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Abstract: FAST-EVP (Fluid-Dynamics Analysis Software Tool for Engine Virtual
Prototyping) is a simulation tool for internal combustion engines running on cluster
platforms; it has evolved from the KIVA-3V code base, but has been extensively rewrit-
ten making use of modern numerical software for linear systems, parallel programming
techniques and advanced physical models. The software is currently in use at the con-
sulting firm NUMIDIA, and has been applied to a diverse range of test cases from
industry, obtaining simulation results for complex geometries in short time frames.
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1 Introduction

The growing concern with the environmental issues and the
request of reduced specific fuel consumption and increased
specific power output are playing a substantial role on the
development of automotive engines. Therefore, in the last
decade, the automotive industry has undergone a period
of great changes regarding the development methods for
engine design, with an increased commitment to research.
In particular, the use of advanced CFD techniques has been
essential in achieving project targets in time while reducing
product development costs. However, considerable work
is still needed since CFD simulation of realistic industrial
applications may take many hours or even weeks; this is

a major problem in an industrial setting, given the short
development times that are required to be competitive in
today’s marketplace.

The KIVA code [10] solves the complete system of
general time-dependent Navier-Stokes equations and it is
probably the most widely used code for internal combus-
tion engine modeling. Its success mainly depends on its
open source nature, which means having access to the
source code. KIVA has been significantly modified and
improved by researchers worldwide, especially in the de-
velopment of sub-models to simulate the important physi-
cal processes that occurs in an internal combustion engine
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(i.e. fuel-air mixture preparation and combustion); it uses
a multi-block structured discretization mesh.

We have taken the KIVA code and its physical models as
the base for the development of our simulation tool, called
FAST-EVP (Fluid-Dynamics Analysis Software Tool for
Engine Virtual Prototyping); this tool is currently in pro-
duction use at NUMIDIA for consulting purposes.

The paper is organized as follows: in section 2 we re-
view the basic mathematical model of the Navier-Stokes
equations as discretized in our application, and its solu-
tion solution strategy. In section 3 we review the algorith-
mic issues that we confronted and describe the approach
to the integration of new inner solvers with library rou-
tines from [6, 7], whereas in section 4 we outline the paral-
lelization strategy. Finally we present some experimental
results in section 5, followed by our conclusions. A prelim-
inary account of the development work had been given in
the conference proceedings [3]; here we complement that
presentation with details about the treatment of valves and
spray dynamics, and we present performance results for a
reference engine test case obtained on an up-to-date com-
puting platform.

2 Mathematical model

The mathematical model of KIVA-3 is the complete system
of general unsteady Navier-Stokes equations, coupled with
chemical kinetic and spray droplet dynamic models. In the
following the equations for fluid motion are reported.

• Species continuity:

∂ρm

∂t
+∇· (ρmu) = ∇· [ρD∇(

ρm

ρ
)]+ ρ̇c

m + ρ̇s
mδml (1)

where ρm is the mass density of species m, ρ is the
total mass density, u is the fluid velocity, ρ̇c

m is the
source term due to chemistry, ρ̇s

m is the source term
due to spray and δ is the Dirac delta function.

• Total mass conservation:
∂ρ

∂t
+∇ · (ρu) = ρ̇s (2)

• Momentum conservation:
∂(ρu)

∂t
+ ∇ · (ρuu) =

− 1
α2
∇p−A0∇(

2
3
ρk) +∇ · σ + Fs + ρg

where σ is the viscous stress tensor, Fs is the rate of
momentum gain per unit volume due to spray and g
is the constant specific body force. The quantity A0

is zero in laminar calculations and unity when turbu-
lence is considered.

• Internal energy conservation:

∂(ρI)
∂t

+ ∇ · (ρIu) = −p∇ · u

+ (1−A0)σ : ∇u−∇ · J + A0ρε + Q̇c + Q̇s

where I is the specific internal energy, the symbol :
indicates the matrix product, J is the heat flux vector,
Q̇c and Q̇s are the source terms due to chemical heat
release and spray interactions.

