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Abstract

By using a combination of 32-bit and 64-bit floating point
arithmetic, the performance of many dense and sparse
linear algebra algorithms can be significantly enhanced
while maintaining the 64-bit accuracy of the resulting
solution. The approach presented here can apply not only
to conventional processors but also to exotic technologies
such as Field Programmable Gate Arrays (FPGA), Graphi-
cal Processing Units (GPU), and the Cell BE processor.
Results on modern processor architectures and the Cell
BE are presented.

Key words: mixed-precision, iterative, refinement, LU,
Cholesky factorization

1 Introduction

In numerical computing, there is a fundamental perform-
ance advantage in using the single precision, floating
point data format over the double precision one. Because
of the more compact representation, twice the number of
single precision data elements can be stored at each level
of the memory hierarchy including the register file, the set
of caches, and the main memory. By the same token, han-
dling single precision values consumes less bandwidth
between different memory levels and decreases the number
of cache and TLB misses. However, the data movement
aspect affects mostly memory-intensive, bandwidth-bound
applications, and historically has not drawn much atten-
tion to mixed precision algorithms.

In the past, the situation looked different for computa-
tionally intensive workloads, where the load was on the
floating point processing units rather than the memory
subsystem, and so the single precision data motion advan-
tages were for the most part irrelevant. With the focus on
double precision in scientific computing, double preci-
sion execution units were fully pipelined and capable of
completing at least one operation per clock cycle. In fact,
in many high performance processor designs single pre-
cision units were eliminated in favor of emulating single
precision operations using double precision circuitry. At
the same time, a high degree of instruction level parallel-
ism was being achieved by introducing more functional
units and relatively complex speculation mechanisms,
which did not necessarily guarantee full utilization of the
hardware resources.

That situation began to change with the widespread
adoption of short vector, Single Instruction Multiple Data
(SIMD) processor extensions, which started appearing in
the mid-1990s. An example of such extensions are the
Intel MultiMedia eXtensions (MMX) that were mostly
meant to improve processor performance in Digital Signal
Processing (DSP) applications, graphics and computer
games. Short vector, SIMD instructions are a relatively
cheap way of exploiting data level parallelism by apply-
ing the same operation to a vector of elements simultane-
ously. It eliminates the hardware design complexity
associated with the bookkeeping involved in speculative
execution. It also gives better guarantees for practically
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458 COMPUTING APPLICATIONS

achievable performance than does runtime speculation,
provided that enough data parallelism exists in the com-
putation. Most importantly, short vector, SIMD process-
ing provides the opportunity to benefit from replacing the
double precision arithmetic with the single precision one.
Since the goal is to process the entire vector in a single
operation, the computational throughput doubles while
the data storage space halves.

Most processor architectures available today have been
augmented, at some point, in their design evolution with
short vector, SIMD extensions. Examples include Stream-
ing SIMD Extensions (SSE) for the AMD and the Intel
line of processors; PowerPC’s Velocity Engine, AltiVec,
and VMX; SPARC’s Visual Instruction Set (VIS); Alpha’s
Motion Video Instructions (MVI); PA-RISC’s Multime-
dia Acceleration eXtensions (MAX); MIPS-3D Application
Specific Extensions (ASP) and Digital Media Extensions
(MDMX) and ARM’s NEON feature. The different archi-
tectures exhibit large differences in their capabilities. The
vector size is either 64 bits or, more commonly, 128 bits.
The register file size ranges from just a few to as many as
256 registers. Some extensions only support integer types
while others operate on single precision, floating point
numbers, and yet others process double precision values.

Today, the Synergistic Processing Element (SPE) of the
CELL processor can probably be considered the state of the
art in short vector, SIMD processing. Possessing 128-byte
long registers and a fully pipelined fused, multiply-add
instruction, it is capable of completing as many as eight sin-
gle precision, floating point operations each clock cycle.
When combined with the size of the register file of 128 reg-
isters, it is capable of delivering close to peak performance
on many common computationally intensive workloads.

