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Abstract. We describe some extensions to Parallel Sparse BLAS (PSBLAS),
a library of routines providing basic Linear Algebra operations needed to build
iterative sparse linear system solvers on distributed-memory parallel computers.
We focus on the implementation of parallel Additive Schwarz preconditioners,
widely used in the solution of linear systems arising from a variety of applications.
We report a performance analysis of these PSBLAS-based preconditioners on test
cases arising from automotive engine simulations. We also make a comparison
with equivalent software from the well-known PETSc library.

1 Introduction

Effective numerical simulations in many application fields, such as Computational Fluid
Dynamics, require fast and reliable numerical software to perform Sparse Linear Algebra
computations.

The PSBLAS library was designed to provide the kernels needed to build iterative
methods for the solution of sparse linear systems on distributed-memory parallel com-
puters [10]. It includes parallel versions of most of the Sparse BLAS computational
kernels proposed in [7] and a set of auxiliary routines for the creation and management
of distributed sparse matrix structures. The library provides also application routines
implementing some sparse Krylov solvers with Jacobi and block Jacobi precondition-
ers. The library routines have been proved to be powerful and flexible in restructuring a
complex CFD code, improving the accuracy and efficiency in the solution of the sparse
linear systems and implementing the boundary data exchanges arising in the numerical
simulation process [11]. PSBLAS is based on a SPMD programming model and uses
the Basic Linear Algebra Communication Subprograms (BLACS) [6] to manage inter-
process data exchange. The library is internally written in C and Fortran 77, but provides
high-level routine interfaces in Fortran 95. Current development is devoted to extending
PSBLAS with preconditioners suitable for fluid flow problems in automotive engine

J. Dongarra, K. Madsen, and J. Waśniewski (Eds.): PARA 2004, LNCS 3732, pp. 593–602, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



594 Alfredo Buttari et al.

modeling. A basic development guideline is to preserve as much as possible the origi-
nal PSBLAS software architecture while moving towards the new SBLAS standard [8].
In this work we focus on the extension for building Additive Schwarz precondition-
ers, widely used in the parallel iterative solution of linear systems arising from PDE
discretizations.

The paper is organized as follows. In Section 2 we give a brief description of Additive
Schwarz preconditioners. In Section 3 we discuss how the set of PSBLAS data structures
and routines has been extended to implement these preconditioners by reusing existing
PSBLAS computational routines. In Section 4 we present the results of experiments
devoted to analyze the performance of PSBLAS-based Schwarz preconditioners with
Krylov solvers on test matrices arising from automotive engine simulations; we also
show the results of comparisons with the widely used PETSc library [1]. Finally, in
Section 5, we draw some conclusions and future work.

2 An Overview of Additive Schwarz Preconditioners

Schwarz preconditioners are based on domain decomposition ideas originally introduced
in the context of variational solution of Partial Differential Equations (see [5,15]). We
focus on the algebraic formulation of Additive Schwarz preconditioners for the solution
of general sparse linear systems [2,14]; these are widely used with parallel Krylov
subspace solvers.

Given the linear system Ax = b, where A = (aij) ∈ �n×n is a nonsingular sparse
matrix with a symmetric non-zero pattern, let G = (W, E) be the adjacency graph of
A, where W = {1, 2, . . . , n} and E = {(i, j) : aij �= 0} are the vertex set and the edge
set, respectively. Two vertices are neighbours if an edge connects them. A 0-overlap
partition of W is just an ordinary partition of the graph, i.e. a set of m disjoint nonempty
subsets W 0

i ⊂ W such that ∪m
i=1W

0
i = W . A δ-overlap partition of W with δ > 0 can

be defined recursively by considering the sets W δ
i ⊃ W δ−1

i obtained by including the
vertices that are neighbours of the vertices in W δ−1

i . Let nδ
i be the size of W δ

i and Rδ
i the

nδ
i ×n matrix formed by the row vectors eT

j of the n×n identity matrix, with j ∈ W δ
i .

