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Abstract

As multicore systems continue to gain ground in the High Performance
Computing world, linear algebra algorithms have to be reformulated or
new algorithms have to be developed in order to take advantage of the
architectural features on these new processors. Fine grain parallelism
becomes a major requirement and introduces the necessity of loose syn-
chronization in the parallel execution of an operation. This paper presents
an algorithm for the QR factorization where the operations can be repre-
sented as a sequence of small tasks that operate on square blocks of data
(referred to as “tiles”). These tasks can be dynamically scheduled for ex-
ecution based on the dependencies among them and on the availability of
computational resources. This may result in an out of order execution of
the tasks which will completely hide the presence of intrinsically sequen-
tial tasks in the factorization. Performance comparisons are presented
with the LAPACK algorithm for QR factorization where parallelism can
only be exploited at the level of the BLAS operations and with vendor
implementations.

1 Introduction

In the last twenty years, microprocessor manufacturers have been driven to-
wards higher performance rates only by the exploitation of higher degrees of
Instruction Level Parallelism (ILP). Based on this approach, several genera-
tions of processors have been built where clock frequencies were higher and
higher and pipelines were deeper and deeper. As a result, applications could
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benefit from these innovations and achieve higher performance simply by relying
on compilers that could efficiently exploit ILP. Due to a number of physical lim-
itations (mostly power consumption and heat dissipation) this approach cannot
be pushed any further. For this reason, chip designers have moved their focus
from ILP to Thread Level Parallelism (TLP) where higher performance can be
achieved by replicating execution units (or cores) on the die while keeping the
clock rates in a range where power consumption and heat dissipation do not
represent a problem. It is easy to imagine that multicore technologies will have
a deep impact on the High Performance Computing (HPC) world where high
processor counts are involved and, thus, limiting power consumption and heat
dissipation is a major requirement. The Top500 [1] list released in June 2007
shows that the number of systems based on dual-core Intel Woodcrest proces-
sors grew in six months (i.e. from the previous list) from 31 to 205 and that 90
more systems are based on dual-core AMD Opteron processors.

Even though many attempts have been made in the past to develop paral-
lelizing compilers, they proved themselves efficient only on a restricted class of
problems. As a result, at this stage of the multicore era, programmers cannot
rely on compilers to take advantage of the multiple CPUs available on a pro-
cessor. All the applications that were not explicitly coded to be run on parallel
architectures must be rewritten with parallelism in mind. Also, those applica-
tions that could exploit parallelism may need considerable rework in order to
take advantage of the fine-grain parallelism features provided by multicores.

The current set of multicore chips from Intel and AMD are for the most part
multiple processors glued together on the same chip. There are many scalability
issues to this approach and it is unlikely that this type of architecture will scale
up beyond 8 or 16 cores. Even though it is not yet clear how chip designers
are going to address these issues, it is possible to identify some properties that
algorithms must have in order to match high degrees of TLP:

fine granularity: cores are (and probably will be) associated with relatively
small local memories (either caches or explicitly managed memories like
in the case of the STI Cell [22] architecture or the Intel Polaris[4] proto-
type). This requires splitting an operation into tasks that operate on small
portions of data in order to reduce bus traffic and improve data locality.

asynchronicity: as the degree of TLP grows and granularity of the opera-
tions becomes smaller, the presence of synchronization points in a parallel
execution seriously affects the efficiency of an algorithm.

The LAPACK [6] and ScaLAPACK [10] software libraries represent a de
facto standard for high performance dense Linear Algebra computations and
have been developed, respectively, for shared-memory and distributed-memory
architectures. In both cases exploitation of parallelism comes from the avail-
ability of parallel BLAS. In the LAPACK case, a number of BLAS libraries
can be used to take advantage of multiple processing units on shared memory
systems; for example, the freely distributed ATLAS [27] and GotoBLAS [16] or
other vendor BLAS like Intel MKL [2] or AMD ACML [3] are popular choices.
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These parallel BLAS libraries use common techniques for shared memory par-
allelization like pThreads [21] or OpenMP [12]. This is represented in Figure 1
(left).