Table 1 shows the difference in peak performance
between single precision (SP) and double precision (DP)
of four modern processor architectures; also, the last col-
umn reports the ratio between the time needed to solve a
dense linear system in double and single precision by
means of the LAPACK DGESV and SGESV respectively.
Following the recent trend in chip design, all of the pre-

sented processors are multi-core architectures. However,
to avoid introducing the complexity of thread-level paral-
lelization to the discussion, we will mainly look at the
performance of individual cores throughout the paper.
The goal here is to focus on instruction-level parallelism
exploited by short vector SIMDization.

Although short vector, SIMD processors have been
around for over a decade, the concept of using those
extensions to utilize the advantages of single precision
performance in scientific computing did not come to fru-
ition until recently, due to the fact that most scientific
computing problems require double precision accuracy.
It turns out, however, that for many problems in numeri-
cal computing, it is possible to exploit the speed of single
precision operations and resort to double precision calcu-
lations at few stages of the algorithm to achieve full dou-
ble precision accuracy of the result. The techniques
described here are fairly general and can be applied to a
wide range of problems in linear algebra, such as solving
linear systems of equations, least square problems, singu-
lar value and eigenvalue problems. Here we are going to
focus on solving dense linear systems of equations, both
non-symmetric and symmetric positive definite, using
direct methods. An analogous approach for the solution
of sparse systems, both with direct and Krylov iterative
methods, is presented in (Buttari et al. n.d).

2 Direct Methods for Solving Dense 
Systems

2.1 Algorithm

Iterative refinement is a well-known method for improv-
ing the solution of a linear system of equations of the
form Ax = b (Stewart 1973). The standard approach to
the solution of dense linear systems is to use the LU fac-
torization by means of Gaussian elimination. First, the
coefficient matrix A is factorized into the product of a
lower triangular matrix L and an upper triangular matrix
U using LU decomposition. Commonly, partial row piv-

Table 1
Floating point performance characteristics of individual cores of modern, multi-core processor 
architectures. DGESV and SGESV are the LAPACK subroutines for dense system solution in double 
precision and single precision respectively.

Architecture
Clock
[GHz]

DP peak
[Gflop/s]

SP peak
[Gflop/s]

time(DGESV)/
time(SGESV)

AMD Opteron 246 2.0 4 8 1.96

IBM PowerPC 970 2.5 10 20 1.87

Intel Xeon 5100 3.0 12 24 1.84

STI Cell BE 3.2 1.8 25.6 11.37
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oting is used to improve numerical stability resulting in
the factorization PA = LU, where P is the row permuta-
tion matrix. The solution for the system is obtained by
first solving Ly = Pb (forward substitution) and then
solving Ux = y (back substitution). Due to the round-off
error, the computed solution x carries a numerical error
magnified by the condition number of the coefficient
matrix A. In order to improve the computed solution, an
iterative refinement process is applied, which produces a
correction to the computed solution at each iteration,
which then yields the basic iterative refinement algorithm
(Algorithm 1). As Demmel (1997) points out, the non-
linearity of the round-off error makes the iterative refine-
ment process equivalent to the Newton’s method applied
to the function f(x) = b – Ax. Provided that the system is
not too ill-conditioned, the algorithm produces a solution
correct to the working precision. Iterative refinement is a
fairly well understood concept and was analyzed by
Wilkinson (1963), Moler (1967) and Stewart (1973).

The algorithm can be modified to use a mixed preci-
sion approach. The factorization PA = LU and the solu-
tion of the triangular systems Ly = Pb and Ux = y are
computed using single precision arithmetic. The residual
calculation and the update of the solution are computed
using double precision arithmetic and the original double
precision coefficients. The most computationally expen-
sive operations, including the factorization of the coeffi-
cient matrix A and the forward and backward substitution,
are performed using single precision arithmetic and take
advantage of its higher speed. The only operations that
must be executed in double precision are the residual cal-
culation and the update of the solution. It can be observed,
that all operations of O(n3) computational complexity are
handled in single precision, and all operations performed
in double precision are of at most O(n2) complexity. The
coefficient matrix A is converted to single precision for
the LU factorization and the resulting factors are also
stored in single precision. At the same time, the original
matrix in double precision must be preserved for the
residual calculation. The mixed precision, iterative refine-

ment algorithm is outlined in Algorithm 2; the (32) sub-
script means that the data is stored in 32-bit format (i.e.
single precision) and the absence of any subscript means
that the data is stored in 64-bit format (i.e. double preci-
sion). Implementation of the algorithm is provided in the
LAPACK package by the routine DSGESV.

