
Using Mixed Precision for Sparse Matrix

Computations to Enhance the Performance while

Achieving 64-bit Accuracy∗

Alfredo Buttari1, Jack Dongarra1,2, Jakub Kurzak1, Piotr
Luszczek1, and Stanimire Tomov1

1University of Tennessee Knoxville
2Oak Ridge National Laboratory

January 4, 2008

Abstract

By using a combination of 32-bit and 64-bit floating point arithmetic
the performance of many sparse linear algebra algorithms can be signif-
icantly enhanced while maintaining the 64-bit accuracy of the resulting
solution. These ideas can be applied to sparse multifrontal and supernodal
direct techniques and sparse iterative techniques such as Krylov subspace
methods. The approach presented here can apply not only to conventional
processors but also to exotic technologies such as Field Programmable
Gate Arrays (FPGA), Graphical Processing Units (GPU), and the Cell
BE processor.

1 Introduction

Benchmarking analysis and architectural descriptions reveal that on many com-
modity processors the performance of 32-bit floating point arithmetic (single
precision computations) may be significantly higher than 64-bit floating point
arithmetic (double precision computations). This is due to a number of factors.
First, many processors have vector instructions such as the SSE2 instruction
set on the Intel IA-32 and IA-64 and AMD Opteron family of processors or
the AltiVec unit on the IBM PowerPC architecture. In the SSE2 case a vec-
tor unit can complete four single precision operations every clock cycle but can
complete only two in double precision. (For the AltiVec, single precision can
complete eight floating point operations per cycle as opposed to four floating

∗This work was supported in part by the National Science Foundation and Department of
Energy.

1



point operations in double precision.) Another reason lies in the fact that single
precision data can be moved at a faster rate through the memory hierarchy as a
result of a reduced amount of data to be transferred. Finally, the fact that sin-
gle precision data occupies less memory than double precision data also means
that more single precision values can be held in cache than the double precision
counterpart, which results in a lower rate of cache misses (the same reasoning
can be applied to Translation Look-aside Buffers – TLBs). A combination of
these factors can lead to significant enhancements in performance, as we will
show for sparse matrix computations in the following sections. A remarkable
example is the IBM Cell BE processor, where the peak performance using single
precision floating point arithmetic is more than an order of magnitude higher
than that of double precision (204.8 GFlop/s vs 14.6 GFlop/s for the 3.2 GHz
version of the chip). The performance of some linear algebra operations can be
improved based on the consideration that the most computationally expensive
tasks can be performed by exploiting single precision operations and only re-
sorting to double precision at critical stages, while attempting to provide the
full double precision accuracy. This technique is supported by the well known
theory of iterative refinement [14, 29], which has been successfully applied to
the solution of dense linear systems [31]. This work is an extension of the work
by Langou et al. [31] to the case of sparse linear systems, covering both direct
and iterative solvers.

2 Sparse Direct and Iterative Solvers

Most sparse direct methods for solving linear systems of equations are variants
of either multifrontal [18] or supernodal [5] factorization approaches. There is
a number of freely available packages that implement these methods. We have
chosen for our tests the software package MUMPS [1, 2, 3] as the representative
of the multifrontal approach and SuperLU [15, 16, 32, 33] for the supernodal
approach. Our main reason for selecting these two software packages is that
they are implemented in both single and double precision, which is not the case
for other freely available solvers such as UMFPACK [11, 12, 19].

Fill-ins, and the associated memory requirements, are inherent for direct
sparse methods. And although there are various reordering techniques designed
to minimize the amount of these fill-ins, for problems of increasing size there is
a point where the memory requirements become prohibitively high and direct
sparse methods are no longer feasible. Iterative methods are a remedy because
only a few working vectors and the primary data are required [8, 38].

Two popular iterative solvers on which we will illustrate the techniques ad-
dressed in this paper are the Conjugate Gradient (CG) method (for symmetric
and positive definite matrices) and the Generalized Minimal Residual (GM-
RES) method for non-symmetric matrices [39]. The preconditioned versions of
the two algorithms are given correspondingly in Algorithms 1 and 2 below with
the descriptions that follow the standard notation [8, 38].

The preconditioners, denoted in both cases as M , are operators intended

2



Algorithm 1 PCG ( b, xo, Etol, . . . )
1: r0 = b−Ax0

2: for i = 1, 2, ... do
3: zi−1 = Mri−1

4: ρi−1 = rT
i−1zi−1

5: if i = 1 then
6: d1 = z0
7: else
8: β = ρi−1/ρi−2

9: di = zi−1 + βdi−1

10: end if
11: qi = Adi

12: α = ρi−1/di
T qi

13: xi = xi−1 + αidi

14: ri = ri−1 − αiqi
15: check convergence and exit if done
16: end for

Algorithm 2 GMRES ( b, xo, Etol, m, . . . )
1: for i = 0, 1, ... do
2: r = b−Axi

3: β = h1,0 = ||r||2
4: check convergence and exit if done
5: for k = 1, 2, ...,m do
6: vk = r / hk,k−1

7: r = A M vk

8: for j = 1 to k do
9: hj,k = rT vj

10: r = r − hj,k vj

11: end for
12: hk+1,k = ||r||2
13: if hk+1,k is small enough then break
14: end for
15: // Define Vk = [v1, . . . , vk], Hk = {hi,j}1≤i≤k+1,1≤j≤k

16: Find wk, a k-dim column vector, that minimizes ||b −
A(xi + M Vk wk)||2

17: // note: or equivalently, find wk that minimizes ||βe1 −Hk wk||2
18: xi+1 = xi +M Vk wk

19: end for

to improve the robustness and the efficiency of the iterative algorithms. In
particular, we will use left preconditioning, where instead of

Ax = b

3



we solve MAx = Mb, and right preconditioning, where the problem is trans-
formed to AMu = b, x = Mu. Intuitively, to serve its purpose, M needs to be
easy to compute, apply and store as well as to approximate A−1.

The basic idea of our approach is to use faster but lower precision compu-
tations whenever possible. As we show in the rest of the paper, this idea can
be used to design the preconditioner M that has two requirements mentioned
above. And since our basic idea can be exploited (in iterative solvers) through
proper preconditioning, the applicability of the approach is far-reaching and not
limited to neither the preconditioners nor the solvers each of which are used to
demonstrate our idea.

3 Mixed-Precision Iterative Refinement

The iterative refinement technique is a well known method that has been ex-
tensively studied and applied in the past. A fully detailed description of this
method can be found elsewhere [9, 14, 29, 44, 52]. The iterative refinement
approach has been used in the past to improve the accuracy of linear systems’
solutions and it is shown in Algorithm 3.