LAPACK

BLAS

pThreads OpenMP

pThreads OpenMP

LAPACK

BLAS BLAS

Parallelism

Parallelism

Figure 1: Transition from sequential algorithms that rely on parallel BLAS to
parallel algorithms.

In the ScaLAPACK case, parallelism is exploited by PBLAS [11] which is
a parallel BLAS implementation that uses the Message Passing Interface [14]
(MPI) for communications on a distributed memory system. Substantially, both
LAPACK and ScaLAPACK implement sequential algorithms that rely on par-
allel building blocks (i.e., the BLAS operations). As multicore systems require
finer granularity and higher asynchronicity, considerable advantages may be ob-
tained by reformulating old algorithms or developing new algorithms in a way
that their implementation can be easily mapped on these new architectures.
This transition is shown in Figure 1. An approach along these lines has already
been proposed in [8, 9, 20] where operations in the standard LAPACK algo-
rithms for some common factorizations were broken into sequences of smaller
tasks in order to achieve finer granularity and higher flexibility in the scheduling
of tasks to cores. The importance of fine granularity algorithms is also shown
by the authors of this paper in earlier works [19]. The usage of recursive factor-
ization techniques [13] is also relevant to the topics discussed in the rest of the
paper.

The rest of this document shows how this can be achieved for the QR fac-
torization. Section 2 describes the algorithm for block QR factorization used
in the LAPACK library; Section 3 describes the tiled QR factorization that
provides both fine granularity and high level of asynchronicity; performance re-
sults for this algorithm are shown in Section 4. A comment on the usage of
recursive techniques is given in Section ??. Finally future working directions
are illustrated in Section 6.
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2 Block QR Factorization

2.1 Description of the block QR Factorization

The QR factorization is a transformation that factorizes an m × n matrix A
into its factors Q and R where Q is a unitary matrix of size n × n and R is
a triangular matrix of size m ×m. This factorization is operated by applying
min(m, n) Householder reflections to the matrix A. Since Householder reflec-
tions are orthogonal transformations, this factorization is stable as opposed to
the LU one; however, stability comes at the price of a higher flop count: QR
requires 2n2(m − n/3) as opposed to the n2(m − n/3) needed for LU. A de-
tailed discussion of the QR factorization can be found in [15, 25, 26]. LAPACK
uses a particular version of this algorithm which achieves higher performance
on architectures with memory hierarchies thanks to blocking. This algorithm
is based on accumulating a number of Householder transformations in what is
called a panel factorization which are, then, applied all at once by means of
high performance Level 3 BLAS operations. The technique used to accumulate
Householder transformation was introduced in [24] and is known as the compact
WY technique.

The LAPACK subroutine that performs the QR factorization is called DGEQRF
and is explained below. Consider a matrix A of size m × n that can be repre-
sented as

A =
(

A11 A12

A21 A22

)
where A11 is of size b × b, A12 of size b × (n − b), A21 of size (m − b) × b and
A22 of size (m− b)× (n− b).

The LAPACK algorithm for QR factorization can be described as a sequence
of steps where, at each step, the transformation in Equation (1) is performed.

A =
(

A11 A12

A21 A22

)
=⇒

(
V11

V21

)
,

(
R11 R12

0 Ã22

)
(1)

The transformation in Equation (1) is obtained in two steps:

1. Panel Factorization. At this step a QR transformation of the panel
(A∗1) is performed as in Equation (2).(

A11

A21

)
=⇒

(
V11

V21

)
, (T11), (R11) (2)

This operation produces b Householder reflectors (V∗,1) and an upper tri-
angular matrix R11 of size b×b, which is a portion of the final R factor, by
means of the DGEQR2 LAPACK subroutine; also, at this step, a triangular
matrix T11 of size b × b by means of the DLARFT LAPACK subroutine1.
Please note that V11 is a unit lower triangular matrix of size b×b. The ar-
rays V∗1 and R11 do not need extra space to be stored since they overwrite
A∗1. A temporary workspace is needed to store T11.