Higham (1996) gives error bounds for the single and
double precision, iterative refinement algorithm when the
entire algorithm is implemented with the same precision
(single or double, respectively). He also gives error
bounds in single precision arithmetic, with refinement
performed in double precision arithmetic (Higham 1996).
The error analysis in double precision, for our mixed pre-
cision algorithm (Algorithm 2), is given in Appendix A.

The same technique can be applied to the case of sym-
metric, positive definite problems. Here, Cholesky factor-
ization (LAPACK’s SPOTRF routine) can be used in place
of LU factorization (SGETRF), and a symmetric back
solve routine (SPOTRS) can be used in place of the routine
for the general (non-symmetric) case (SGETRS). Also, the
matrix-vector product Ax can be implemented by the
BLAS’ DSYMV routine, or DSYMM for multiple right
hand sides, instead of the DGEMV and DGEMM routines
for the non-symmetric case. The mixed precision algo-
rithm for the symmetric, positive definite case is presented
by Algorithm 3. Implementation of the algorithm is pro-
vided in the LAPACK package by the routine DSPOSV.

2.2 Experimental Results and Discussion

To collect performance results for the Xeon, Opteron and
PowerPC architectures, the LAPACK iterative refine-

Algorithm 1: The iterative refinement method for the
solution of linear systems.

Algorithm 2: Solution of a linear system of equations
using mixed precision, iterative refinement. (SGETRF
and SGETRS are names of LAPACK routines).
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ment routines DSGESV and DSPOSV were used, for the
non-symmetric and symmetric cases, respectively. The
routines implement classic, blocked versions of the matrix
factorizations and rely on the layer of Basic Linear Alge-
bra Subroutines (BLAS) for architecture specific optimi-
zations to deliver performance close to the peak. As
mentioned before, in order to simplify the discussion and
leave out the aspect of parallelization, we have decided to
look at the performance of individual cores on the multi-
core architectures.

Figures 1–8 show the performance of the single-core
serial implementations of Algorithm 2 and Algorithm 3
on the architectures in Table 2.

These figures show that the mixed precision, iterative
refinement method can run very close to the speed of the
full single precision solver while delivering the same
accuracy as the full double precision one. On the AMD
Opteron, Intel Woodcrest and IBM PowerPC architec-
tures (see Figures 1– 6), the mixed precision, iterative

Table 2
Hardware and software details of the systems used for performance experiments

Architecture
Clock
[GHz]

Memory
[MB]

BLAS Compiler

AMD Opteron 246 2.0 2048 Goto-1.13 Intel-9.1

IBM PowerPC 970 2.5 2048 Goto-1.13 IBM-8.1

Intel Xeon 5100 3.0 4096 Goto-1.13 Intel-9.1

STI Cell BE 3.2 512 – Cell SDK-1.1

Algorithm 3: Solution of a symmetric positive definite
system of linear equations using mixed precision, iter-
ative refinement. (SPOTRF and SPOTRS are names of
LAPACK routines).

Fig. 1 Performance of mixed precision, iterative refine-
ment for unsymmetric problems on Intel Woodcrest.

Fig. 2 Performance of mixed precision, iterative
refinement for symmetric, positive definite problems
on Intel Woodcrest.
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solver can provide a speedup of up to 1.8 for the unsym-
metric solver and 1.5 for the symmetric one, if the prob-
lem size is big enough. For small problem sizes, in fact,
the cost of even a few iterative refinement iterations is
high compared to the cost of the factorization and thus,
the mixed precision, iterative solver is less efficient than
the full double precision one.

For the Cell processor (see Figures 7 and 8), parallel
implementations of Algorithms 2 and 3 have been pro-
duced in order to exploit the full computational power
of the processor. Due to the large difference between
the single precision and double precision floating point
units (see Table 1), the mixed precision solver per-
forms up to 7× and 11× faster than the double preci-

Fig. 3 Performance of mixed precision, iterative refine-
ment for unsymmetric problems on AMD Opteron246.

Fig. 4 Performance of mixed precision, iterative refine-
ment for symmetric, positive definite problems on AMD
Opteron246.

Fig. 5 Performance of mixed precision, iterative refine-
ment for unsymmetric problems on IBM PowerPC 970.