Algorithm 3 The iterative refinement method for the solution of linear systems
1: x0 ← A−1b
2: k = 1
3: for k = 1, 2, ... do
4: rk ← b−Axk−1

5: zk ← A−1rk
6: xk ← xk−1 + zk

7: k ← k + 1
8: check convergence and exit if done
9: end for

Once the system is solved at step 1, the solution can be refined through an
iterative procedure where, at each iteration, the residual is computed based on
the solution at the previous iteration (step 4), a correction is computed as in
step 5, and finally this correction is applied as in step 6. While the common
usage of iterative refinement [4, 30] consists of performing all the arithmetic
operations with the same precision (either single or double), we have investi-
gated the application of mixed-precision, iterative refinement where the most
expensive steps, 1 and 5, are performed in single precision and steps 4 and 6 are
performed in double precision. Work by others [22, 45, 46], that is somehow
related to this main idea, does not use exactly our approach. The error analysis
for the mixed-precision, iterative refinement, explained in [21, 23, 34], shows
that using this approach it is possible to achieve the same accuracy as if the
system was solved in full double precision arithmetic, provided that the matrix
is not too badly conditioned. From a performance point of view, the potential
of this method lies in the fact that the most computationally expensive steps, 1

4



and 5, can be performed very fast in single precision arithmetic while the only
tasks that require double precision accuracy are steps 4 and 6, whose cost can
be considered much lower.

We will refer below to single precision (SP) as 32-bit and to double precision
(DP) as 64-bit floating point arithmetic, and also lower and higher precision
arithmetic will be correspondingly associated with SP and DP.

3.1 Mixed-Precision Iterative Refinement for Sparse Di-
rect Solvers

Using the MUMPS package for solving systems of linear equations can be de-
scribed in three distinct steps:

1. System Analysis: in this phase the system sparsity structure is analyzed
in order to estimate the fill-in, which provides an estimate of the memory
requirement that will be allocated in the following steps. Also, pivoting is
performed based on the structure of A + AT , ignoring numerical values.
Only integer operations are performed at this step.

2. Matrix Factorization: in this phase, the PQAQT = LU factorization is
performed, where P is a row permutation matrix and Q is the reordering
matrix from step 1. This is the computationally most expensive step of
the system solution.

3. System Solution: the system is solved in three steps: Ly = PQb, Uz = y,
and x = QT z.

Once steps 1 and 2 are performed, each iteration of the refinement loop
needs only to perform the system solution (i.e., step 3), whose cost can be up
to two orders of magnitude lower than the cost of the system factorization. The
implementation of the mixed-precision, iterative refinement method with the
MUMPS package is shown in Algorithm 4.

At the end of each line of the algorithm, we indicate the precision used to
perform the corresponding operation. Based on backward stability analysis, we
consider that the solution x is of double precision quality when

‖b−Ax‖2 ≤ ‖x‖2 · ‖A‖fro · εd

where ‖ · ‖fro is the Frobenius norm and εd is the system precision for 64-bit
arithmetics. This provides us a stopping criterion. If some maximum number
of iterations is reached, then the algorithm should signal failure to converge.
All the control parameters for the MUMPS solver have been set to their default
values, which means that the matrix scaling and permuting and pivoting order
strategies are determined at runtime based on the matrix properties.

5



Algorithm 4 mixed-precision Iterative Refinement with the MUMPS package
1: system analysis
2: LU← PQAQT (SP)
3: solve Ly = PQb (SP)
4: solve Uz = y (SP)
5: x0 = QT z (SP)
6: for k = 1, 2, ... do:
7: rk ← b−Axk−1 (DP)
8: solve Ly = PQrk (SP)
9: solve Uz = y (SP)

10: zk = QT z (SP)
11: xk ← xk−1 + zk (DP)
12: check convergence and exit if done
13: end for

3.2 Mixed-Precision Iterative Refinement for Sparse Iter-
ative Solvers

The general framework of mixed-precision, iterative refinement given at the be-
ginning of this section can be easily extended to sparse iterative solvers. Indeed,
the mixed-precision, iterative refinement can be interpreted as a preconditioned
Richardson iteration with the preconditioner computed and applied (during the
iterations) in single precision [47]. This interpretation can be further extended
from Richardson to other preconditioned, iterative methods. And in general, as
long as the iterative method at hand is backward stable and converges, one can
apply similar reasoning as in [31] to show that the solution obtained would be
accurate in higher precision. The feasibility of using mixed-precision in com-
puting and/or applying a preconditioner depends first on whether there is a
potential to introduce speedups in the computation, and second on how the
method’s robustness would change.

A simple example of mixed-precision preconditioner is when the storage of
data used in the preconditioner is in single precision. Potential benefit here
is that accessing SP data is faster (vs DP data) due to less memory traffic.
The success of this approach, regarding speed, depends on what percent of the
overall computation is spent on the preconditioner (and in particular accessing
preconditioner SP data). For example, a simple diagonal preconditioner may
benefit little from it, while a domain decomposition-based [36], block diago-
nal preconditioner, or a multigrid V-cycle [28], may benefit significantly. Also,
multigrid-based solvers may benefit both in speed (as the bulk of the com-
putation is in their V/W-cycles) and memory requirements. An example of
successful application of this type of approach in CFD was done [25, 26] in a
PETSc [7] solver, which was accelerated with a Schwartz preconditioner using
block-incomplete factorizations over the separate subdomains that are stored in
single precision. Regarding robustness, there are various algorithmic issues to

6



consider, including ways to automatically, at run time, determine limitations
of the approach. This brings up another possible idea to explore, which is the
use of lower precision arithmetic only for parts of the preconditioner. Examples
here may come from adaptive methods that automatically locate the singular-
ities of the sought solution, and hence the corresponding parts of the matrix
responsible for resolving them. This information may be used in combination
with the solver and preconditioner (e.g., hierarchical multigrid) to achieve both
speedup and robustness of the method.

Another interesting example is when not just the higher precision storage,
but also the higher precision arithmetic are replaced with lower precision. This
is the case that would allow one to apply the technique not only to conventional
processors, but also to FPGAs, GPUs, Cell BE processor, etc.

The focus of the current work is to enable the efficient use of lower precision
arithmetic to sparse iterative methods in general, when no preconditioner or
when just a simple and computationally inexpensive (relative to the rest of the
computation) preconditioner is available. The idea of accomplishing this is to
use the preconditioned version of the iterative method at hand and replace the
preconditioner M by an iterative method as well but implemented in reduced
precision arithmetic. Thus, by controlling the accuracy of this iterative, inner
solver, more computations can be done in reduced precision and less work is
needed in the full precision arithmetic.

The robustness of variations of this nesting of iterative methods, also known
in the literature as inner-outer iteration, has been studied before, both theo-
retically and computationally [6, 24, 35, 37, 42, 49, 51]. The general appeal of
these methods is that computational speedup is possible when the inner solver
uses an approximation to the original matrix that is also faster to apply. More-
over, even if no faster matrix-vector product is available, speedup can often be
observed due to improved convergence (e.g., see restarted GMRES vs GMRES-
FGMRES [42] and Subsection 4.3). To our knowledge, using mixed-precision
for performance enhancement has not been done in the framework suggested
in this paper. In the subsections below, we show a way to do it for CG and
GMRES.