For each v ∈ �n, Rδ
i v is the vector containing the components of v corresponding to

the vertices in W δ
i , hence Rδ

i can be viewed as a restriction operator from �n to �nδ
i .

Likewise, the transpose matrix (Rδ
i )

T can be viewed as a prolongation operator from
�nδ

i to �n. The Additive Schwarz (AS) preconditioner, MAS , is then defined by

M−1
AS =

m∑

i=1

(Rδ
i )

T (Aδ
i )

−1Rδ
i ,

where the nδ
i × nδ

i matrix Aδ
i = Rδ

i A(Rδ
i )

T is obtained by considering the rows and
columns of A corresponding to the vertices in W δ

i .
When δ = 0 MAS is the well-known block Jacobi preconditioner. The convergence

theory for the AS preconditioner is well developed in the case of symmetric positive
definite matrices (see [5,15] and references therein). Roughly speaking, when the AS
preconditioner is used in conjunction with a Krylov subspace method, the convergence
rapidly improves as the overlap δ increases, while it deteriorates as the number m of
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subsets W δ
i grows. Theoretical results are available also in the case of nonsymmetric

and indefinite problems (see [4,15]).
Recently some variants of the AS preconditioner have been developed that outper-

form the classical AS for a large class of matrices, in terms of both convergence rate
and of computation and communication time on parallel distributed-memory comput-
ers [3,9,12]. In particular, the Restricted Additive Schwarz (RAS) preconditioner,MRAS ,
and the Additive Schwarz preconditioner with Harmonic extension (ASH), MASH , are
defined by

M−1
RAS =

m∑

i=1

(R̃0
i )

T (Aδ
i )

−1Rδ
i , M−1

ASH =
m∑

i=1

(Rδ
i )

T (Aδ
i )

−1R̃0
i ,

where R̃0
i is the nδ

i ×n matrix obtained by zeroing the rows of Rδ
i corresponding to the

vertices in W δ
i \W 0

i . The application of the AS preconditioner requires the solution of
m independent linear systems of the form

Aδ
i wi = Rδ

i v (1)

and then the computation of the sum

m∑

i=1

(Rδ
i )

T wi. (2)

In the RAS preconditioner Rδ
i in (2) is replaced by R̃0

i ; hence, in a parallel implementa-
tion where each processor holds the rows of A with indices in W 0

i and the corresponding
components of right-hand side and solution vectors, this sum does not require any com-
munication. Analogously, in the ASH preconditioner Rδ

i in equation (1) is replaced by
R̃0

i ; therefore, the computation of the right-hand side does not involve any data exchange
among processors.

In the applications, the exact solution of system (1) is often prohibitively expensive.
Thus, it is customary to substitute the matrix (Aδ

i )
−1 with an approximation (Kδ

i )−1,
computed by incomplete factorizations, such as ILU, or by iterative methods, such as
SSOR or Multigrid (see [5]).

3 Building and Applying AS Preconditioners in PSBLAS

We now review the basic operations involved in the Additive Schwarz preconditioners
from the point of view of parallel implementation through PSBLAS routines. We begin
by drawing a distinction between

Preconditioner Setup: the set of basic operations needed to identify W δ
i , to build Aδ

i

from A, and to compute Kδ
i from Aδ

i ;
Preconditioner Application: the set of basic operations needed to apply the restriction

operator Rδ
i to a given vector v, to compute (an approximation of) wi, by applying

(Kδ
i )−1 to the restricted vector, and, finally, to obtain sum (2).
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Before showing how PSBLAS has been extended to implement the Additive Schwarz
preconditioners described in Section 2, we briefly describe the main data structures
involved in the PSBLAS library. A general row-block distribution of sparse matrices is
supported by PSBLAS, with conformal distribution of dense vectors.

Sparse Matrix: Fortran 95 derived data type, called D_SPMAT, it includes all the in-
formation about the local part of a distributed sparse matrix and its storage mode,
following the Fortran 95 implementation of a sparse matrix in the sparse BLAS
standard of [7].

