on the performance of the
matrix-vector product: the number of elements per row
and the spread of elements in each row.

Number of elements per row To understand the impact
that this parameter has on the performance of the matrix-
vector product let us consider the code of the matrix-vec-
tor product for the 1 × 1 block size case (that is the CSR
case) reported in Figure 7.

Fig. 6 This figure shows how different choices for r and c affect execution times through flop rates and fill-in ratios.
In each part of the figure assume that “white is better” (i.e. higher flop rates, lower fill-in ratios and lower execution
times). Top-left: how flop rate changes with different values of r and c. Top-right: how fill-in changes with r and c.
Bottom-left: how the execution times change with r and c.

fillA′ r c,( )
perfA′ r c,( )
---------------------------

′
′

′
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The product is performed row-wise and for each row
the partial result is held in an accumulator y0. At the end
of the loop for a given row, the value in the accumulator

is written back to memory. Thus for each row we have 2
× elem_row floating point operations, where elem_row is
the number of elements per row, and a write memory
access. Given that a write memory access is more expen-
sive than a floating-point operation, we expect a higher
performance for matrices with a large (average) number
of elements per row. This is confirmed by the data plot-
ted in Figure 8 which describes the flop rate of the
matrix-vector product for matrices with different num-
bers of elements per row in the case of a 1 × 1 block size.

The irregularities in the plot data for the real world
matrices can be attributed to the fact that individual rows
can have any number of nonzeros, perturbing the per-
formance with respect to a banded matrix. Also, the test
matrices can have arbitrary bandwidth, which influences
spatial locality in the matrix-vector product.

Fig. 7 Source code that implements the sparse matrix
vector product for matrices stored in CSR format.

Fig. 8 Flop rate for matrices with different number of elements per row. The curve plots the performance of banded
sparse matrices while the circles plot the performance rate for a set of sparse matrices from real-world applications.
An Itanium2 architecture was used.
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The AcCELS performance model takes the sparsity
characteristics of the matrix into account to have a better
estimate of the performance. The main aim is to better
predict performance for matrices with a low number of
elements per row. Matrices with a low number of ele-
ments per row are very common in practice: more than
50% of the matrices in the Matrix Market collection3 and
the University of Florida matrix collection4 have less
than 7 and less than 8 elements per row respectively (as
of this writing).

In Figure 8, using a dense matrix to model the per-
formance rate for a sparse matrix is equivalent to using
the asymptotic flop rate value. This is seen to lead to a
misprediction by a factor of 3 for more than half of the
sparse matrices available in those two standard collec-
tions. We expect that our improved model leads not only
to a better prediction of the performance for a given
block size but also enables us to have a better selection
strategy in practical cases.

A simple implementation of this strategy consists of
computing the curve in Figure 8 for each block size, and
storing it for reference. The main drawback of this
approach is that it needs considerable data storage that
needs to be accessed during the setup phase. Moreover
such an approach is prone to spurious timings resulting in
unreliable values of the flop rate. Instead we use a para-
metric model for these curves.

For each row in the sparse matrix-vector multiply, the
following operations are involved:

• loop overhead and index/bound calculations;
• one update of the result vector;
• a number of additions and multiplications proportional

to the number of nonzeros in the row.

This means that the time spent in the computations per-
formed on each (block) row can be modeled as c1 + c2 ·
elem_row where elem_row is the number of (block)
nonzeros; the number of operations is itself proportional
to elem_row. Finally the corresponding flop rate (number
of operations divided by time), perf  (r, c), is expected
to follow a hyperbola which we model as follows5:

(3)

where α is equal to perf (r, c), the performance rate for
the dense matrix. β/(elem_row + γ) is the correction we
propose to add in order to have a more accurate model. β
is negative, γ is positive, so that the negative correction
term gets larger for smaller elem_row.

Figure 9 shows that the curve that is measured for the
1 × 1 block size case, and the curve that is built for the

same block size case with the regression model (3), are
identical for our purposes.Similarly, we observe that the
curves plotted for the possible block sizes are all within a
few percent of the model (3).