3.2.1 CG-based Inner-Outer Iteration Methods

We suggest the PCG-PCG inner-outer Algorithm 5. It is given as a modification
to the reference PCG Algorithm 1, and therefore only the lines that change are
written out (i.e., line 3). The inner PCG, denoted by PCG single, is in SP and
is described by Algorithm 6 again as a modification of the reference PCG. The
preconditioner available for the reference PCG is used in SP in the inner PCG.
Note that our initial guess in the inner loop is always taken to be 0 and we
perform a fixed number of iterations (step 15 is in brackets since practically
we want to avoid exiting due to small residual, unless it is of the order of
the machine’s single precision). The number of inner iterations is fixed and
depends on the particular problem at hand. We take it to be the number of
iterations it takes PCG single to do a fixed (e.g., 0.3) relative reduction for the

7



initial residual r0. Work on criteria to compute the (variable) number of inner
iterations guaranteeing convergence can be found in [41].

Algorithm 5 PCG PCG ( b, xo, Etol, . . . )

. . .
3: PCG single ( ri−1, zi−1, NumIters, . . . )

. . .

Algorithm 6 PCG single ( b, x, NumIters, . . . )

1: r0 = b; x0 = 0
2: for i = 1 to NumIters do

. . .
15: [check SP convergence and exit if done]
16: end for

If a preconditioner is not available, we can similarly define a CG-PCG al-
gorithm, where the inner loop is just a CG in SP. Furthermore, other iterative
solvers can be used for the inner loop, as long as they result in symmetric and
positive definite (SPD) operators. For example, stationary methods like Jacobi,
Gauss-Seidel (combination of one backward and one forward to result in SPD
operator), and SSOR can be used. Note that with these methods, a constant
number of iterations and initial guess 0 result in a constant preconditioner. The
use of a Krylov space method in the inner iteration, as in the currently con-
sidered algorithm, results in a non-constant preconditioner. Although there is
convergence theory for these cases [42], how to set the stopping criteria still re-
mains to be resolved as do variations in the algorithms, etc. [24, 35] in order to
obtain optimal results. For example, G. Golub and Q. Ye [24] consider the inex-
act PCG (β is taken as (ri−1−ri−2)·zi−1

ri−2·zi−2
), which allows certain local orthogonality

relations to be preserved from the standard PCG, which on the other hand pro-
vides grounds for theoretically studied aspects of the algorithm. We tried this
approach as well and, although our numerical results were similar to [24], over-
all the algorithm described here gave better results. In general, non-constant
preconditioning deteriorates the CG convergence, often resulting in convergence
that is characteristic of the Steepest Descent algorithm. Still, shifting the com-
putational load to the inner PCG reduces this effect and gives convergence that
is comparable to the convergence of a reference PCG algorithm. We note that
non-constant preconditioning can be better accommodated in GMRES (next
section). See also Simoncini and Szyld [43] for a way to interpret and theoreti-
cally study the effects of non-constant preconditioning.

8



3.2.2 GMRES-based Inner-Outer Iteration Methods

For our outer loop, we take the flexible GMRES (FGMRES [37, 38]) which
is a minor modification to Algorithm 2 meant to accommodate non-constant
preconditioners. The price is m additional storage vectors. Algorithm 7 gives
our inner-outer GMRES-FGMRES (the additional vectors are introduced at line
7: zk = Mvk where M is replaced with the GMRES single solver in Algorithm
8).

Algorithm 7 GMRES FGMRES ( b, xo, Etol, min, mout, . . . )

. . .
5: for k = 1 to mout do

. . .
7: GMRES single( rk, zk, 1, min, . . . )

r = Azk

. . .
15: // Define Zk = [z1, . . . , zk], Hk = {hi,j}1≤i≤k+1,1≤j≤k

16: Find wk, a k-dim column vector, that minimizes ||b−A(xi + Zk wk)||2
. . .

18: xi+1 = xi + Zkwk

19: end for

Algorithm 8 GMRES single ( b, x, NumIters, m, . . . )

1: x0 = 0
for i = 1 to NumIters do

. . .
4: [check SP convergence and exit if done]

. . .

As with PCG-PCG, the algorithm is given as a modification to the reference
GMRES(m) algorithm from Algorithm 2 and, therefore, only the lines that
change are written out. The inner GMRES single is in SP. The preconditioner
available for the reference GMRES is used in SP in the inner GMRES single.
Note that again our initial guess in the inner loop is always taken to be 0 and
we perform a fixed number of cycles/restarts (in this case just 1; step 4 is in
brackets since we want to avoid exiting due to small residual, unless it is of the
order of the machine’s single precision).

The potential benefits of FGMRES compared to GMRES are becoming bet-
ter understood [42]. Numerical experiments, as we also show, confirm cases
of improvements in speed, robustness, and sometime memory requirements for
these methods. For example, we show a maximum speedup of close to 12× on
a problem of size 602, 091 (see Section 4). The memory requirements for the

9



method are the matrix in compressed row storage (CRS) format [8], the nonzero
matrix coefficients in SP, twice the outer restart size number of vectors in DP,
and inner restart size number of vectors in SP.

The Generalized Conjugate Residuals (GCR) method [50, 51] is comparable
to the FGMRES and can replace it successfully as the outer iterative solver.

4 Numerical Experiments

4.1 The Test Collection for Mixed-Precision Sparse Direct
and Iterative Solvers

We tested our implementation of a mixed-precision, sparse direct solver on a
test suite of 41 matrices taken from the University of Florida’s Sparse Matrix
Collection [48]. The matrices were selected randomly from the collection since
there is no information available about their condition number. A smaller subset
of ten matrices (described in Table 1) will be discussed in this document for
readability reasons. The matrices in this smaller subset were chosen in order to
provide examples of all the significant features observed on the test suite. The
results for all the 41 matrices in the test suite can be found in [10].

Matrix No. Matrix name Size Nonzeros Cond. num. est.
1 G64 7000 82918 O(104)
2 Si10H16 17077 875923 O(103)
3 c-71 76638 859554 O(10)
4 cage11 39082 559722 O(1)
5 dawson5 51537 1010777 O(104)
6 nasasrb 54870 2677324 O(107)
7 poisson3Db 85623 2374949 O(103)
8 rma10 46835 2374001 O(10)
9 s3rmt3m1 5489 112505 O(109)
10 wang4 26068 177196 O(103)

Table 1: Properties of a subset of the tested matrices. The condition number
estimates were computed on the Opteron 246 architecture by means of MUMPS
subroutines.

For the iterative sparse methods we used a set of five matrices of increasing
size. More precisely, the matrices were produced by an adaptive finite element
method discretization of a 3D linear elasticity problem of the form

µ 4u+ (λ+ µ)∇ Div u = f,

where u is displacement, f is a given force, and µ and λ are constants [27]. The
discretization is on a tetrahedral mesh, using piecewise linear finite elements
(see Table 2).

10



Level Size Nonzeros Cond. num. est.
1 11,142 442,225 O(103)
2 25,980 1,061,542 O(104)
3 79,275 3,374,736 O(104)
4 230,793 9,991,028 O(105)
5 602,091 26,411,323 O(105)

Table 2: Properties of the matrices used with the iterative sparse solvers.