1for the meaning of the matrix T11 please refer to [24]
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2. Trailing submatrix update. At this step, the transformation that was
computed in the panel factorization is applied to the rest of the matrix,
also called trailing submatrix as shown in Equation (3).(

R12

Ã22

)
=
(

I −
(

V11

V21

)
·(T11)· (V T

11 V T
21)

)(
A12

A22

)
(3)

This operation, performed by means of the DLARFB LAPACK subroutine,
produces a portion R12 of the final R factor of size b × (n − b) and the
matrix Ã22.

The QR factorization is continued by applying the transformation (1) to the sub-
matrix Ã22 and, then, iteratively, until the end of the matrix A is reached. The
value of b� m, n (the so called block size) is set by default to 32 in LAPACK-
3.1.1 but different values may be more appropriate, and provide higher perfor-
mance, depending on the architecture characteristics.

2.2 Scalability limits of the LAPACK implementation

The LAPACK algorithm for QR factorization can use any flavor of parallel
BLAS to exploit parallelism on a multicore, shared-memory architecture. This
approach, however, has a number of limitations due to the nature of the trans-
formation in Equation (2), i.e., the panel factorization. Both the DGEQR2 and
the DLARFT are rich in Level 2 BLAS operations that cannot be efficiently par-
allelized on currently available shared memory machines. To understand this,
it is important to note that Level 2 BLAS operations can be, generally speak-
ing, defined as all those operations where O(n2) floating-point operations are
performed on O(n2) floating-point data; thus, the speed of Level 2 BLAS com-
putations is limited by the speed at which the memory bus can feed the cores.
On current multicores architectures, there is a vast disproportion between the
bus bandwidth and the speed of the cores. For example the Intel Clovertown
processor is equipped with four cores each capable of a double precision peak per-
formance of 10.64 Gflop/s (that is to say a peak of 42.56 Gflop/s for four cores)
while the bus bandwidth peak is 10.64 GB/s which provides 1.33 GWords/s (a
word being a 64 bit double precision number). As a result, since one core is
largely enough to saturate the bus, using two or more cores does not provide
any significant benefit. The LAPACK algorithm for QR factorization is, thus,
characterized by the presence of a sequential operation (i.e., the panel factoriza-
tion) which represents a small fraction of the total number of flops performed
(O(n2) flops for a total of O(n3) flops) but limits the scalability of the block
QR factorization on a multicore system when parallelism is only exploited at
the level of the BLAS routines. This approach will be referred to as the fork-
join approach since the execution flow of the QR factorization would show a
sequence of sequential operations (i.e. the panel factorizations) interleaved to
parallel ones (i.e., the trailing submatrix updates).

Table 1 shows the scalability limits of the panel factorization and how this af-
fects the scalability of the whole QR factorization on an 8-socket dual-core AMD
Opteron system with MKL-9.1 and GotoBLAS-1.15 parallel BLAS libraries.
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AMD ACML-4.0.0 GotoBLAS-1.15
# cores DGEQR2 DGEQRF DGEQR2 DGEQRF

Gflop/s Gflop/s Gflop/s Gflop/s
1 0.1218 2.9 0.4549 3.31
2 0.1577 5.4 0.4558 5.51
4 0.2083 9.0 0.4557 9.69
8 0.5055 12.8 0.4549 10.58
16 0.4496 8.7 0.4558 13.01

Table 1: Scalability of the fork-join parallelization on a 8-socket dual Opteron
system (sixteen cores total).