Communication Descriptor: Fortran 95 derived data type DESC_TYPE; it contains
a representation of the sets of indices involved in the parallel data distribution,
including the 1-overlap indices, i.e. the set W 1

i \W 0
i , that is preprocessed for the

data exchange needed in sparse matrix-vector products.

Existing PSBLAS computational routines implement the operations needed for the ap-
plication phase of AS preconditioners, provided that a representation of the δ-partition is
built and packaged into a new suitable data structure during the phase of preconditioner
setup. The next two sections are devoted to these issues.

3.1 PSBLAS Implementation of Preconditioner Application

To compute the right-hand side in (1) the restriction operator Rδ
i must be applied to a

vector v distributed among parallel processes conformally to the sparse matrix A. On each
process the action of Rδ

i corresponds to gathering the entries of v with indices belonging
to the set W δ

i \W 0
i . This is the semantics of the PSBLAS F90_PSHALO routine, which

updates the halo components of a vector, i.e. the components corresponding to the 1-
overlap indices. The same code can apply an arbitrary δ-overlap operator, if a suitable
auxiliary descriptor data structure is provided.

Likewise, the computation of sum (2) can be implemented through a suitable call to
the PSBLAS computational routine F90_PSOVRL; this routine can compute either the
sum, the average or the square root of the average of the vector entries that are replicated
in different processes according to an appropriate descriptor.

Finally, the computation of (Kδ
i )−1vδ

i , where vδ
i = Rδ

i v or vδ
i = R̃0

i v, can be
accomplished by two calls to the sparse block triangular solve routine F90_PSSPSM,
given a local (incomplete) factorization of Aδ

i .
Therefore, the functionalities needed to implement the application phase of the AS,

RAS and ASH preconditioners, in the routine F90_ASMAPPLY, are provided by ex-
isting computational PSBLAS routines, if an auxiliary descriptor DESC_DATA is built.
Thus, the main effort in implementing the preconditioners lies in the definition of a pre-
conditioner data structure and of routines for the preconditioner setup phase, as discussed
in Section 3.2.

3.2 PSBLAS Implementation of Preconditioner Setup

To implement the application of AS preconditioners we defined a data structure
PREC_DATA that includes in a single entity all the items involved in the application
of the preconditioner:
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TYPE PREC_DATA
INTEGER :: PREC
INTEGER :: N_OVR
TYPE(D_SPMAT) :: L, U
REAL(KIND(1.D0)), POINTER :: D(:)
TYPE(DESC_TYPE) :: DESC_DATA
END TYPE PREC_DATA

Fig. 1. Preconditioner data type

– a preconditioner identifier, PREC, and the number δ of overlap layers, N_OVR;
– two sparse matrices L and U, holding the lower and upper triangular factors of Kδ

i

(the diagonal of the upper factor is stored in a separate array, D);
– the auxiliary descriptor DESC_DATA, built from the sparse matrix A, according to
N_OVR.

This data structure has the Fortran 95 definition shown in Figure 1. Note that the sparse
matrix descriptor is kept separate from the preconditioner data; with this choice the
sparse matrix operations needed to implement a Krylov solver are independent of the
choice of the preconditioner.

The algorithm to setup an instance P of the PREC_DATA structure for AS, RAS or
ASH, with overlap N_OVR, is outlined in Figure 2. By definition the submatrices A0

i

identify the vertices in W 1
i ; the relevant indices are stored into the initial communication

descriptor. Given the set W 1
i , we may request the column indices of the non-zero entries

in the rows corresponding to W 1
i \W 0

i ; these in turn identify the set W 2
i , and so on.

All the communication is performed in the steps 4.2 and 6, while the other steps are
performed locally by each process. A new auxiliary routine, F90_DCSRSETUP, has
been developed to execute the steps 1–6. To compute the triangular factors of Kδ

i (step
7), the existing PSBLAS routine F90_DCSRLU, performing an ILU(0) factorization
of Aδ

i , is currently used. The two previous routines have been wrapped into a single
PSBLAS application routine, named F90_ASMBUILD.