4.2 Performance Characteristics of the Tested Hardware
Platforms

The implementation of the mixed-precision algorithm for sparse direct methods
presented in Section 3.1 has been tested on the architectures reported, along
with their main characteristics, in Tables 3 and 4. All the tests were done with
sequential code; thus only one execution unit was used even on those processors
that present multiple cores. All of these architectures have vector units except
the Sun UltraSparc-IIe one; this architecture has been included with the purpose
of showing that even in the case where the same number of single and double
precision operations can be completed in one clock cycle, significant benefits
can still be achieved thanks to the reduced memory traffic and higher cache hit
rate provided by single precision arithmetic.

The implementation of the mixed-precision algorithms for sparse iterative
solvers described in Section 3.2 was only tested on the Intel Woodcrest architec-
ture. The application for the numerical tests on the mixed-precision iterative
method for sparse direct solvers was coded in Fortran 90 and the application
for the numerical tests on the inner-outer iteration method for sparse iterative
solvers was coded in C.

Table 5 shows the difference in performance between the single and dou-
ble precision implementation for the two dense BLAS operations matrix-matrix
product ( GEMM) and matrix-vector product ( GEMV). They are the two prin-
cipal computational kernels of sparse direct solvers: sparse data structures get
rearranged to fit the storage requirements of these kernels and thus benefit
from their high performance rates (as opposed to the performance of direct op-
eration on sparse data structures). In particular, column three (column five)
reports the ratio between the performance of SGEMM (SGEMV) and DGEMM
(DGEMV). The BLAS libraries used are capable of exploiting the vector units
where available, and thus the speedups shown in Table 5 are due to a combi-
nation of higher number of floating point operations completed at each clock
cycle, reduced memory traffic on the bus, and higher cache hit rate.

Table 6 shows the difference in performance for the single and double pre-
cision implementation of the two sparse iterative solvers Conjugate Gradient
and Generalized Minimal Residual. Columns two and three report the ratio
between the performance of single and double precision CG for a fixed number
(100) of iterations in both preconditioned and unpreconditioned cases. Columns

11



Clock Vector Memory

freq. Units

AMD Opteron 246 2 GHz SSE, SSE2 2 GB

3DNow!

Sun UltraSparc-IIe 502 MHz none 512 MB

Intel PIII Copp. 900 MHz SSE, MMX 512 MB

PowerPC 970 2.5 GHz AltiVec 2 GB

Intel Woodcrest 3 GHz SSE, SSE2 4 GB

MMX

Intel XEON 2.4 GHz SSE, SSE2 2 GB

MMX

Intel Centrino Duo 2.5 GHz SSE, SSE2 4 GB

MMX

Table 3: Hardware characteristics of the architectures used to measure the ex-
perimental results.

Compiler Compiler BLAS

flags

AMD Opteron 246 Intel v9.1 -O3 Goto

-fast

Sun UltraSparc-IIe Sun v9.0 -xchip=ultra2e Sunperf

-xarch=v8plusa

Intel PIII Copp. Intel v9.0 -O3 Goto

PowerPC 970 IBM v8.1 -O3 Goto

-qalign=4k

Intel Woodcrest Intel v9.1 -O3 Goto

Intel XEON Intel v8.0 -O3 Goto

Intel Centrino Duo Intel v9.0 -O3 Goto

Table 4: Software characteristics of the architectures used to measure the ex-
perimental results.

12



Size SGEMM/ Size SGEMV/

DGEMM DGEMV

AMD Opteron 246 3000 2.00 5000 1.70

Sun UltraSparc-IIe 3000 1.64 5000 1.66

Intel PIII Copp. 3000 2.03 5000 2.09

PowerPC 970 3000 2.04 5000 1.44

Intel Woodcrest 3000 1.81 5000 2.18

Intel XEON 3000 2.04 5000 1.82

Intel Centrino Duo 3000 2.71 5000 2.21

Table 5: Performance comparison between single and double precision arith-
metic for matrix-matrix and matrix-vector product operations on square matri-
ces.

SCG/DCG SGMRES/DGMRES

Size no prec. prec. no prec. prec.

11,142 2.24 2.11 2.04 1.98

25,980 1.49 1.50 1.52 1.51

79,275 1.57 1.50 1.58 1.50

230,793 1.73 1.72 1.74 1.69

602,091 1.50 1.50 1.67 1.63

Table 6: Performance comparison between single and double precision arith-
metic on a fixed number of iterations of Conjugate Gradient (100 iterations)
and Generalized Minimal RESidual (2 cycles/restarts of GMRES(20)) meth-
ods both with and without Diagonal Scaling preconditioner. The runs were
performed on Intel Woodcrest (3 GHz with a 1333 MHz front side bus).

four and five report the same information for the GMRES(20) method where
the number of cycles/restarts has been fixed to two. Since the sparse matrix
kernels involved in these computations were not vectorized, the speedup shown
in Table 6 is exclusively due to reduced data traffic on the bus and higher cache
hit rate.

4.3 Experimental results

Figures 1- 4 show that the MUMPS single precision solver is always faster than
the equivalent double precision one (i.e., the light bars are always above the
thick horizontal line that corresponds to one). This is mainly due to both
reduced data movement and better exploitation of vector arithmetic (via SSE2
or AltiVec where present) since multifrontal methods have the ability to do

13



1 2 3 4 5 6 7 8 9 10
0

0.5

1

1.5

2

2.5

3

Matrix n.

S
pe

ed
up

 w
rt

 d
ou

bl
e 

pr
ec

is
io

n

Intel Centrino Duo

5
3

3
2

5

8

2

2 20

2

Single prec. su
Mixed prec. su

1 2 3 4 5 6 7 8 9 10
0

0.5

1

1.5

2

Matrix n.

S
pe

ed
up

 w
rt

 d
ou

bl
e 

pr
ec

is
io

n

Intel XEON

6
4

2

2

4
9

2

2

20
2

Single prec. su
Mixed prec. su

Figure 1: Experimental results for the MUMPS solvers. The light shaded bars
report the ratio between the performance of the single precision solver and the
double precision one; the dark shaded bars report the ratio between the mixed-
precision solver and the double precision one. Otherwise, he absence of the dark
bar for a matrix means that convergence was not achieved within the maximum
number of iterations (20). The number of iterations required to converge is
given by the number above the bars. Left: Intel Centrino Duo. Right: Intel
XEON.

1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

Matrix n.

S
pe

ed
up

 w
rt

 d
ou

bl
e 

pr
ec

is
io

n

SunUltraSparc−IIe

3
3

2
2

3

9

2

2
20 2

Single prec. su
Mixed prec. su

1 2 3 4 5 6 7 8 9 10
0

0.5

1

1.5

2

Matrix n.

S
pe

ed
up

 w
rt

 d
ou

bl
e 

pr
ec

is
io

n

Intel Woodcrest

6 4
3

2

5
10

2

2

20
2

Single prec. su
Mixed prec. su

Figure 2: Experimental results for the MUMPS solvers. Left: Sun UltraSparc-
IIe. Right: Intel Woodcrest.

matrix-matrix products.
The presented results also show that mixed-precision iterative refinement is

capable of providing considerable speedups with respect to the full double pre-
cision solver while providing the same (in many cases also better) accuracy. To
run these experiments, a convergence criterion different from that discussed in
Section 3.1 was used. To make the comparison fair, in fact, the iterative refine-
ment was stopped whenever the residual norm was the same as that computed
for the double precision solver. In addition, the iterative refinement is stopped
if convergence is not achieved within a maximum number of iterations equal to

14



1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

Matrix n.