Distance between the elements The distance between
the elements of a matrix influences both the spatial and
temporal locality in the accesses of the source vector. If
the elements in a row are close to each other, spatial local-
ity is improved: depending on the cache line length there
is a higher probability of having elements of the source
vector that are brought inside one cache line. The likeli-
hood of a source element being reused for a next matrix
row is also higher.

Conversely, column indices spread far apart are more
likely to lead to TLB conflicts.

The curves in Figure 10 plot flop rate versus number
of elements per row of matrices with different band-
width. The matrices are hand built and on each row the
column indices are randomly generated inside a band
around the diagonal.

In Figure 10 we observe that the matrices with the ele-
ments confined to a more narrow bandwidth (curve with

 markers) have higher performance than those with a
large bandwidth.

While clearly the distribution of the elements in a row
can affect the performance of the matrix-vector product,
Figure 8 indicates that such cases may be exceptional.
Also, while we were able to model the behavior induced by
varying numbers of elements per row (see below), mode-
ling the distribution proved elusive. For these reasons,
our model limits itself to the influence of the number of
nonzeros per row of the matrix.

4.3 Performance Modeling and Optimization 
Procedure

We summarize the above by giving a step-by-step descrip-
tion of the optimization process.

At installation-time, for each block size, the matrix-
vector product is performed for a small number of differ-
ent numbers of elements per row; the curve parameters
(α, β and γ) are then computed using a least-squares fit-
ting method and finally the parameters α, β and γ are tab-
ulated for all the block sizes.

The matrices used during this process are automati-
cally generated banded matrices, and the least squares fit-
ting method is composed of a linear regression phase and
a non-linear one: the linear regression phase is used to
build an initial guess for the non-linear one, then the iter-
ative non-linear technique is used to optimize the fitting.
The variables of the correction need to satisfy β ≤ 0 ≤ γ;
if the data are very messy, the regression might violate
this condition (this has happened on some architectures

A″

perfA″ α β
elem_row γ+
--------------------------------.+=
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for some block sizes). In such a case, we set β = γ = 0 and
α equal to the mean value of the computed performance
rates. This reduces our strategy to the one used by Vuduc
(2003) for these problematic cases.

With the information gathered at installation time, we
use our performance model at run-time to predict the per-
formance of a matrix-vector operation as follows. For
each (r, c) pair we evaluate the following steps:

• Let the fill-in ratio fill (r, c) be calculated as
described in Section 4.1.

• The parameters α, β and γ of the rational function
equation (3) are read from the file built at installation-
time. phase.

• The number of elements per row is computed as:

elem_row =  × fill (r, c) (4)

where nnz is the number of nonzero elements in the
matrix and m is the size of the matrix.

• The performance estimate is computed as:

(5)

Now the block size r × c is chosen such that the quantity
(1) is minimized.

4.4 Cost of the Dynamic Setup

Estimating the amount of fill-in for a given block size,
and subsequent conversion of a matrix to block storage,
is a relatively costly operation. While the exact cost
depends on the matrix, the architecture, and the value of
acc used, in our experiments on a collection of test matri-

Fig. 9 Comparison between the measured performance vs. number of elements per row for banded matrices (dots)
and the curve built with the regression method (curve). Itanium2 architecture was used.
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ces it rarely exceeded the cost of 10 matrix-vector prod-
ucts using the reference implementation. The difference
between the conversion cost for aligned and unaligned
blocks (see Section 3) was in general between a factor of
2 and 3. Our AcCELS software has a parameter for the
user to disable unaligned blocks.

5 Numerical Tests

In this section we report the results of our block-size
selection strategy compared with results obtained using
the SPARSITY software described by Vuduc (2003) and
Im, Yelick and Vuduc (2004). Table 1 shows the most
relevant characteristics of the architectures we used.

We start by devoting some attention to the proper con-
struction of a timer for the sparse operations.