Fig. 6 Performance of mixed precision, iterative refine-
ment for symmetric, positive definite problems on IBM
PowerPC 970.
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sion peak in the unsymmetric and symmetric, positive
definite cases respectively. Implementation details for
this case can be found in Kurzak and Dongarra (n.d.a,
n.d.b).

3 Conclusions

The algorithms presented focus solely on two precisions:
single and double. We see them, however, in a broader
context of higher and lower precision where, for exam-
ple, a GPU performs computationally intensive opera-
tions in its native 16-bit arithmetic, and consequently the
solution is refined using 128-bit arithmetic emulated in
software (if necessary). As mentioned before, the limit-
ing factor is conditioning of the system matrix. In fact, an
estimate (up to the order of magnitude) of the condition
number (often available from previous runs or the physi-
cal problem properties) may become an input parameter
to an adaptive algorithm that attempts to utilize the fastest
hardware available, if its limited precision can guarantee
convergence. Also, the methods for sparse eigenvalue
problems that result in Lanczos and Arnoldi algorithms
are amenable to our techniques, and we would like to
study their theoretical and practical challenges.

It should be noted that this process can be applied
whenever a Newton or “Newton-like” method is used.
That is whenever we are computing a correction to the
solution as in xi + 1 = xi – f(xi)/f (xi) or (xi + 1 – xi) = – f(xi)/
f (xi) this approach can be used. We see solving optimi-
zation problems as a natural fit.
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A. Algorithm and Floating-Point 
Arithmetic Relations

For the following analysis the iterative refinement algo-
rithm

1: Initialize x1
     for k = 1, 2, ...do:
2:    rk = b – Axk (εd)
3:    solve Adk = rk (εs)
4:    solve xk + 1 = xk + dk (εd)
    end for

performed in floating-point arithmetic is assumed, where
the residual rk (step 2) and the new approximate solution
xk + 1 (step 4) are computed using double precision (εd)
arithmetic, and the correction vector dk (step 3) is com-
puted using single precision (εs) arithmetic.

Step 3 is performed using a backward stable algorithm
(for example Gaussian elimination with partial pivoting,
the GMRES method).

Backward stability implies that there exists Hk such
that

(A + Hk)dk = rk where ||Hk|| ≤ φ(n)εs||A||, (1)

where φ(n) is a reasonably small function of n. In other
words, equation (1) states that the computed solution dk
is an exact solution for an approximated problem.

Steps 2 and 4 are performed in double precision arith-
metic and, thus, the classical error bounds hold:

rk = fl(b – Ax) ≡ b – Axk + ek where

||ek|| ≤ ϕ1(n)εd(||A|| · ||xk|| + ||b||), (2)

xk + 1 = fl(xk + dk) ≡ xk + dk + fk where

||fk|| ≤ ϕ2(n)εd(||xk|| + ||dk||). (3)

A.1 Results and Interpretation

Using equations (1), (2) and (3), we will prove in Sec-
tion A.2 that for any k

||x – xk + 1||  ≤ αF||x – xk|| + βF||x||, (4)

where αF and βF are defined as

αF =  + 2ϕ1(n)κ(A)εd + ϕ2(n)εd 

+ 2(1 + ϕ1(n)εd)ϕ2(n)κ(A)εd (5)

φ n( )κ A( )εs

1 φ n( )κ A( )εs–
-------------------------------------
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βF = 4ϕ1(n)κ(A)εd + ϕ2(n)εd 

+ 4(1 + ϕ1(n)εd)ϕ2(n)κ(A)εd. (6)

Note that αF and βF are of the form

αF = ψF(n)κ(A)εs and βF = ρF(n)κ(A)εd. (7)

For equation (4) to hold, the matrix A is required to be
not too ill-conditioned with respect to the single-preci-
sion (εs) used; specifically the assumption in equation (8)
is made:

(ρF(n)κ(A)εs)(1 – ψF(n)κ(A)εs)
–1 < 1 (8)

Assuming αF < 1, equation (9) follows

||x – xk + 1|| ≤ α ||x – x1|| + βF ||x||, (9)

and so xk converges to x ≡ limk→+∞ xk where

||x – xk|| = ||x – x|| ≤ βF(1 – αF)–1||x|| 

= ||x||.