S
pe

ed
up

 w
rt

 d
ou

bl
e 

pr
ec

is
io

n

Intel PentiumIII

5

4

2

2

5
9

2

2

20
2

Single prec. su
Mixed prec. su

1 2 3 4 5 6 7 8 9 10
0

0.5

1

1.5

2

Matrix n.

S
pe

ed
up

 w
rt

 d
ou

bl
e 

pr
ec

is
io

n

AMD Opteron 246

5 4
2

2

4

10
2

2
20

2

Single prec. su
Mixed prec. su

Figure 3: Experimental results for the MUMPS solvers. Left: Intel Pentium
III Coppermine. Right: AMD Opteron 246.

1 2 3 4 5 6 7 8 9 10
0

0.5

1

1.5

2

Matrix n.

S
pe

ed
up

 w
rt

 d
ou

bl
e 

pr
ec

is
io

n

IBM PowerPC 970

6

5

3

3

5

11
3

3

20

3

Single prec. su
Mixed prec. su

Figure 4: Experimental results for the MUMPS solvers. PowerPC 970.

20; a failure is reported when this limit is reached.
The performance of the mixed-precision solver is usually very close to that of

the single precision mainly because the cost of each iteration is often negligible
compared to the cost of the matrix factorization. It is important to note that,
in some cases, the speedups reach very high values (more than 4.0 faster for
the Poisson3Db matrix on the Sun UltraSparc-IIe architecture). This is due to
the fact that the memory requirements are too high to accomodate the fill-in
generated in the factorization phase as the main memory available on the system
is lower for this machine. This forces the virtual memory system to swap pages
to disk resulting in a considerable loss of performance; since double precision
data is twice as large as single precision, disk swapping may affect only the
double precision solver and not the single precision one. It can be noted that
disk swapping issues did not affect the results measured on those machines that
are equipped with a bigger memory while it is usual on the Intel Pentium III
and the Sun UltraSparc-IIe architectures that only have 512 MB of memory.
Finally, the data presented in Figures 1- 4 show that, for some cases, the mixed-

15



precision iterative refinement solver does not provide a speedup. This can be
mainly associated to three causes (or any combination of them):

1. The difference in performance between the single and the double precision
solver is too small. In this case, even a few iterations of the refinement
phase will compensate for the small speedup. This is, for example, the
case of the dawson5 matrix on the PowerPC 970 architecture.

2. The number of iterations to convergence is too high. The number of
iterations to convergence is directly related to the matrix condition num-
ber [31]. The case of the nasasrb matrix on the PowerPC 970 architecture
show that even if the single precision solver is almost 1.4× faster, the
mixed precision solver is slower than the double precision one because of
the high number of iterations (11) needed to achieve the same accuracy. If
the condition number is too high, the method may not converge at all as
in the case of the s3rmt3m1 matrix. If convergence is not achieved within
the maximum number of iterations (20 in our experiments) the dark bar
is not reported in the figures meaning that the speedup of the mixed pre-
cision, iterative refinement method over the double precision one can be
considered equal to zero since a wrong result is produced.

3. The cost of each iteration is high compared to the performance difference
between the double precision solver and the single precision one. In this
case, even a few iterations can eliminate the benefits of performing the
system factorization in single precision. As an example, take the case of
the rma10 matrix on the Intel Woodcrest architecture; two iteration steps
on this matrix took 0.1 seconds, which is almost the same time needed to
perform six iteration steps on the G64 matrix.

It is worth noting that, apart from the cases where the method does not con-
verge, whenever the method results in a slowdown, the loss is on average only
7%.

Table 7 shows the residual of the solutions computed with the double-
precision solver and the mixed-precision, iterative solver for sparse direct meth-
ods on the Intel Woodcrest architecture. Note that for the matrices used and
in general, for well-conditioned matrices, the mixed-precision, iterative method
is capable of delivering the same or better accuracy than the double-precision
solver. The same was also observed for the mixed-precision, sparse iterative
solvers. In the case of matrix s3rmt3m1, convergence is not achieved within the
maximum number of iterations on any platform due to the high condition num-
ber (see Table 1); the residual of the mixed precision, iterative refinement solver
is much higher (and very high in general) than that of the double precision one
in this case.

Table 8 shows timings of the sequential version of SuperLU on selected ma-
trices from our test collection for single and double precision solvers. Both ref-
erence and Goto BLAS timings are shown. The sequential version of SuperLU
implements matrix-vector multiply ( GEMV) as its computational kernel. This

16



Matrix No. Matrix name DP residual MP residual # it.
1 G64 1.61e-10 2.00e-11 6
2 Si10H16 3.03e-12 1.93e-14 4
3 c-71 1.00e-14 9.78e-15 3
4 cage11 3.94e-16 1.04e-16 2
5 dawson5 5.88e-11 4.40e-12 5
6 nasasrb 1.08e-10 8.12e-11 10
7 poisson3Db 1.56e-14 1.04e-14 2
8 rma10 1.03e-13 6.85e-14 2
9 s3rmt3m1 3.19e-8 5.76e+2 20
10 wang4 9.65e-15 6.13e-15 2

Table 7: Accuracy of the double-precision solver and mixed-precision, iterative
solver on the Intel Woodcrest architecture. The last column reports the number
of iterations performed by the mixed-precision method to achieve the reported
accuracy.

Reference BLAS Goto BLAS
Name tDP tSP tDP /tSP tDP tSP tDP /tSP

G64 102.76 80.54 1.27 101.27 85.23 1.18
Si10H16 392.71 308.83 1.27 343.88 345.18 0.99
c-71 1326.36 984.31 1.34 1266.28 1076.13 1.17
cage11 1274.90 945.81 1.34 1143.23 1047.29 1.09
dawson5 6.94 5.86 1.18 6.19 5.70 1.08
nasasrb 33.02 27.90 1.18 30.87 30.48 1.01
poisson3Db 553.19 404.26 1.36 515.00 450.44 1.14
rma10 3.10 2.74 1.13 2.97 2.52 1.17
s3rmt3m1 0.32 0.28 1.14 0.35 0.32 1.09
wang4 21.77 16.99 1.28 19.32 18.96 1.01

Table 8: Time to solution of SuperLU in single and double precision for the
selected sparse matrices on Intel Woodcrest with reference and optimized BLAS.

explains rather modest gains (if any) in the performance of the single precision
solver over the double precision one: only up to 30%. The table also reveals
that when optimized BLAS are used, the single precision is slower than double
for some matrices, an artifact of small sizes of dense matrices passed to BLAS
and the level of optimization of the BLAS for this particular architecture. The
results are similar for other tested architectures, which leads to a conclusion
that there is not enough benefit in using our mixed precision approach for this
version of SuperLU.