5.1 Implementation of the Timing Routine

As a general principle, a timing routine should reflect the
conditions in which the code is used. In our case, we can-
not expect the matrix to stay resident in cache: even if the
matrix is small enough to fit inside the cache, the fact
that it is in general used in conjunction with other com-
putational routines (e.g. in an iterative solver) means that
the matrix is likely to be flushed from the cache between
applications of the product routine. Thus, a tester that
repeatedly applies a small matrix to an input vector will

Fig. 10 Flop rate versus number of elements per row for different bandwidths. The line with °°°° markers plots the per-
formance on banded matrices (i.e. the bandwidth is as low as possible), the one with × markers plots the perform-
ance on sparse matrices with bandwidth = 5000 while the one with ∆∆∆∆ markers plots the performance rate sparse
matrices with bandwidth = 50000. An Itanium2 architecture was used.
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give an unrealistically high flop rate since the matrix
stays resident in the cache.

We prevent artificially high flop rates by allocating a
data set larger than the largest cache size – in fact, to
account for cache associativity and random-replacement
strategies we allocate several times the cache size – and
filling this with multiple copies of the matrix-vector prob-
lem. All the matrices and vectors in the data set are the
same but a different memory area is used for each of them,
so that any two consecutive matrix-vector products will
be identical in behavior, but operating on different data.
The time for a single matrix-vector product is computed
as the average time for the matrix-vector product of all the
matrices in the data set. Figure 11 shows how data cache
influences the measure of performance. The curves plot
the performance of the matrix-vector product versus the
number of elements per row: the  -line reports the case
where the cache effect is not avoided (i.e. the data set that
includes only one matrix) while the × -line reports the
case where timings are performed on a data set larger than
the data cache size. As can be expected, the impact of the
cache is only visible for matrices small enough to fit in the
cache. Note that since the dimension of the matrix is
fixed, a larger number of elements per row means a higher
density and thus requires a larger memory.

Vuduc (2003) and Im, Yelick and Vuduc (2004) studied
matrices large enough to automatically flush the cache.
Given that some matrices in our test set have smaller dimen-
sions, and that newly released processors have increasingly
large caches, it is necessary to adopt a timer that is guaran-
teed to obtain reliable measurements for a truly portable
and “future-proof” package. Thus even when comparing
with performance obtained with SPARSITY we will refer
to the timings measured with our proposed timer.

Table 2 illustrates the importance of a well-designed
timer, as well as our performance model. This table gives
the predicted performance perf (r, c) of the dense matrix
model; the measured performance relates to the timing
method used by Vuduc (2003) and Im, Yelick and Vuduc
(2004); the actual performance is the performance meas-
ured with our improved timer. In each case, the block
size selected by the dense matrix model is used.

Numbers reported in this table are measured on an
Itanium2 architecture and are collected using four differ-
ent matrices whose characteristics try to capture the cases
where the timing method is inaccurate, or the model is
inaccurate, or both:

• raefsky: this is a large matrix (much larger than the
data cache size) with a high number of elements per
row. This means that both the timing method and the
block size selection strategy presented by Vuduc
(2003) and Im, Yelick and Vuduc (2004) should be
accurate. The error in the performance prediction is just
8% while the error in the performance measure is 1%.

• shyy161: this matrix is larger than the data cache size
so the performance measure is accurate enough (error
is 4%) while it has a low number of elements per row
and thus we expect the performance prediction based
on the dense matrix model to be wrong (error is 94%).
Such a large error in the performance prediction can be
explained by taking a look at the curve in Figure 9: the
basic selection strategy always predicts a performance
that has the value of the asymptote of the rational
curve even if the right value (in the leftmost part of the
curve) is much lower.

• mcfe: this is a small matrix with a relatively high
number of elements per row. This means that the tim-

Table 1
Details of the architectures used to test and tune the performance model presented.

AMD Athlon
1200

MIPS Power3 Itanium2

Proc. type AMD Athlon k6 MIPS R12000 IBM Power3 Genuine Intel
IA-64 Itanium2

Proc. freq. 1200 MHz 270 MHz 375 MHz 900 MHz

Cache size 64 KB L1
256 KB L2

32 KB L1
2 MB L2

64 KB L1
8 MB L2

32 KB L1
256 KB L2
1.5 MB L3

Memory size 256 MB 256 MB 1 GB 8 GB

OS GNU-Linux IRIX64 6.5 AIX 5.1 Red Hat
Linux 3.2.3

Compilers Intel
Compilers v9.0

MIPSpro
Compilers v7.41

IBM xlc and
IBM xlf v6.0

Intel
Compilers v9.0

°

A′
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ing method will be inaccurate (measured error is 34%)
while the error in performance prediction is low

enough (19%) to result in a successful optimal block
size selection.   