In [8, 9, 20], a solution to this scalability problem is presented. The ap-
proach described in [8, 20] consists of breaking the trailing submatrix update
into smaller tasks that operate on a block-column (i.e., a set of b contiguous
columns where b is the block size). The algorithm can then be represented
as a Directed Acyclic Graph (DAG) where nodes represent tasks, either panel
factorization or update of a block-column, and edges represent dependencies
among them. The execution of the algorithm is performed by asynchronously
scheduling the tasks in a way that dependencies are not violated. This asyn-
chronous scheduling results in an out-of-order execution where slow, sequential
tasks are hidden behind parallel ones. This approach can be described as a dy-
namic lookahead technique. Even if this approach provides significant speedup,
as shown in [20], it is exposed to scalability problems. In fact, due to the rela-
tively high granularity of the tasks, the scheduling of tasks may have a limited
flexibility and the parallel execution of the algorithm may be affected by an
unbalanced load. These problems become a major limitation when the degree
of parallelism grows (see [20] for more details).

The following sections describe the application of this idea of dynamic schedul-
ing and out of order execution to an algorithm for QR factorization where finer
granularity of the operations and higher flexibility for the scheduling can be
achieved. Performance results in Section 4 will show how a good scalability and
significant speedup can be achieved using the proposed algorithm in combina-
tion with graph-driven, dynamic scheduling of the tasks.

3 Tiled QR Factorization

The idea of dynamic scheduling and out of order execution can be applied to
a class of algorithms for common Linear Algebra operations. Previous work in
this direction shows how the Symmetric Rank-K update (SYRK), Cholesky fac-
torization, block LU factorization and block QR factorization [8, 9, 20] can be
parallelized with these techniques. Fine granularity algorithms for SYRK and
the Cholesky factorization can be easily derived from those used in the BLAS
and LAPACK libraries (respectively) by “tiling” the elementary operations that
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they are made of (see [9] for details). In the case of the block LAPACK algo-
rithms for LU and QR factorizations, however, the panel reduction involves tall
and narrow portions of the matrix (i.e. a block-column) and cannot be refor-
mulated as a sequence of tile-operations; this represents the major limitation of
the approach presented in [8, 20] (see also the previous section for more details).
In order to overcome these limitations, a major algorithmic change is necessary.

The algorithmic change proposed is actually well-known and takes its roots
in updating factorizations [15, 25]. Using updating techniques to tile the algo-
rithms have first2 been proposed by Yip [28] for LU to improve the efficiency of
out-of-core solvers, and were recently reintroduced in [17, 23] for LU and QR,
once more in the out-of-core context. A similar idea has also been proposed
in [7] for Hessenberg reduction in the parallel distributed context.

The originality of this paper is to study this techniques in the multicore
context, where they can be used to formulate fine granularity algorithms and
achieve high flexibility for the dynamic scheduling of tasks.

3.1 A Fine-Grain Algorithm for QR Factorization

The tiled QR factorization will be constructed based on the following four ele-
mentary operations:

DGEQT2. This subroutine was developed to perform the unblocked factorization
of a diagonal tile Akk of size b × b. This operation produces an upper
triangular matrix Rkk, a unit lower triangular matrix Vkk that contains b
Householder reflectors and an upper triangular matrix Tkk as defined by
the WY technique for accumulating the transformations. Note that both
Rkk and Vkk can be written on the memory area that was used for Akk

and, thus, no extra storage is needed for them. A temporary work space
is needed to store Tkk.

Thus, DGEQT2(Akk, Tkk) performs

Akk ←− Vkk, Rkk Tkk ←− Tkk

DLARFB. This LAPACK subroutine will be used to apply the transformation
(Vkk, Tkk) computed by subroutine DGEQT2 to a tile Akj .

Thus, DLARFB(Akj , Vkk, Tkk) performs

Akj ←− (I − VkkTkkV T
kk)Akj

DTSQT2. This subroutine was developed to perform the unblocked QR factor-
ization of a matrix that is formed by coupling an upper triangular tile Rkk

with a square tile Aik. This subroutine will return an upper triangular
matrix R̃kk which will overwrite Rkk and b Householder reflectors where
b is the tile size. Note that, since Rkk is upper triangular, the result-
ing Householder reflectors can be represented as an identity tile I on top

2to our knowledge
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of a square tile Vik. For this reason no extra storage is needed for the
Householder vectors since the identity tile need not be stored and Vik can
overwrite Aik. Also a matrix Tik is produced for which storage space has
to be allocated.