The largest performance gain of only 30% for SuperLU is not supported by
the data from Table 5. The explanation for this is two-fold: the calls to the
GEMV kernel routine involve very small matrices and the fact that speeding

17



up the computational part of the factorization doesn’t affect the symbolical
part of it, i.e. the operations on sparse data structures (the size and amount
of work on these data structures is always the same regardless of the precision
chosen for the matrix data). The consequence of the former is much higher
sensitivity of performance to memory latency, function call overhead, and slow
down due to clean-up code. The latter is also true for MUMPS but is offset as
the multifrontal factorization progresses: the frontal matrix sizes keep growing
which in turn results in performance gains comparable to those from Table 5.

Next, we present our results on the mixed-precision, iterative sparse solvers
from Subsection 3.2. All the results are from runs on Intel Woodcrest (3 GHz
with a 1333 MHz front side bus).

It is not known how to choose the restart size m to get optimal results even
for the reference GMRES(m). Assuming for example that the bigger m the bet-
ter does not guarantee better execution time, and sometimes the convergence
can get even worse [20]. An alternative worth further exploration is to use a
truncated version of GMRES [40]. Another interesting approach is self adap-
tivity [13]. Here, to do a fair comparison, we ran it for m = 25, 50 (PETSc’s
default [7]), 100, 150, 200, and 300, and chose the best execution time. Ex-
periments show that the mixed-precision method suggested is stable in regard
to changing the restart values in the inner and outer loops. The experiments
presented are for inner and outer m = 20. Note that this choice also results in
less memory requirements than GMRES with m ≈ 70 and higher (for most of
the runs GMRES(100) and was best among the above choices for m), since the
overhead in terms of DP vectors is 20 + 20 (outer GMRES) +10 (20 SP vectors
in the inner loop) +20 (matrix coefficients in SP; there are approximately 40
nonzeros per row; see Table 2). In all the cases presented we had the number
of inner cycles/restarts set to one.

In Figure 5, we give the speedups for using mixed SP-DP vs DP-DP CG (dark
bars). Namely, on the left we have the results for CG-PCG and on the right for
PCG-PCG with diagonal preconditioner in the inner loop PCG. Similarly, in
Figure 6, we give the results for GMRES-FGMRES (on the left) and PGMRES-
FGMRES (on the right). Also, we compare the speedups of using SP vs DP
for just the reference CG and PCG (correspondingly left and right in Figure
5; light bars), and SP vs DP for the reference GMRES and PGMRES (light
bars in Figure 6). Note that in a sense the speedups in the light bars should
represent the maximum that could be achieved by using the mixed precision
algorithms. The fact that we get close to this maximum performance shows
that we have successfully shifted the load from DP to SP arithmetic (with
overall computation having less than 5% in DP arithmetic). The reason that
the performance speedup for SP-DP vs DP-DP GMRES-FGMRES in Figure 6
( left, 4th matrix) is higher than the speedup of SP GMRES vs DP GMRES is
that the SP-DP GMRES-FGMRES did one less outer cycle until convergence
than the DP-DP GMRES-FGMRES.

Results comparing the SP-DP methods with the reference DP methods are
shown in Figure 7 (left is a comparison for CG, right is for GMRES). The num-
bers on top of the bars on the left graph indicate the overhead, as the number

18



11k 25k 79k 230k 602k
0

0.5

1

1.5

2

2.5
Conjugate Gradient

System size

S
pe

ed
up

SP/DP
SP−DP/DP−DP

11k 25k 79k 230k 602k
0

0.5

1

1.5

2

2.5
Preconditioned Conjugate Gradient

System size

S
pe

ed
up

SP/DP
SP−DP/DP−DP

Figure 5: Left: Speedup of using SP vs DP CG (light bars) and the SP-
DP vs DP-DP CG-PCG (dark). Right: Similar graph comparison but for the
PCG algorithm (see also Subsection 3.2.1. The computations were on a Intel
Woodcrest (3 GHz with a 1333 MHz front side bus).

11k 25k 79k 230k 602k
0

0.5

1

1.5

2

2.5
Generalized Minimal Residual

System size

S
pe

ed
up

SP/DP
SP−DP/DP−DP

11k 25k 79k 230k 602k
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
Preconditioned Generalized Minimal Residual

System size

S
pe

ed
up

SP/DP
SP−DP/DP−DP

Figure 6: Left: Speedup of using SP vs DP GMRES (light bars) and the SP-DP
vs DP-DP GMRES-FGMRES (dark). Right: Similar graph comparison but for
the PGMRES algorithm (see also Subsection 3.2.2. The computations were on
a Intel Woodcrest (3 GHz with a 1333 MHz front side bus).

of iterations, that took the mixed-precision method to converge versus the ref-
erence DP method (e.g., overhead of 10% indicates 10% more iterations were
performed in the mixed SP-DP vs the DP method). Even with the overhead,
we see a performance speedup of at least 20% over the tested matrices. For
the GMRES-based mixed-precision methods we see a significant improvement,
based on a reduced number of iterations and the effect of the SP speedup (from
45 to 100% as indicated in Figure 6). For example, the speedup factor of 12
for the biggest problem is due to speedup factors of approximately 7.5 from
improved convergence and 1.6 from effects associated with the introduced SP

19



11k 25k 79k 230k 602k
0

0.5

1

1.5

2

24%

9%

7% 10%

10%

16%

8% 9%

5%
8%

CG. Mixed SP/DP vs DP

System size

S
pe

ed
up

CG−PCG
PCG−PCG

11k 25k 79k 230k 602k
0

2

4

6

8

10

12

GMRES. Mixed SP/DP vs DP

System size

S
pe

ed
up

GMRES−PGMRES
PGMRES−PGMRES

Figure 7: Left: Speedup of mixed SP-DP CG-PCG vs DP CG (light bars) and
SP-DP PCG-PCD vs DP CG (dark) with diagonal preconditioner. The num-
bers on top of the bars indicate the percentage overhead, measured in numbers
of iterations. Right: Similar graph comparison but for the GMRES based algo-
rithms. The computations were on a Intel Woodcrest (3 GHz with a 1333 MHz
bus).

storage and arithmetic.
Finally, we note the speedup for direct and iterative methods and its effect

on performance. The speed up of moving to single precision for GEMM-calling
code (MUMPS) was approaching two and thus guaranteed success of our mixed-
precision, iterative refinement just as it did for the dense matrix operations.
Not so for the GEMV-calling code (SuperLU) for which the speedup did not
exceed 30%, and thus no performance improvement was expected. However, for
most of the iterative methods, the speedup was around 50%, and still we claim
our approach to be successful. Inherently, the reason for speedup is the same
for both settings (SuperLU and the iterative methods): the reduced memory
bus traffic and possible super-linear effects when data fits in cache while being
stored in single precision. But for the SuperLU case, there is the direct method
overhead: the maintenance of evolving sparse data structures, which is done in
fixed-point arithmetic so it does not benefit from using single precision floating-
point arithmetic and hence yields the overall performance gains insufficient for
our iterative refinement approach.