Furthermore the standard k − ε equations for the turbu-
lence are considered, including terms due to interaction
with spray [12].

2.1 Numerical method

The numerical method employed in KIVA-3 is based on
a variable step implicit Euler temporal finite difference
scheme, where the time steps are chosen using accuracy
criteria. Each time step defines a cycle divided in three
phases, corresponding to a physical splitting approach. In
the first phase, spray dynamic and chemical kinetic equa-
tions are solved, providing most of the source terms; the
other two phases are devoted to the solution of fluid motion
equations [1]. The spatial discretization of the equations
is based on a finite volume method , called the Arbitrary
Lagrangian-Eulerian method [13], using a mesh in which
positions of the vertices of the cells may be arbitrarily
specified functions of time. This approach allows a mixed
Lagrangian-Eulerian flow description. In the Lagrangian
phase, the vertices of the cells move with the fluid velocity
and there is no convection across cell boundaries; the dif-
fusion terms and the terms associated with pressure wave
propagation are implicitly solved by a modified version of
the SIMPLE (Semi Implicit Method for Pressure-Linked
Equations) algorithm [11]. This algorithm, well known in
the CFD community, is an iterative procedure to compute
velocity, temperature and pressure fields. Upon conver-
gence on pressure values, implicit solution of the diffusion
terms in the turbulence equations is approached.

3 Algorithmic issues

One of the main objectives in our work on the KIVA
code [6] was to show that general purpose solvers, based on
up-to-date numerical methods and developed by experts,
can be used in specific application codes, improving the
quality of numerical results and the flexibility of the codes
as well as their efficiency.

The original KIVA code employs the Conjugate Resid-
ual method, one member of the Krylov subspace projec-
tion family of methods [14]. These methods have become
widely used during the 1980s, and many new variants have
been developed, especially for dealing with nonsymmetric
systems. Our work thus started with the idea of intro-
ducing new linear system solvers and more sophisticated
preconditioners in the KIVA code; to do this we had to
tackle a number of issues related to the code design and
implementation.

The KIVA code is based on a finite-volume discretiza-
tion of the the simulation domain using hexahedral cells.
The scalar quantities (such as temperature, pressure and
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turbulence parameters), are evaluated at the centers of the
cells, whereas the velocity is evaluated at the vertices of the
cells. The cells are represented through the coordinates of
their vertices; the vertex connectivity is stored explicitly in
a set of three connectivity arrays, from which it is possible
by repeated lookup to identify all neighbours. The orig-
inal implementation of the CR solver for linear systems
employs a matrix-free approach, i.e. the coefficient matrix
is not formed explicitly, but its action is computed in an
equivalent way whenever needed.

The major advantage of a matrix-free implementation is
in terms of memory occupancy. However it constraints the
kind of preconditioners that can be applied to the linear
system; in particular, it is difficult to apply precondition-
ers based on incomplete factorizations. Given the above
analysis, we integrated the solvers in [7] employing the fol-
lowing design criteria:

1. The solver routines should be separated into different
phases: matrix generation, matrix assembly, precon-
ditioner computation and actual system solution;

2. The matrix generation phase requires an user supplied
routine that generates (pieces of) the rows of the ma-
trix in the global numbering scheme, according to a
simple storage scheme, i.e. coordinate format;

3. The data structures used in the solvers should be para-
metric, and well separated from those used in the rest
of the application.

3.1 Integration of the numerical library

The basic groundwork for the parallelization and integra-
tion of the numerical library has been laid out at the time
of [6], which we briefly review below.

The equations for thermodynamic quantities, pressure,
temperature and turbulence, are written at cell centers,
and they give rise to non-symmetric matrices a symmet-
ric sparsity pattern, having no more than 19 nonzero en-
tries per row. For the velocity equation, the discretization
scheme, using a staggered grid, leads to non-symmetric co-
efficient matrices with no more than 27 entries per (block)
row, where each entry is a 3× 3 block.