Fig. 11 Comparison between timings with (line with °°°° markers) and without (line with × markes) cache effects. This
data is computed using a banded sparse matrix on an Itanium2 machine.

Table 2
Predicted versus measured versus actual performance with SPARSITY code, using Itanium2 
architecture.

Matrix
Predicted

perf.
(Mflop/s)

Measured
perf.

(Mflop/s)

Actual
perf.

Mflop/s

Matrix
size

(MegaBytes)

Elem.
per row

raefsky3 1409 1315 1298 11.35 70.2

shyy161 720 386 370 2.51 4.3

mcfe 1152 1300 964 0.186 31.9

jpwh_911 397 308 182 0.045 6.1
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• jpwh_991: this is a small matrix with a low number of
elements per row. The timing measure has an error of
69% and the performance prediction has an error of
118%.

Table 3 reports predicted versus measured performance
for the same matrices with the AcCELS selection strat-
egy. The last column of this table contains the error of the
performance prediction which is considerably lower than
the error that affects the selection strategy that is based
solely on the dense matrix performance.

5.2 Comparison of the Two Selection Strategies

Tables 4, 5 and 6 report the timing for the matrix-vector
products for both AcCELS and SPARSITY software on
Itanium2, AMD K6 and Power3 architectures respec-
tively. For both packages we report the time with the

block size chosen by the selection strategy (respectively
the AcCELS and the SPARSITY ones) and the time with
the best-case block size. When there is an “=” sign it
means that the selection strategy hits the block size that
gives the best case time. In the last column we show the
speedup that can be obtained over the SPARSITY soft-
ware package using the AcCELS block size selection
method. Roughly speaking the last column reports the
ratio between the data in the fourth and second columns.

Note that the matrix-vector product operations have a
different performance depending on whether the matrix
is stored with aligned or unaligned blocks. Thus the best-
case block size (and thus the best time) is often different
between SPARSITY (column aligned) and AcCELS
(column unaligned).

These tables show that our performance model, equa-
tion (3), gives both a better performance estimation at a
given block size (see previous section), and a better block-

Table 3
Predicted versus actual performance with the AcCELS selection strategy.

Performance prediction error

Matrix Itanium2 MIPS Power3
AMD Athl.
1200 MHz

raefsky3 1% 2% 3% 1%

shyy161 7% 4% 9% 3%

mcfe 3% 2% 3% 4%

jpwh_911 2% 2% 4% 2%

Table 4
Time spent for a matrix-vector product with the selected block size and with the best-case block 
size for AcCELS and SPARSITY, using Itanium2 architecture.

Matrix

Time
AcCELS
selection

(sec)

Time
AcCELS

best-case
(sec)

Time
SPARSITY
selection

(sec)

Time
SPARSITY
best-case

(sec)

Speedup

raefsky3 2.25e–3 = 2.29e–3 = 1.01

shyy161 2.32e–3 = 3.01e–3 2.65e–3 1.30

mcfe 1.11e–4 = 1.05e–4 = 0.94

jpwh_991 5.77e–5 = 6.59e–5 5.79e–5 1.14

bayer02 5.97e–4 5.82e–4 5.91e–4 5.38e–4 0.98

saylr4 1.52e–4 = 1.89e–4 1.83e–4 1.24

ex11 2.70e–3 = 2.75e–3 = 1.01

memplus 7.92e–4 = 8.70e–4 8.08e–4 1.10

wang3 1.13e–3 = 1.44e–3 1.32e–3 1.27
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Table 5
Time spent for a matrix-vector product with the selected block size and with the best-case block 
size for AcCELS and SPARSITY, using AMD K6 architecture.