Then, DTSQT2(Rkk, Aik, Tik) performs(
Rkk

Aik

)
←−

(
I

Vik

)
, R̃kk Tik ←− Tik

DSSRFB. This subroutine was developed to apply the transformation computed
by DTSQT2 to a matrix formed coupling two square tiles Akj and Aij .

Thus, DSSRF(Akj , Aij , Vik, Tik) performs(
Akj

Aij

)
←−

(
I −

(
I

Vik

)
·(Tik)· (I V T

ik )
)(

Akj

Aij

)
All of this elementary operations rely on BLAS subroutines to perform in-

ternal computations.
Assuming a matrix A of size pb× qb

A11 A12 . . . A1q

A21 A22 . . . A2q

...
. . .

...
Ap1 Ap2 . . . Apq


where b is the tile size and each Aij is of size b× b, the QR factorization can be
performed as in Algorithm 1.

Algorithm 1 The tiled algorithm for QR factorization.
1: for k = 1, 2..., min(p, q) do
2: DGEQT2(Akk, Tkk);
3: for j = k + 1, k + 2, ..., q do
4: DLARFB(Akj , Vkk, Tkk);
5: end for
6: for i = k + 1, k + 1, ..., p do
7: DTSQT2(Rkk, Aik, Tik);
8: for j = k + 1, k + 2, ..., q do
9: DSSRFB(Akj , Aij , Vik, Tik);

10: end for
11: end for
12: end for

Figure 2 gives a graphical representation of one repetition (with k = 1) of
the outer loop in Algorithm 1 with p = q = 3. The red, thick borders show
what tiles in the matrix are being read and the light blue fill shows what tiles
are being written in a step. The Tkk tiles are not shown in this figure for clarity
purposes.
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DGEQT2
k=1

DLARFBDLARFB
k=1, j=2 k=1, j=3

DTSQT2
k=1, i=2

DSSRFB
k=1, i=2, j=2

DSSRFB
k=1, i=2, j=3

DTSQS2
k=1, i=3

DSSRFB
k=1, i=3, j=2

DSSRFB
k=1, i=3, j=3

Figure 2: Graphical representation of one repetition of the outer loop in Algo-
rithm 1 on a matrix with p = q = 3. As expected the picture is very similar to
the out-of-core algorithm presented in [17].

3.2 Operation count

This section shows that Algorithm 1 has a higher operation count than the LA-
PACK algorithm discussed in Section 2. Performance results in Section 4 will
demonstrate that it is worth paying this cost for the sake of scaling. The oper-
ation count of the tiled algorithm for QR factorization can be derived starting
from the operation count of each elementary operation; assuming that b is the
tile size:
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DGEQT2: this operation is a standard non blocked QR factorization of a b × b
tile where, in addition, the Tkk triangular tile is computed. Thus, 4/3b3

floating point operations are performed for the factorization plus 2/3b3 for
computing Tkk. This subroutine accounts for 2b3 floating point operations
total.

DLARFB: since both Vkk and Tkk are triangular tiles, 3b3 floating point operations
are done in this subroutine.

DTSQT2: taking advantage of the triangular structure of Rkk, the factorization
can be computed in 2b3 floating point operations. The computation of the
triangular Tik tile can also be performed exploiting the structure of the
Householder vectors built during the factorization (remember that the b
reflectors can be represented as an identity tile on top of a square full tile).
Since 4/3b3 are needed to compute Tik, the DTSQT2 accounts for 10/3b3

floating point operations.

DSSRFB: exploiting the structure of the Householder reflectors and of the Tik tile
computed in DTSQT2, this subroutine needs 5b3 floating point operations.

