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Abstract. FAST-EVP is a simulation tool for internal combustion en-
gines running on cluster platforms; it has evolved from the KIVA-3V
code base, but has been extensively rewritten making use of modern
linear solvers, parallel programming techniques and advanced physical
models.

The software is currently in use at the consulting firm NUMIDIA, and
has been applied to a diverse range of test cases from industry, obtaining
simulation results for complex geometries in short time frames.

1 Introduction

The growing concern with the environmental issues and the request of reduced
specific fuel consumption and increased specific power output are playing a sub-
stantial role on the development of automotive engines. Therefore, in the last
decade, the automotive industries have undergone a period of great changes
regarding the engines design and development methods with an increased com-
mitment to research by the industry. In particular, the use of CFD have revealed
to be of great support for both the design and the experimental work in order
to quickly achieve the projects targets while reducing the product development
costs. However, considerable work is still needed since CFD simulation of realis-
tic industrial applications may take many hours or even weeks that not always
agrees with the very short development times that are required to a new project
in order to be competitive in the market.

The KIVA code [10] solves the complete system of general time-dependent
Navier-Stokes equations and it is probably the most widely used code for internal
combustion engines modeling. Its success mainly depends on its open source na-
ture, which means having access to the source code. KIVA has been significantly
modified and improved by researchers worldwide, especially in the development
of sub-models to simulate the important physical processes that occurs in an
internal combustion engine (i.e. fuel-air mixture preparation and combustion).

In the following we will review the basic mathematical model of the Navier-
Stokes equations as discretized in our application; we will describe the approach
to the linear system solution based on the library routines from [8,7]. In particular
we outline the new developments in the spray dynamics and explicit flux phases
that resulted in the code being used today; finally, we show some experimental
results.
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2 Mathematical Model

The mathematical model of KIVA-3 is the complete system of general unsteady
Navier-Stokes equations, coupled with chemical kinetic and spray droplet dy-
namic models. In the following the equations for fluid motion are reported.

– Species continuity:

∂ρm

∂t
+ ∇ · (ρmu) = ∇ · [ρD∇(

ρm

ρ
)] + ρ̇c

m + ρ̇s
mδml (1)

where ρm is the mass density of species m, ρ is the total mass density, u is
the fluid velocity, ρ̇c

m is the source term due to chemistry, ρ̇s
m is the source

term due to spray and δ is the Dirac delta function.
– Total mass conservation:

∂ρ

∂t
+ ∇ · (ρu) = ρ̇s (2)

– Momentum conservation:

∂(ρu)
∂t

+ ∇ · (ρuu) = − 1
α2 ∇p − A0∇(

2
3
ρk) + ∇ · σ + Fs + ρg (3)

where σ is the viscous stress tensor, Fs is the rate of momentum gain per unit
volume due to spray and g is the constant specific body force. The quantity
A0 is zero in laminar calculations and unity when turbulence is considered.

– Internal energy conservation:

∂(ρI)
∂t

+∇· (ρIu) = −p∇·u+(1−A0)σ : ∇u−∇·J+A0ρε+ Q̇c + Q̇s (4)

where I is the specific internal energy, the symbol : indicates the matrix
product, J is the heat flux vector, Q̇c and Q̇s are the source terms due to
chemical heat release and spray interactions.

Furthermore the standard K − ε equations for the turbulence are considered,
including terms due to interaction with spray.

2.1 Numerical Method

The numerical method employed in KIVA-3 is based on a variable step implicit
Euler temporal finite difference scheme, where the time steps are chosen using
accuracy criteria. Each time step defines a cycle divided in three phases, cor-
responding to a physical splitting approach. In the first phase, spray dynamic
and chemical kinetic equations are solved, providing most of the source terms;
the other two phases are devoted to the solution of fluid motion equations [1].
The spatial discretization of the equations is based on a finite volume method ,
called the Arbitrary Lagrangian-Eulerian method [16], using a mesh in which
positions of the vertices of the cells may be arbitrarily specified functions of
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time. This approach allows a mixed Lagrangian-Eulerian flow description. In
the Lagrangian phase, the vertices of the cells move with the fluid velocity and
there is no convection across cell boundaries; the diffusion terms and the terms
associated with pressure wave propagation are implicitly solved by a modified
version of the SIMPLE (Semi Implicit Method for Pressure-Linked Equations)
algorithm [15].Upon convergence on pressure values, implicit solution of the diffu-
sion terms in the turbulence equations is approached. Finally, explicits methods,
using integral sub-multiple time-steps of the main computational time step, are
applied to solve the convective flow in the Eulerian phase.

3 Algorithmic Issues

One of the main objectives in our work on the KIVA code [7] was to show that
general purpose solvers, based on up-to-date numerical methods and developed
by experts, can be used in specific application codes, improving the quality of
numerical results and the flexibility of the codes as well as their efficiency.