The Conjugate Residual method used in the original
code has no guarantee of covergence on non-symmetric ma-
trices such as the ones we encounter in KIVA [14]; there-
fore we searched alternative solution and preconditioning
methods. After suitable experimentation we settled on the
Bi-CGSTAB method [14] for all of the linear systems in
the SIMPLE loop, employing a block ILU preconditioner
on the pressure correction equation; this resulted in a vast
improvement in the code behaviour, which we analyzed
in [6].

Further research work on other preconditioning schemes
is currently ongoing, and we plan to include its results in
future versions of the code [4, 5]; the preliminary tests have
shown encouraging results in the convergence properties,
and will enlarge the available tools in the search for the
optimal solution technique.

4 Parallelization issues and new developments

Since the time of [6] the code has undergone a major re-
structuring: FAST-EVP is based on the KIVA-3V version,
and thus it is able to model valves. This new modeling fea-
ture has no direct impact on the SIMPLE solvers interface,
but affects the way we handle mesh movement changes.
While working on the new KIVA-3V code base, we also re-
viewed all of the space allocation requirements, cleaning up
a lot of duplications; in short we have now an application
fully parallelized, even in its darkest parts.

All computations in the code are parallelized with a do-
main decomposition strategy: the computational mesh is
partitioned among the processors participating in the com-
putation. To perform this domain partition we employ the
Metis [8] graph partitioning software; more details will be
given in section 4.2.

The support library routines allow us to manage the nec-
essary data exchanges throughout all phases of the code
using the same data structures employed for the linear
system solvers; thus, we have a unifying framework for
all computational phases.

A very important part of the computation is the rezoning
phase; here we adjust the grid points following the appli-
cation of the fluid motion field; the algorithm is an explicit
calculation that is based on the same “gather” and “scat-
ter” stencils found in the matrix-vector products for the
linear systems. It is thus possible to implement in parallel
the explicit algorithm by making use of the boundary data
exchange operations defined in the support library [7]. The
data structures needed to perform these boundary data
exchanges are a by-product of the parallelization of the
sparse linear solvers, and given the isomorphism between
the matrix sparsity pattern and the discretization mesh
they can be employed for all mesh-related data exchanges,
as exemplified by the spray droplet movements discussed
below.

The rezoning algorithm has been made completely ex-
plicit for parallelization purposes, that is while cycling on
grid nodes only the coordinates of the current node are
changed, taking into account the positions of neighbours
and the distances from moving or solid surfaces in all the
six directions. The algorithm will perform multiple sweeps
over the mesh, with convergence being declared when every
node of the mesh moves less than a fixed threshold.

Due to the complex geometries of modern engines, it is
almost impossible to find a set of weights for the weighted
mean that could guarantee a good quality of the grid for
all nodes, regardless of the position of moving surfaces.
Hence it is necessary to define various portions of logical
grid, even for different crank angles, and move the nodes
included in them with different values of the weights.

All the data needed by the rezoning algorithm can be
specified in the input file, as opposed to traditional de-
velopment in which the various parameters involved were
hardcoded into the rezoning subroutines; to achieve this
user–friendly structure for input and obtaining performa-
ces similar to a compiled routine, we employed the struc-
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Figure 1: Zones around valve stem for rezoning algorithm

tured data types and dynamic memory management fea-
tures of Fortran 95.

The input blocks will also contain the parameters neces-
sary to model movement of nodes around the valve stems;
furthermore, for each valve we can specify values for the
weigths in each of the five zones around the valve stem, de-
picted in figure 1, thus providing the necessary flexibility
to model complex configurations.

4.1 Spray dynamics

For the spray dynamics model we had to implement spe-
cific operators that follow the spray droplets in their move-
ment, transferring the necessary information about the
droplets whenever their simulated movement carries them
across the domain partition boundaries. These operators
are based on the same communication data structures used
in the linear system solution and mesh handling.