Matrix

Time
AcCELS
selection

(sec)

Time
AcCELS

best-case
(sec)

Time
SPARSITY
selection

(sec)

Time
SPARSITY
best-case

(sec)

Speedup

crystk03 2.03e–2 = 2.39e–2 = 1.17

orani_678 1.78e–3 = 2.82e–3 1.97e–3 1.58

rdist 1.98e–3 = 2.10e–3 2.04e–3 1.06

goodwin 7.68e–3 7.66e–3 8.42e–3 = 1.09

coater2 6.12e–3 = 6.73e–3 = 1.10

lhr10 5.96e–3 5.73e–3 6.51e–3 5.76e–4 1.09

ex11 1.81e–2 = 2.26e–2 2.14e–2 1.24

Table 6
Time spent for a matrix-vector product with the selected block size and with the best-case block 
size for AcCELS and SPARSITY, using Power3 architecture.

Matrix

Time
AcCELS
selection

(sec)

Time
AcCELS

best-case
(sec)

Time
SPARSITY
selection

(sec)

Time
SPARSITY
best-case

(sec)

Speedup

bayer02 1.90e–3 = 2.06e–3 1.84e–3 1.08

orani_67 1.38e–3 1.29e–3 2.82e–3 1.97e–3 2.04

saylr4 6.01e–4 = 7.07e–4 5.88e–4 1.17

shyy161 8.65e–3 = 1.09e–2 8.92e–3 1.26

ex11 1.51e–2 = 1.52e–2 = 1.00

lhr10 4.95e–3 4.91e–3 5.38e–3 4.77e–3 1.08

Table 7
The reduction in time required to perform the matrix-vector product operation using BCSR with the 
AcCELS automatic block size selection with respect to the reference CSR storage format.

SPMV time reduction

Matrix Itanium2 MIPS Power3
AMD Athl.
1200 MHz

s3rmt3m1 2.77 1.56 1.86 2.46

gemat11 2.13 1.19 1.64 1.28

pwt 1.90 1.00 1.23 1.09

bcsstm27 2.68 1.48 1.68 2.39

crystk02 2.66 1.46 1.76 2.71

olafu 2.80 1.49 1.60 2.81

raefsky3 4.09 1.74 1.69 3.64

goodwin 1.86 1.00 1.04 1.35

bai 2.36 1.13 1.33 1.56

bcsstk35 2.97 1.62 1.70 2.80
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size selection. Table 7 reports the time spent for a matrix-
vector product with the block size that is selected by the
selection strategy and the reference time (i.e. the time
with the 1 × 1 block size) for the Itanium2 architecture.
We can see that blocking gives a considerable speedup
for this class of matrix.

We note that in the installation phase, AcCELS per-
forms substantially more work than SPARSITY, because
of our more accurate model. The runtime selection of the
blocksize is slower by a factor or 2 or 3, though this is
largely the result of our using unaligned blocks, a feature
that can be deselected by the user.

6 Conclusions

The sparse matrix-vector product is one of the most per-
formance-critical elements of many applications. One
approach to increasing its flop rate is to tile the sparse
matrix with small dense blocks, since these can be handled
more efficiently than the general compressed row storage
format. This approach, already proposed by Vuduc (2003)
and Im, Yelick and Vuduc (2004), requires a static setup
phase as in ATLAS (Whaley, Petitet and Dongarra 2001),
but in addition a runtime analysis and conversion of the
sparse matrix. However, this latter phase can be amortized
over the many iterations of an iterative method and, in the
case of nonlinear method or time-stepping method, over
many iterative solves.

We gave a detailed analysis of the spatial and temporal
locality of blocked algorithms, relating it to processor ele-
ments such as cache lines, memory bandwidth and write-
back behavior, and TLB effects. We presented a perform-
ance model for the blocked algorithms that is a great
improvement in accuracy over earlier models. As a result,
our software also is more accurate in picking the optimal
blocksize: in nearly all cases the model predicts the actual
optimal blocksize.

Numerical tests given attest to the accuracy of our model,
and to the resulting higher performance.
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Notes
1 http://www.enseeiht.fr/lima/apo/MUMPS/

2 http://www.cise.ufl.edu/research/sparse/umfpack/

3 http://math.nist.gov/MatrixMarket/

4 http://www.cise.ufl.edu/research/sparse/matrices/

5 Strictly speaking, one of the three parameters can be elimi-
nated, since α · γ = –β. This models the constraint perf
(r, c) = 0. However, we keep the third parameter to better deal
with noisy or irregular data.
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