It would be possible to build the matrices Aδ
i while building the auxiliary descriptor

DESC_DATA. Instead, we separated the two phases, thus providing the capability to
reuse the DESC_DATA component of an already computed preconditioner; this allows
efficient handling of common application situations where we have to solve multiple
linear systems with the same structure.

4 Numerical Experiments

The PSBLAS-based Additive Schwarz preconditioners, coupled with a BiCGSTAB
Krylov solver built on the top of PSBLAS, were tested on a set of matrices from auto-
motive engine simulations.

These matrices arise from the pressure correction equation in the implicit phase of
a semi-implicit algorithm (ICED-ALE [13]) for the solution of unsteady compressible
Navier-Stokes equations, implemented in the KIVA application software, as modified
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1. Initialize the descriptor P%PREC_DATAby copying the matrix descriptor DESC_A.
2. Initialize the overlap level: η = 0.
3. Initialize the local vertex set, W η

i = W 0
i , based on the current descriptor.

4. While ( η < N_OVR )
4.1 Increase the overlap: η = η + 1.
4.2 Build W η

i from W η−1
i , by adding the halo indices of Aη−1

i , and exchange
with other processors the column indices of the non-zero entries in the rows
corresponding to W η

i \W
η−1
i .

4.3 Compute the halo indices of Aη
i and store them into P%DESC_DATA.

Endwhile
5. If ( N_OVR > 0 ) Optimize the descriptor P%DESC_DATA and store it in its final

format.
6. Build the enlarged matrix Aδ

i , by exchanging rows with other processors.
7. Compute the triangular factors of the approximation Kδ

i of Aδ
i .

Fig. 2. Preconditioner setup algorithm

kivap1 (n = 86304, nnz = 1575568) kivap2 (n = 56904, nnz = 1028800)

Fig. 3. Sparsity patterns of the test matrices

in [11]. The test case is a simulation of a commercial direct injection diesel engine
featuring a bowl shaped piston, with a mesh containing approximately 100000 control
volumes; during the simulation mesh layers are activated/deactivated following the piston
movement. We show measurements for two matrices, kivap1 and kivap2, corresponding
to two different simulation stages. They have sizes 86304 and 56904, respectively, with
symmetric sparsity patterns and up to 19 non-zeroes per row (see Figure 3).

Numerical experiments were carried out on a Linux cluster, with 16 PCs connected
via a Fast Ethernet switch, at the Department of Mathematics of the Second University
of Naples. Each PC has a 600 MHz Pentium III processor, a memory of 256 MB and
an L2 cache of 256 KB. PSBLAS was installed on the top of the BLAS reference
implementation, BLACS 1.1 and mpich 1.2.5, using the gcc C compiler, version 2.96,
and the Intel Fortran compiler, version 7.1.

All the tests were performed using a row-block distribution of the matrices. Right-
hand side and solution vectors were distibuted conformally. The number m of vertex sets
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Table 1. Iteration counts of RAS-preconditioned BiCGSTAB

kivap1 kivap2
np PSBLAS PETSc PSBLAS PETSc

δ=0 δ=1 δ=2 δ=4 δ=0 δ=1 δ=2 δ=4 δ=0 δ=1 δ=2 δ=4 δ=0 δ=1 δ=2 δ=4

1 12 12 12 12 12 12 12 12 33 33 33 33 33 33 33 33
2 16 13 11 12 16 12 12 12 50 34 33 34 46 34 32 32
4 16 13 12 13 16 12 11 12 47 36 34 34 50 35 32 31
6 18 13 13 12 18 12 12 12 48 37 38 34 52 35 34 29
8 20 14 14 12 20 12 13 12 50 37 37 35 53 36 32 32

10 19 13 12 13 19 13 12 12 54 38 35 34 51 33 32 33
12 21 14 12 12 21 13 13 12 54 34 38 33 53 35 32 33
14 20 14 13 14 20 12 13 12 51 36 38 33 52 35 32 32
16 22 15 14 13 22 13 12 12 58 37 38 36 59 38 32 30

W δ
i used by the preconditioner was set equal to the number of processors; the right-hand

side and the initial approximation of the solution of each linear system were set equal
to the unit vector and the null vector, respectively. The preconditioners were applied
as right preconditioners. The BiCGSTAB iterations were stopped when the 2-norm of
the residual was reduced by a factor of 10−6 with respect to the initial residual, with a
maximum of 500 iterations.