The term αF is the rate of convergence and depends on
the condition number of the matrix A, κ(A), and the sin-
gle precision used, εs. The term βF is the limiting accu-
racy of the method and depends on the double precision
accuracy used, εd.

Regarding the backward error analysis, Section A.3
contains the proof for the following relation:

 ≤ αB ·  + βB, (10)

where

αB =  + 2ϕ1(n)γεd, (11)

βB = (4ϕ1(n)γ + ϕ2(n)(1 + 2γ)(1 – ϕ2(n)εd)
–1)εd. (12)

Note that αB and βB are of the form

αB = ψB(n)κ(A)εs and βB = ρB(n)εd. (13)

For equation (10) to hold it is necessary to assume that
the matrix A is not too ill-conditioned with respect to the

single precision εs arithmetic used; namely, the following
assumptions must hold:

ψF(n)κ(A)εs + (ρFκ(A)εs)(1 – ψF(n)κ(A)εs)
–1 < 1 (14)

and (ρB(n)εd)(1 – ψB(n)κ(A)εs)
–1 < 1. (15)

The term αB is the speed of convergence and depends
on the condition number of the matrix A, κ(A) and the
single precision used, εs. The term βB is the limiting accu-
racy of the method and depends on the double precision
used, εd.

At convergence the following condition holds

 = βB(1 – αB)–1 

                                          = εd (16)

which states that the solver is normwise backward stable.

A.2 Forward Error Analysis

From Stewart (2001) it is possible to prove that, if
φ(n)κ(A)εs < 1/2, then (A + Hk) is nonsingular and

(A + Hk)
–1 = (I + Fk)A

–1 where

||Fk|| ≤   < 1. (17)

From equations (1) and (3) comes

x – xk + 1 = x – xk – (A + Hk)
–1rk – fk,

and then using equations (2) and (16)

x – xk + 1 = x – xk – (I + Fk)A
–1(b – Axk + ek) – fk

= x – xk – (I + Fk)(x – xk + A–1ek) – fk

= – Fk(x – xk) – (I + Fk)A
–1ek – fk.

Taking the norms of both sides of the last equation and
using the fact that ||Fk|| < 1, see equation (17), we get

||x – xk + 1|| ≤ ||Fk|| · ||x – xk|| + 2 · ||A–1|| · ||ek|| + || fk||.

Using equations (2) and (3)

||x – xk + 1|| ≤ ||Fk|| · ||x – xk|| + 2ϕ1(n)εd||A
–1|| 

 × (||A|| · ||xk|| + ||b||) + ϕ2(n)εd(||xk|| + ||dk||). (18)

F
k 1 αF

k–

1 αF
k–

---------------

k +∞→
lim

ρF n( )κ A( )εd

1 ψF n( )κ A( )εs–
----------------------------------------

b Axk 1+–
A xk 1+⋅

---------------------------
b Axk–
A xk⋅

----------------------

φ n( )κ A( )γ εs

1 φ n( )κ A( )εs–
-------------------------------------

k +∞→
lim

b Axk–
A xk⋅

----------------------

ρB n( )
1 ψB n( )κ A( )εs–
----------------------------------------

φ n( )κ A( ) εs

1 φ n( )κ A( )εs–
-------------------------------------
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Equations (19), (20) and (21) contain a bound for the
quantities ||xk||, ||A|| · ||xk|| + ||b|| and ||dk|| by the quantities
||x – xk|| and ||x||. The next step will be to inject these three
bounds into equation (18) which will yield the final result
on forward error given in equation (22).

Triangle inequality yields

||xk|| ≤ ||x – xk|| + ||x||. (19)

Then, using the fact that Ax = b,

||A|| · ||xk|| + ||b|| ≤ ||A|| · ||x – xk|| + 2 · ||A|| · ||x||. (20)

Finally, using equations (1) and (4)

||dk|| = ||(A + Hk)
–1rk|| = ||(I + Fk)A

–1rk|| ≤ 2||A–1|| · ||rk||.