5 Future Work

We are considering a number of extensions and new directions for our work.
The most broad category is the parallel setting. MUMPS is a parallel code,
but it was used in a sequential setting in this study. Similarly, SuperLU has a
parallel version that differs from the sequential counterpart in a very important
way: it uses the matrix-matrix multiply kernel ( GEMM). This would give a
better context for comparing multifrontal and supernodal approaches since they

20



use the same underlying computational library. The only caveat is the lack of a
single precision version of the parallel SuperLU solver. Another aspect brought
by the latter solver is using static pivoting, while it vastly improves numerical
stability of parallel SuperLU, it also improves the convergence of the iterative
refinement that follows. This should result in less iterations and shorter solve
time.

Using PETSc and its parallel framework for (among others) iterative meth-
ods could give us an opportunity to investigate our approach for a wider range of
iterative methods and preconditioning scenarios. First though, we would have
to overcome a technical obstacle of combining two versions of PETSc (one using
single and one using double precision) in a single executable.

We have performed preliminary experiments on actual IBM Cell BE hard-
ware (as opposed to the simulator, which does not accurately account for mem-
ory system effects – a crucial component of sparse methods) with sparse matrix
operations and are encouraged by the results to port our techniques in full.
This would allow us to study their behavior with a much larger gap in the
performance of the two precisions.

Our algorithms and their above descriptions focus solely on two precisions:
single and double. We see them however in a broader context of higher and
lower precision where, for example, a GPU performs computationally intensive
operations in its native 16-bit arithmetic, and consequently the solution is re-
fined using 128-bit arithmetic emulated in software (if necessary). As mentioned
before, the limiting factor is conditioning of the system matrix. In fact, an es-
timate (up to the order of magnitude) of the condition number (often available
from previous runs or the physical problem properties) may become an input
parameter to an adaptive algorithm [17] that attempts to utilize the fastest
hardware available, if its limited precision can guarantee convergence.

Also, the methods for sparse eigenvalue problems that result in Lanczos and
Arnoldi algorithms are amenable to our techniques, and we would like to study
their theoretical and practical challenges.

References

[1] Amestoy, P. R., Duff, I. S., and L’Excellent, J.-Y. Multifrontal
parallel distributed symmetric and unsymmetric solvers. Comput. Methods
Appl. Mech. Eng. 184 (2000), 501–520.

[2] Amestoy, P. R., Duff, I. S., L’Excellent, J.-Y., and Koster, J. A
fully asynchronous multifrontal solver using distributed dynamic schedul-
ing. SIAM J. Matrix Anal. Appl. 23 (2001), 15–41.

[3] Amestoy, P. R., Guermouche, A., L’Excellent, J.-Y., and
Pralet, S. Hybrid scheduling for the parallel solution of linear systems.
Parallel Comput. 32 (2006), 136–156.

21



[4] Anderson, E., Bai, Z., Bischof, C., Blackford, S. L., Demmel,
J. W., Dongarra, J. J., Croz, J. D., Greenbaum, A., Hammarling,
S., McKenney, A., and Sorensen, D. C. LAPACK User’s Guide,
Third ed. Society for Industrial and Applied Mathematics, Philadelphia,
1999.

[5] Ashcraft, C., Grimes, R., Lewis, J., Peyton, B. W., and Simon,
H. Progress in sparse matrix methods in large sparse linear systems on
vector supercomputers. Intern. J. of Supercomputer Applications 1 (1987),
10–30.

[6] Axelsson, O., and Vassilevski, P. S. A black box generalized conju-
gate gradient solver with inner iterations and variable-step preconditioning.
SIAM J. Matrix Anal. Appl. 12, 4 (1991), 625–644.

[7] Balay, S., Buschelman, K., Gropp, W. D., Kaushik, D., Knepley,
M. G., McInnes, L. C., Smith, B. F., and Zhang, H. PETSc Web
page, 2001. http://www.mcs.anl.gov/petsc.

[8] Barrett, R., Berry, M., Chan, T. F., Demmel, J., Donato, J. M.,
Dongarra, J., Eijkhout, V., Pozo, R., Romine, C., and der
Vorst, H. V. Templates for the Solution of Linear Systems: Build-
ing Blocks for Iterative Methods. Philadalphia: Society for Industrial
and Applied Mathematics., 1994. Also available as postscript file at
http://www.netlib.org/templates/Templates.html.

[9] Björck, A. Iterative refinement and reliable computing. In Reliable Nu-
merical Computation (1990), M. G. Cox and S. Hammarling, Eds., Oxford
University Press, Oxford, UK, pp. 249–266.

[10] Buttari, A., Dongarra, J., Kurzak, J., Luszczek, P., and Tomov,
S. Computations to enhance the performance while achieving the 64-bit
accuracy. Tech. Rep. UT-CS-06-584, University of Tennessee Knoxville,
November 2006. LAPACK Working Note 180.

[11] Davis, T. A. A combined unifrontal/multifrontal method for unsymmetric
sparse matrices. ACM Transactions on Mathematical Software 25 (1999),
1–19.

[12] Davis, T. A. A column pre-ordering strategy for the unsymmetric-pattern
multifrontal method. ACM Transactions on Mathematical Software 30
(2004), 196–199.

[13] Demmel, J., Dongarra, J., Eijkhout, V., Fuentes, E., Petitet,
A., Vuduc, R., Whaley, R. C., and Yelick, K. Self-adapting
linear algebra algorithms and software. Proceedings of the IEEE 93,
2 (February 2005). See http://www.spiral.net/ieee-special-issue/
overview.html.

22

http://www.netlib.org/templates/Templates.html
http://www.spiral.net/ieee-special-issue/overview.html
http://www.spiral.net/ieee-special-issue/overview.html


[14] Demmel, J. W. Applied Numerical Linear Algebra. Society for Industrial
and Applied Mathematics, Philadelphia, PA, USA, 1997.

[15] Demmel, J. W., Eisenstat, S. C., Gilbert, J. R., Li, X. S., and
Liu, J. W. H. A supernodal approach to sparse partial pivoting. SIAM
J. Matrix Anal. Appl. 20, 3 (1999), 720–755.

[16] Demmel, J. W., Gilbert, J. R., and Li, X. S. A asynchronous parallel
supernodal algorithm for sparse gaussian elimination. SIAM J. Matrix
Anal. Appl. 20, 3 (1999), 915–952.

[17] Dongarra, J. J., and Eijkhout, V. Self-adapting numerical soft-
ware for next generation applications. Tech. Rep. Lapack Working Note
157, ICL-UT-02-07, Innovative Computing Lab, University of Tennessee,
August 2002. To appear IJHPCA 17(2) 2003, http://icl.cs.utk.edu/
iclprojects/pages/sans.html.

[18] Duff, I. S., and Reid, J. K. The multifrontal solution of indefinite sparse
symmetric linear equations. ACM Transactions on Mathematical Software
9, 3 (Sept. 1983), 302–325.

[19] Duff, T. A. D. I. S. An unsymmetric-pattern multifrontal method for
sparse LU factorization. SIAM J. Matrix Anal. Appl. 18 (1997), 140–158.

[20] Embree, M. The tortoise and the hare restart gmres. SIAM Review 45
(2003), 259–266.

[21] Forsythe, G. E., and Moler, C. B. Computer Solution of Linear
Algebraic Systems. Prentice-Hall, Englewood Cliffs, NJ 07632, USA, 1967.