The original KIVA code employs the Conjugate Residual method, one mem-
ber of the Krylov subspace projection family of methods [3,12,13,17]. Krylov
subspace methods originate from the Conjugate Gradient algorithm published
in 1952, but they became widely used only in the early 80s. Since then this field
has witnessed many advances, and many new methods have been developed es-
pecially for non-symmetric linear systems. The rate of convergence of any given
iterative method depends critically on the eigenvalue spectrum of the linear sys-
tem coefficient matrix. To improve the rate of convergence it is often necessary
to precondition it, i.e. to transform the system into an equivalent one having
better spectral properties. Thus our work started with the idea of introducing
new linear system solvers and more sophisticated preconditioners in the KIVA
code; to do this we had to tackle a number of issues related to the code design
and implementation.

3.1 Code Design Issues

KIVA-3 is a finite-volume code in which the simulation domain is partitioned
into hexahedral cells, and the differential equations are integrated over the cell to
obtain the discretized equation, by assuming that the relevant field quantities are
constant over the volume. The scalar quantities (such as temperature, pressure
and turbulence parameters), are evaluated at the centers of the cells, whereas the
velocity is evaluated at the vertices of the cells. The cells are represented through
the coordinates of their vertices; the vertex connectivity is stored explicitly in
a set of three connectivity arrays, from which it is possible by repeated lookup
to identify all neighbours, as shown in figure 1. The original implementation
of the CR solver for linear employs a matrix-free approach, i.e. the coefficient
matrix is not formed explicitly, but its action is computed in an equivalent way
whenever needed; this is done by applying the same physical considerations that
would be needed in computing the coefficients: there is a main loop over all cells,
and for each cell the code computes the contribution from the given cell into the
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Fig. 1. Vertex numbering for a generic control volume

components corresponding to all adjacent cells (including itself), from i1 through
i8. This is a “scatter” approach, quite different from the usual “gather” way of
computing a matrix-vector product.

The major advantage of a matrix-free implementation is in terms of memory
occupancy. However it constraints the kind of preconditioners that can be ap-
plied to the linear system; in particular, it is difficult to apply preconditioners
based on incomplete factorizations. Moreover, from an implementation point of
view, data structures strictly based on the modeling aspects of the code do not
lend themselves readily to transformations aimed at achieving good performance
levels on different architectures.

The above preliminary analysis has influenced the design of the interface to
the sparse linear solvers and support routines in [8] with the following charac-
teristics:

1. The solver routines are well separated into different phases: matrix genera-
tion, matrix assembly, preconditioner computation and actual system solu-
tion;

2. The matrix generation phase requires an user supplied routine that generates
(pieces of) the rows of the matrix in the global numbering scheme, according
to a simple storage scheme, i.e. coordinate format;

3. The data structures used in the solvers are parametric, and well separated
from those used in the rest of the application.

4 Integration of the Numerical Library

The basic groundwork for the parallelization and integration of the numerical
library has been laid out at the time of [7], which we briefly review below.

The code to build the matrices coefficients has been developed starting from
the original solver code: the solvers in the original KIVA code are built around
routines that compute the residual r = b − Ax, and we started from these to



FAST-EVP: An Engine Simulation Tool 973

build the right hand side b and the matrix A. Since the solution of equations for
thermodynamic quantities (such as temperature, pressure and turbulence) re-
quires cell center and cell face values, the non-symmetric linear systems arising
from temperature, pressure and turbulence equations have coefficient matrices
with the same symmetric sparsity pattern, having no more than 19 nonzero en-
tries per row. In the case of the linear systems arising from the velocity equation,
following the vectorial solution approach used in the original code, the unknowns
are ordered first with respect to the three Cartesian components and then with
respect to the grid points. The discretization scheme leads to non-symmetric
coefficient matrices with no more than 27 entries per (block) row, where each
entry is a 3 × 3 block.

4.1 Algorithmic Improvements

The original KIVA-3 code solution method, the Conjugate Residual method, is
derived under the hypothesis of a symmetric coefficient matrix; thus, there is
no guarantee that the method should converge on non-symmetric matrices such
as the ones we encounter in KIVA. Therefore we went to search for alternative
solution and preconditioning methods. Since the convergence properties of any
given iterative method depend on the eigenvalue spectrum of the coefficient
matrices arising in the problem domain, there no reason to expect that a single
method should perform optimally under all circumstances [11,14,17]. Thus we
were led to an experimental approach, in searching for the best compromise
between preconditioning and solution methods. We settled on the Bi-CGSTAB
method for all of the linear systems in the SIMPLE loop; the critical solver
is that for the pressure correction equation, where we employed a block ILU
preconditioner, i.e. an incomplete factorization based on the local part of A.
The BiCGSTAB method always converged, usually in less than 10 iterations,
and practically never in more than 30 iterations, whereas the original solver
quite often would not converge at all.