Figure 2: Droplets movement

The droplets are followed through their movement across
domain boundaries in the following way (see figure 2):

1. Droplets are assigned to the process that owns the cell
in which they are located at each time step;

2. At each time step a droplet is moved with its own
velocity and direction;

3. If the droplet movement is such that the droplet ends
up in a cell that is owned by the same process as
the cell from which it is started, no communication is
necessary;

4. If a droplet ends up in a cell that is adjacent to the
boundary of the domain assigned to the processor,
then it is already known which process owns that cell,
because of the communication routines that exchange
data for the field solvers; thus the droplet is added to
the list of data to be exchanged

5. If, after all droplets have been processed and neigh-
bouring communications have been taken care of,
there still are “orphan” droplets, their coordinates are
broadcast to all processes, and each process will start
a location algorithm to find out if they ended up in
a local cell; this is the case shown in figure 2 for the
droplet that crosses two domain boundaries.

Special attention had to be paid upon injection, to find
the topological position of a droplet after a time-step; this
is in principle a very time consuming task, because we
essentially look up the geometric position for a particle
and then try to figure out the index of the cell containing
it, and thus we have to be careful in order to reduce the
computing time.

Another issue that needed a careful treatment was the
(possible) change of owner process for a fuel film region
across a snap event, something that can happen, especially
when the film lies on a moving surface.

Depending on the type of partition of the computational
domain and on the injection conditions our strategy may
in some cases create a computational imbalance, but this
is not a common problem, and is usually limited to a very
small section of the simulation.

4.2 Mesh movement

The simulation process modifies the finite volume mesh to
follow the (imposed) piston and valve movement during the
engine working cycle; two different mesh configurations for
one of our test cases may be seen in figure 3. The compu-
tational mesh is first deformed by reassigning the positions
of the finite volume surfaces in the direction of the piston
movement, until a critical value for the cell aspect ratio
is reached; at this point a layer is cut out from (or added
into) the mesh to keep the aspect ratio within reasonable
limits. When this “snapper” event takes place it is neces-
sary to repartition the mesh and to recompute the patterns
of the linear system matrices.

In the original version of Kiva, the piston was considered
topologically flat, while a bowl below the piston surface
was marked and treated separately. At present state of
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Figure 3: Mesh movement

development, the definition of bowl has been completely
eliminated, while the piston surface could have any re-
quired topological profile. Hence, the valves can now move
through any fluid cell in the squish zone, even below the
original flat piston; the only remaining limitation is re-
quirement for the presence of two or more fluid cells planes
between two any surfaces.

Similarly, the movement of valves is monitored and addi-
tional “snapper” events are generated accordingly to their
opening or closing. In the original code, during valve dis-
placement, the nodes on the stem were not moved at all,
while only the head of the valve was involved in movement
and snap events. This could lead to deformations of the
shape of the valve, as shown in figure 4. Thus we imple-
mented a new strategy for moving valves: we treat a valve
in its entirety, including the stem, as a rigid object, and
we insert or remove node planes from the top of the stem,
instead of the top of the head. The result of this approach
is shown in figure 5, where we can see that the new ap-
proach requires an additional rezoning algorithm around
the stem.

Across a “snapper” event it is necessary to recompute
the data distribution for the parallel data structures; this
is done with a hybrid strategy to minimize the number
of repartitionings. At the beginning of the application we
invoke the Metis graph partitioning tool [8] on the whole
discretization mesh. Each subsequent snapper event may
either add or delete a cell layer above the piston head.
Immediately after the addition of a cell layer we extend
the previous partition by assigning each new cell to the
same process as the cell immediately above it; if instead
we had a layer deletion, we simply keep the other cells’
assignments. We then compute an estimate of the load
imbalance obtained by this simple strategy; thus we only
invoke a repartition of the mesh if the load imbalance is
beyond a threshold chosen by the user. When spray is in-
cluded in the simulation, the computational load is altered
by the spray droplets; we have seen in the previous section
that these droplets move at each time step, therefore we
also need to evaluate the load imbalance taking into ac-
count the droplet position after each time step during the
injection phase, and possibly do a repartition.

Figure 4: Deformed valve after an original snap event.