Equation (2) yields

||rk|| ≤ ||b|| + ||A|| · ||xk|| + ||ek|| 

≤ (1 + ϕ1(n)εd) · (||A|| · ||xk|| + ||b||)

which, using equation (20), can be transformed as

||dk|| ≤ 2 · (1 + ϕ1(n)εd) · κ(A) · (||x – xk|| + 2 · ||x||). (21)

Injecting equations (19), (20) and (21) into equation
(18) yields

||x – xk + 1|| ≤  + 2ϕ1(n)κ(A)εd

+ 2(1 + ϕ1(n)εd)ϕ2(n)κ(A)εd  · ||x – xk||

+ (4ϕ1(n)κ(A)εd + ϕ2(n)εd

+ 4(1 + ϕ1(n)εd)ϕ2(n)κ(A)εd) · ||x||. (22)

If αF and βF are defined as

αF =  + 2ϕ1(n)κ(A)εd + ϕ2(n)εd 

+ 2(1 + ϕ1(n)εd)ϕ2(n)κ(A)εd, (23)

βF = 4ϕ1(n)κ(A)εd + ϕ2(n)εd 

+ 4(1 + ϕ1(n)εd)ϕ2(n)κ(A)εd, (24)

then

||x – xk + 1|| ≤ αF||x – xk|| + βF||x||,

where αF = ψ(n)κ(A)εs and βF = ρ(n)κ(A)εd.

A.2.1 Bound on ||xk|| and ||dk|| in terms of ||xk + 1||
Assuming, without loss of generality, that x1 = 0, from
equation (9) the following inequalities can be derived

||xk|| ≤ 1 + α   + βF · ||x||,

||x|| ≤ 1 – α  – βF  · ||xk + 1||.

From the assumption that αF +  < 1 the follow-
ing inequality holds

||xk|| ≤  · ||xk + 1||

and, by defining

γk ≡  ≤ γ

the following formula is obtained

||xk|| ≤ γ · ||xk + 1||. (25)

Equation (3) yields

||dk|| = ||xk + 1 – xk – fk|| ≤ ||xk + 1|| 

+ (1 + ϕ2(n)εd)||xk|| + ϕ2(n)εd||dk||,

which, in combination with equation (25) gives

||dk|| ≤ (1 – ϕ2(n)εd)
–1(1 + γ + ϕ2(n)γεd)||xk + 1||. (26)

Note that the assumption

αF +  < 1 (27)

was made in this section.
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A.3 Backward Error Analysis

From Stewart (2001) it is possible to prove that, if
φ(n)κ(A)εs < 1/2, then (A + Hk) is nonsingular and

(A + Hk)
–1 = A–1(I + Gk) where

||Gk|| ≤  < 1. (28)

Equations (1) and (3) yield

x – xk + 1 = x – x + k – (A + Hk)
–1rk – fk,

and, then, using equations (2) and (28)

x – xk + 1 = x – xk – A–1(I + Gk)(b – Axk + ek) – fk.

Finally, multiplying both sides by A on the left

b – Axk + 1 = – Gk(b – Axk) – (I + Gk)ek – Afk.

Taking the norm of both sides and using the fact that
||Gk|| < 1 gives

||b – Axk + 1|| ≤ ||Gk|| · ||b – Axk|| + 2 · ||ek|| + ||A|| · | |fk||.

Using equations (2) and (3) gives

||b – Axk + 1|| ≤ ||Gk|| · ||b – Axk|| + (2ϕ1(n) 

+ ϕ2(n))εd · ||A|| · ||xk|| + 2ϕ1(n)εd · ||b|| 

+ ϕ2(n)εd · ||A|| · ||dk||.

Assuming equation (27) holds, equations (25) and (26)
can be used and, based on the fact that ||b|| = ||b – Axk|| +
||A|| · ||xk||

||b – Axk + 1|| ≤ (||Gk|| + 2ϕ1(n)εd) · ||b – Axk||

+ (4ϕ1(n)γ + ϕ2(n)γϕ2(n)(1 – ϕ2(n)εd)
–1

× (1 + γ + ϕ2(n)γεd))εd · ||A|| · ||xk + 1||.

Finally

 ≤ αB ·  + βB,

where

αB =  + 2ϕ1(n)γεd,

βB = (4ϕ1(n)γ + ϕ2(n)(1 + 2γ)(1 – ϕ2(n)εd)
–1)εd.

Note
1 The DP unit is not fully pipelined, and has a 7 cycle latency.
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