Further research work on other preconditioning schemes is currently ongoing,
and we plan to include its results in future versions of the code [4,5].

5 Parallelization Issues and New Developments

Since the time of [7] the code has undergone a major restructuring: FAST-EVP
code is now based on the KIVA-3V version, and thus it is able to model valves.
This new modeling feature has no direct impact on the SIMPLE solvers inter-
face, but it is important in handling mesh movement changes. While working on
the new KIVA-3V code base, we also reviewed all of the space allocation require-
ments, cleaning up a lot of duplications; in short we have now an application
fully parallelized, even in its darkest parts.

All computations in the code are parallelized with a domain decomposition
strategy: the computational mesh is partitioned among the processors partici-
pating in the computation. This partitioning is induced by the underlying as-
sumptions in the linear system solvers; however it is equally applicable to the
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rezoning phase. The support library routines allow us to manage the necessary
data exchanges throughout the code based on the same data structures em-
ployed for the linear system solvers; thus, we have a unifying framework for all
computational phases.

The rezoning phase is devoted to adjusting the grid points following the
application of the fluid motion field; the algorithm is an explicit calculation that
is based on the same “gather” and “scatter” stencils found in the matrix-vector
products for the linear systems phase in Fig. 1. It is thus possible to implement
in parallel the explicit algorithm by making use of the data movement operations
defined in the support library [8].

The chemical reaction dynamics is embarassingly parallel, because it treats
the chemical compounds of each cell independently.

For the spray dynamics model we had to implement specific operators that
follow the spray droplets in their movement, transferring the necessary informa-
tion about the droplets whenever their simulated movement brings them across
the domain partition boundaries.

5.1 Mesh Movement

The simulation process modifies the finite volume mesh to follow the (imposed)
piston and valve movement during the engine working cycle (see also Fig. 2.
The computational mesh is first deformed by reassigning the positions of the
finite volume surfaces in the direction of the piston movement, until a critical
value for the cell aspect ratio is reached; at this point a layer is cut out (or
added into) the mesh to keep the aspect ratio within reasonable limits. When
this “snapper” event takes place it is necessary to repartition the mesh and to
recompute the patterns of the linear system matrices. The algorithm for matrix
assembly takes into account the above considerations by preserving the matrix
structure between two consecutive “snapper” points, and recomputing only the

Fig. 2. Competition engine simulation



FAST-EVP: An Engine Simulation Tool 975

values of the non-zero entries at each invocation of the linear system solver; this
is essential to the overall performance, since the computation of the structure is
expensive.

Similarly, the movement of valves is monitored and additional “snapper”
events are generated accordingly to their opening or closing; the treatment is
completely analogous to that for the piston movement.

6 Experimental Results

The first major test case that we discuss is based on a high performance compe-
tition engine that was used to calibrate our software. The choice of this engine
was due to the availability of measurements to compare against, so as to make
sure not to introduce any modifications in the physical results. Moreover it is a
very demanding and somewhat extreme test case, because of the high rotation
regime, high pressure injection conditions, and relatively small mesh size.

A section of the mesh, immediately prior to the injection phase, is shown in
Fig. 2; the overall mesh is composed of approximately 200K control volumes.
The simulated comprises 720 degrees of crank angle at 16000 rpm, and the

Table 1. Competition engine timings

Processes Time steps Total time (min)
1 2513 542
2 2515 314
4 2518 236
5 2515 186
6 2518 175
7 2518 149

Fig. 3. Competition engine average pressure
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overall timings are shown in Table 1. The computation has been carried out
at NUMIDIA on a cluster based on Intel Xeon processors running at 3.0 GHz,
equipped with Myrinet M3F-PCIXD-2 network connections. The physical results
were confirmed to be in line with those obtained by the original code, as shown
in fig. 3 and 4.

Another interesting test case is shown in Fig. 5; here we have a complete test
of a commercial engine cylinder coupled with an air box, running at 8000 rpm,
of which we detail the resulting airflow. The discretization mesh is composed of
483554 control volumes; the simulation comprises the crank angle range from 188

Fig. 4. Competition engine average turbulent energy

Fig. 5. Commercial engine air flow results
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to 720 degrees, with 4950 time steps, and it takes 703 minutes of computation on
9 nodes of the Xeon cluster. In this particular case the grid had never been tested
on a serial machine, or on smaller cluster configurations, because of the excessive
computational requirements; thus the parallelization strategy has enabled us to
obtain results that would have been otherwise unreachable.

7 Conclusion

We have discussed a new engine design application, based on an extensive re-
vision and rewrite of the KIVA-3V application code, and parallelized by use of
the PSBLAS library. The application has been tested on industrial test cases,
and has proven to be robust and scalable, enabling access to results that were
previously impossible.

Future development work includes further refinement of the explicit rezoning
and spray dynamics phases, and experimentation with new preconditioners and
linear system solvers.
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