Figure 5: New valve snap strategy.

Figure 7: Competition engine average pressure

Figure 8: Competition engine average turbulent energy
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Figure 6: Competition engine simulation

5 Experimental results

The experimental results presented in this paper are based
on a high performance competition engine that was used to
calibrate our software. The choice of this engine was due
to the availability of measurements to compare against,
so as to make sure not to introduce any modifications in
the physical results; moreover it is a very demanding and
somewhat extreme test case, because of the high rotation
regime, high pressure injection conditions, and relatively
small mesh size.

A cross section of the mesh, immediately prior to the
injection phase, is shown in figure 6; the overall mesh is
composed of approximately 200K control volumes. The
computation has been carried out on a Linux cluster avail-
able at the computing center of CASPUR (Inter-University
Consortium for the Application of Super-Computing for
Universities and Research) in Rome, comprising dual-
processor nodes based on the AMD Opteron 250 with a
4 GB RAM and a 1024 KB cache memory. The nodes
are connected via InfiniBand Silverstorm InfiniHost III Ex
HCA; this network interface has a user level latency of
approx. 5 µsec and a measured sustained bandwidth of
960 MB/sec.

The partitioning of the mesh on 16 processes is shown in
figure 9; the snapshot is taken close to the top dead center.
The test runs with combustion activated were performed
for a fixed interval of crank angle around the ignition point,

# P Time (m) Speedup Cycles T/cy. (m) Sp./cy

1 114.04 1.00 90 1.27 1.00
2 66.64 1.71 92 0.72 1.75
4 49.87 2.29 96 0.52 2.44
6 44.83 2.54 121 0.37 3.42
8 22.28 5.12 90 0.25 5.12

12 18.36 6.21 103 0.18 7.11
16 12.17 9.37 90 0.14 9.37
20 9.94 11.47 90 0.11 11.47
24 8.73 13.06 90 0.10 13.06
30 6.02 18.94 90 0.07 18.94
36 6.18 18.45 90 0.07 18.45
42 5.23 21.80 90 0.06 21.80

Table 1: Test case timing data

corresponding to approximately 90 time steps. Snapshots
of the temperature and burned mass fraction distributions
are shown in figure 10 and 11.

First of all we note that the global physical quantities
typically required to evaluate the overall engine perfor-
mance, such as average pressure and turbulent kinetic en-
ergy, are in line with those obtained by the original serial
code, as shown in figure 7 and 8; multiple comparisons
have been performed, with different number of processors,
to confirm that indeed we are computing physically consis-
tent results. This is true even if it is impossible to obtain

6



Figure 9: Mesh partitioning on 16 processes

identical results for runs made on different machine con-
figurations, due to variation in ordering of floating point
operations induced by the parallelization process.

In table 1 we report the timings and speedup data, over-
all and per time-step, for the simulation on different paral-
lel machine configurations. The scalability of the applica-
tion is very satisfactory, even if the computational mesh is
not very large; as the number of processes grows we should
expect the utilization to decrease when using a fixed mesh,
because the balance between computation and communi-
cation exchanges is altered, yet the behaviour on this ma-
chine is very good even at 42 processes, with a parallel
efficiency over 50 %. It should be noted explicitly that
in normal usage larger machine configurations would be
employed when performing more detailed and demanding
simulations on larger discretization meshes. The overall
speedup and efficiency at 6 and 12 processes deteriorates
because of the increase in the number of time-steps needed
to cover the same crank angle interval; this is due to the
effects of the domain partitioning on the convergence of
the linear solver.

6 Conclusion

We have discussed FAST-EVP, a new engine design appli-
cation based on an extensive revision and rewrite of the
KIVA-3V application code, and parallelized by use of the
PSBLAS library. The application has been tested on in-
dustrial test cases, and has proven to be robust and scal-
able, enabling access to results that were previously im-
possible.

Future development work includes further refinement of
the explicit rezoning and spray dynamics phases, and ex-
perimentation with new preconditioners and linear system
solvers.
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