For each repetition of the outer loop in Algorithm 1, one DGEQT2, q − k
DLARFB, p − k DTSQT2 and (p − k)(q − k) DSSRFB are performed for a total of
2b3 + 3(q − k)b3 + 10/3(p− k)b3 + 5(p− k)(q − k)b3. Assuming, without loss of
generality, that q < p and integrating this quantity over all the q repetitions of
the outer loop in Algorithm 1, the total operation count for the QR factorization
is ∑q

k=1(2b3 + 3(q − k)b3 + 10
3 (p− k)b3 + 5(p− k)(q − k)b3)

' 5
2q2(p− q

3 )b3

= 5
2n2(m− n

3 ).

(4)

Equation (4) shows that the tiled algorithm for QR factorization needs 25%
more floating point operations than the standard LAPACK algorithm.

Since the extra flops are due to the formation and application of multiple Tik

tiles at each step, using unblocked transformations in the tiled algorithm would
lead to exactly the same operation count of the block LAPACK algorithm but
this drastically affects the performance on a system with memory hierarchy.

3.3 Graph driven asynchronous execution

Following the approach presented in [8, 20], Algorithm 1 can be represented
as a Directed Acyclic Graph (DAG) where nodes are elementary tasks that
operate on b × b blocks and where edges represent the dependencies among
them. Figure 3 show the DAG when Algorithm 1 is executed on a matrix with
p = q = 3. Note that the DAG has a recursive structure and, thus, if p1 ≥ p2

and q1 ≥ q2 then the DAG for a matrix of size p2× q2 is a subgraph of the DAG
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Figure 3: The dependency graph of Algorithm 1 on a matrix with p = q = 3.

for a matrix of size p1× q1. This property also holds for most of the algorithms
in LAPACK.

Once the DAG is known, the tasks can be scheduled asynchronously and
independently as long as the dependencies are not violated. A critical path can
be identified in the DAG as the path that connects all the nodes that have the
higher number of outgoing edges. Based on this observation, a scheduling policy
can be used, where higher priority is assigned to those nodes that lie on the
critical path. Clearly, in the case of our block algorithm for QR factorization,
the nodes associated to the DGEQT2 subroutine have the highest priority and
then three other priority levels can be defined for DTSQT2, DLARFB and DSSRFB
in descending order.

This dynamic scheduling results in an out of order execution where idle
time is almost completely eliminated since only very loose synchronization is
required between the threads. Figure 4 shows part of the execution flow of
Algorithm 1 on a 16-cores machine (8-socket Dual Opteron) when tasks are
dynamically scheduled based on dependencies in the DAG. Each line in the
execution flow shows which tasks are performed by one of the threads involved
in the factorization.

Figure 4 shows that all the idle times, which represent the major scala-
bility limit of the fork-join approach, can be removed thanks to the very low
synchronization requirements of the graph driven execution. The graph driven
execution also provides some degree of adaptivity since tasks are scheduled to
threads depending on the availability of execution units.

3.4 Block Data Layout

The major limitation of performing very fine grain computations, is that the
BLAS library generally have very poor performance on small blocks. This sit-
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Figure 4: The execution flow for dynamic scheduling, out of order execution of
Algorithm 1.

uation can be considerably improved by storing matrices in Block Data Layout
(BDL) instead of the Column Major Format that is the standard storage format
for FORTRAN arrays.

Figure 5: A comparison of Column Major storage format (left) and Block Data
Layout (right).

Figure 5 compares Column Major Format (left) and Block Data Layout
(right). In BDL a matrix is split into blocks and each block is stored into
contiguous memory locations. Each block is stored in Column Major Format
and blocks are stored in Column Major Format with respect to each other. As
a result the access pattern to memory is more regular and BLAS performance
is considerably improved. The benefits of BDL have been extensively studied
in the past, for example in [18], and recent studies like [9] demonstrate how
fine-granularity parallel algorithms can benefit from BDL.
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4 Performance Results

The performance of the tiled QR factorization with dynamic scheduling of tasks
has been measured on the systems listed in Table 2 and compared to the per-
formance of the fork-join approach, i.e., the standard algorithm for block QR
factorization of LAPACK associated with multithreaded BLAS.