[22] Göddeke, D., Strzodka, R., and Turek, S. Accelerating double pre-
cision FEM simulations with GPUs. In Simulationstechnique 18th Sympo-
sium in Erlangen, September 2005 (2005), F. Hülsemann, M. Kowarschik,
and U. Rüde, Eds., vol. Frontiers in Simulation, SCS Publishing House
e.V., pp. 139–144. ASIM 2005.

[23] Golub, G. H., and Loan, C. F. V. Matrix Computations, second ed.
Johns Hopkins University Press, Baltimore, MD, USA, 1989.

[24] Golub, G. H., and Ye, Q. Inexact preconditioned conjugate gradient
method with inner-outer iteration. SIAM Journal on Scientific Computing
21, 4 (2000), 1305–1320.

[25] Gropp, W. D., Kaushik, D. K., Keyes, D. E., and Smith, B. F.
Latency, bandwidth, and concurrent issue limitations in high-performance
CFD. Tech. Rep. ANL/MCS-P850-1000, Argonne National Laboratory,
October 2000.

[26] Gropp, W. D., Kaushik, D. K., Keyes, D. E., and Smith, B. F.
High-performance parallel implicit CFD. Parallel Computing 27, 4 (2001),
337–362.

23

http://icl.cs.utk.edu/iclprojects/pages/sans.html
http://icl.cs.utk.edu/iclprojects/pages/sans.html


[27] Gurtin, M. E. An Introduction to Continuum Mechanics. Academic
Press, New York, 1981.

[28] Hackbusch, W. Multigrid Methods and Applications. Springer Series in
Computational Mathematics Vol. 4, Springer-Verlag, Berlin, 1985.

[29] Higham, N. J. Accuracy and Stability of Numerical Algorithms, second ed.
Society for Industrial and Applied Mathematics, Philadelphia, PA, USA,
2002.

[30] Higham, N. J. Accuracy and Stability of Numerical Algorithms, second ed.
Society for Industrial and Applied Mathematics, Philadelphia, PA, USA,
August 2002.

[31] Langou, J., Langou, J., Luszczek, P., Kurzak, J., Buttari, A.,
and Dongarra, J. Exploiting the performance of 32 bit floating point
arithmetic in obtaining 64 bit accuracy. In Proceedings of SC06 (Tampa,
Florida, November 11-17 2006). See http://icl.cs.utk.edu/iter-ref.

[32] Li, X. S. Sparse Gaussian Elimination on High Performance Comput-
ers. Computer Science Department, University of California at Berkeley,
1996. Ph.D. thesis (SuperLU software available at http://www.nersc.
gov/~xiaoye/SuperLU/).

[33] Li, X. S., and Demmel, J. W. SuperLU DIST: A scalable distributed-
memory sparse direct solver for unsymmetric linear systems. ACM Trans-
actions on Mathematical Software 29 (2003), 110–140.

[34] Moler, C. B. Iterative refinement in floating point. Journal of the Asso-
ciation for Computing Machinery 14, 2 (April 1967), 316–321.

[35] Notay, Y. Flexible conjugate gradients. SIAM Journal on Scientic Com-
puting 22 (2000), 1444–1460.

[36] Quarteroni, A., and Valli, A. Domain Decomposition Methods for
Partial Differential Equations. Oxford University Press, 1999.

[37] Saad, Y. A flexible inner-outer preconditioned GMRES algorithm. Tech.
Rep. 91-279, Department of Computer Science and Egineering, University
of Minnesota, Minneapolis, Minnesota, 1991.

[38] Saad, Y. Iterative Methods for Sparse Linear Systems. Society for Indus-
trial and Applied Mathematics, Philadelphia, PA, USA, 2003.

[39] Saad, Y., and Schultz, M. H. GMRES: A generalized minimal residual
method for solving nonsymmetric linear systems. SIAM J. Sci. Statist.
Comput. (1986), 856–869.

[40] Saad, Y., and Wu, K. DQGMRES: a direct quasi-minimal residual
algorithm based on incomplete orthogonalization. Numerical linear algebra
with applications 3, 4 (1996), 329–343.

24

http://icl.cs.utk.edu/iter-ref
http://www.nersc.gov/~xiaoye/SuperLU/
http://www.nersc.gov/~xiaoye/SuperLU/


[41] Simoncini, V., and Szyld, D. Theory of inexact Krylov subspace meth-
ods and applications to scientific computing, 2002.

[42] Simoncini, V., and Szyld, D. B. Flexible inner-outer Krylov subspace
methods. SIAM J. Numer. Anal. 40, 6 (2002), 2219–2239.

[43] Simoncini, V., and Szyld, D. B. The effect of non-optimal bases on
the convergence of Krylov subspace methods. Numer. Math. 100, 4 (2005),
711–733.

[44] Stewart, G. W. Matrix algorithms. Society for Industrial and Applied
Mathematics, Philadelphia, PA, USA, 2001.

[45] Strzodka, R., and Göddeke, D. Mixed precision methods for conver-
gent iterative schemes, May 2006. EDGE 2006, 23.-24. May 2006, Chapel
Hill, North Carolina.

[46] Strzodka, R., and Göddeke, D. Pipelined mixed precision algorithms
on FPGAs for fast and accurate PDE solvers from low precision compo-
nents. In IEEE Proceedings on Field–Programmable Custom Computing
Machines (FCCM 2006) (May 2006), IEEE Computer Society Press. to
appear.

[47] Turner, K., and Walker, H. F. Efficient high accuracy solutions with
gmres(m). SIAM J. Sci. Stat. Comput. 13, 3 (1992), 815–825.

[48] University of Florida sparse matrix collection.
http://www.cise.ufl.edu/research/sparse/matrices/.

[49] van den Eshof, J., Sleijpen, G. L. G., and van Gijzen, M. B.
Relaxation strategies for nested Krylov methods. Technical Report
TR/PA/03/27, CERFACS, Toulouse, France, 2003.

[50] van der Vorst, H. A., and Vuik, C. GMRESR: a family of nested
GMRES methods. Numerical Linear Algebra with Applications 1, 4 (1994),
369–386.

[51] Vuik, C. New insights in gmres-like methods with variable preconditioners.
J. Comput. Appl. Math. 61, 2 (1995), 189–204.

[52] Wilkinson, J. H. The Algebraic Eigenvalue Problem. Oxford University
Press, Oxford, UK, 1965.

25


	1 Introduction
	2 Sparse Direct and Iterative Solvers
	3 Mixed-Precision Iterative Refinement
	3.1 Mixed-Precision Iterative Refinement for Sparse Direct Solvers
	3.2 Mixed-Precision Iterative Refinement for Sparse Iterative Solvers
	3.2.1 CG-based Inner-Outer Iteration Methods
	3.2.2 GMRES-based Inner-Outer Iteration Methods


	4 Numerical Experiments
	4.1 The Test Collection for Mixed-Precision Sparse Direct and Iterative Solvers
	4.2 Performance Characteristics of the Tested Hardware Platforms
	4.3 Experimental results

	5 Future Work