We also compared the PSBLAS implementation of the RAS-preconditioned
BiCGSTAB solver with the corresponding implementation provided by the well-known
PETSc library [1], on the same test problems and with the same stopping criterion. The
experiments were performed using PETSc 2.1.6, compiled with gcc 2.96 and installed
on the top of mpich 1.2.5 and of the BLAS and LAPACK implementations provided
with the Linux Red Hat 7.1 distribution.

We report performance results with RAS; this was in general the most effective Ad-
ditive Schwarz variant, in accordance with the literature cited in Section 2. In Table 1 we
show the iteration counts of RAS-preconditioned BiCGSTAB for PSBLAS and PETSc
on both test problems, varying the number np of processors and the overlap δ. We see
that the number of iterations significantly decreases in passing from a 0-overlap to a
1-overlap partition, especially for kivap2, while it does not have relevant changes with
a further growth of the overlap. We note also that, for δ > 0, the number of iterations
is almost stable as the number of processes increases. This behaviour appears to be in
agreement with the sparsity pattern of the test matrices. The number of iterations of
PSBLAS is generally comparable with the one of PETSc. For kivap2, in a few cases
a difference of 5 or 6 iterations is observed, which is due to some differences in the
row-block distribution of the matrix and in the row ordering of the enlarged matrices Aδ

i

used by the two solvers.
In Figure 4 we show the execution times of the RAS-preconditioned BiCGSTAB

on the selected test cases, varying the number of processors. These times include also
the preconditioner setup times. As expected, the time usually decreases as the number
of processors increases; a slight time increase can be observed in a few cases, which
can be mainly attributed to the row-block distribution of the matrices. A more regular
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Fig. 4. Execution times of PSBLAS RAS-preconditioned BiCGSTAB

behaviour is expected by applying suitable graph partitioning algorithms to the initial
data distribution. For kivap1 the times are generally lower for overlap 0. Indeed, the
small decrease in the number of BiCGSTAB iterations, as the overlap grows, is not able
to balance the cost of the preconditioner setup phase. For kivap2, the reduction of the
number of iterations obtained with overlap 1 is able to compensate the setup cost, thus
leading to the smallest execution times.

Finally, in Figure 5 we compare the execution times of PSBLAS and PETSc. The
performance of the two solvers is generally comparable. PSBLAS is always faster on
a small number of processors, whereas for higher levels of overlap (2 and 4) PETSc
requires less execution time as the number of processors increases. A more detailed
analysis has shown that this behaviour is due to the smaller preconditioner setup time
of PETSc. This issue is currently under investigation, taking into account the different
choices implemented by PSBLAS and PETSc in the setup of the preconditioners.

5 Conclusions and Future Work

We presented some results of an ongoing activity devoted to updating and extending
PSBLAS, a parallel library providing basic Linear Algebra operations needed to build
iterative sparse linear system solvers on distributed-memory parallel computers. Moti-
vations for our work come from the flexibility and effectiveness shown by PSBLAS in
restructuring and parallelizing a legacy CFD code [11], still widely used in the automo-
tive engine application world, and also from the appearance of a new proposal for the
serial Sparse BLAS standard [8].

In this paper we focused on the extension of PSBLAS to implement different ver-
sions of Additive Schwarz preconditioners. On test problems from automotive engine
simulations the preconditioners showed performances comparable with those of other
well-established software. We are currently working on design and implementation is-
sues concerning the addition of a coarse-grid solution step to the basic Additive Schwarz
preconditioners, in order to build a two-level Schwarz preconditioning module.
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Fig. 5. Comparison of execution times of the PSBLAS and PETSc
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