8-socket dual Opteron 2-socket quad Clovertown
Architecture Dual-Core AMD Intel R©Xeon R©CPU

OpteronTM8214 X5355
Clock speed 2.2 GHz 2.66 GHz
# cores 8× 2 = 16 2× 4 = 8
Peak perfor-
mance

70.4 Gflop/s 85.12 Gflop/s

Memory 62 GB 16 GB
Compiler suite Intel 9.1 Intel 9.1
BLAS libraries GotoBLAS-1.15 GotoBLAS-1.15

ACML-4.0.0 MKL-9.1

Table 2: Details of the systems used for the following performance results.

Figures 6, 7, 8, 9 report the performance of the QR factorization for both
the block algorithm with dynamic scheduling, the LAPACK subroutine linked to
multithreaded BLAS and a vendor implementation of the QR factorization (this
last is only provided by the MKL and ACML libraries but no the GotoBLAS
one). A block size of 200 has been used for the tiled algorithm while the block
size for the LAPACK algorithm3 has been tuned in order to achieve the best
performance for all the combinations of architecture and BLAS library.

In each graph, two curves are reported for the block algorithm with dynamic
scheduling; the solid curve shows its relative performance when the operation
count is assumed equal to the one of the LAPACK algorithm reported in Sec-
tion 2 while the dashed curve shows its “raw” performance, i.e. the actual flop
rate computed with the exact operation count for this algorithm (given in Equa-
tion (4)). As already mentioned, the “raw performance” (dashed curve) is 25%
higher than the relative performance (solid curve).

The graphs on the left part of each figure show the performance measured
using the maximum number of cores available on each system with respect to
the problem size. The graphs on the right part of each figure show the weak
scalability, i.e. the flop rates versus the number of cores when the local problem
size is kept constant (nloc=5,000) as the number of cores increases.

Figures 6, 7, 8, 9 show that, despite the higher operation count, the block al-
gorithm with dynamic scheduling is capable of completing the QR factorization
in less time than the LAPACK algorithm when the parallelism degree is high
enough that the benefits of the asynchronous execution overcome the penalty

3the block size in the LAPACK algorithm sets the width of the panel.

13



0 2000 4000 6000 8000 10000 12000 14000
5

10

15

20

25

30

35

40
QR −− 8−socket dual Opteron, GotoBLAS−1.15

problem size

G
flo

p/
s block + async.

LAPACK
blk raw

1 2 4 8 16
0

5

10

15

20

25

30

35

40
QR −− 8−socket dual Opteron, GotoBLAS−1.15

# of processors

G
flo

p/
s

block + async.
LAPACK
blk raw

Figure 6: Performance of the tiled algorithm with dynamic scheduling using
GotoBLAS-1.15 on an 8-socket Dual Opteron system. The dashed curve reports
the raw performance of the tiled algorithm with dynamic scheduling, i.e., the
performance as computed with the true operation count in Equation (4).
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Figure 7: Performance of the tiled algorithm with dynamic scheduling using
GotoBLAS-1.15 on an 2-socket Quad Clovertown system. The dashed curve
reports the raw performance of the tiled algorithm with dynamic scheduling,
i.e., the performance as computed with the true operation count in Equation (4).
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Figure 8: Performance of the tiled algorithm with dynamic scheduling using
ACML-4.0.0 on an 8-socket Dual Opteron system. The dashed curve reports
the raw performance of the tiled algorithm with dynamic scheduling, i.e., the
performance as computed with the true operation count in Equation (4).
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Figure 9: Performance of the tiled algorithm with dynamic scheduling using
MKL-9.1 on an 2-socket Quad Clovertown system. The dashed curve reports
the raw performance of the tiled algorithm with dynamic scheduling, i.e., the
performance as computed with the true operation count in Equation (4).
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of the extra flops. For lower numbers of cores, in fact, the fork-join approach
has a good scalability and completes the QR factorization in less time than the
block algorithm because of the lower flop count. Note that the actual execution
rate of the block algorithm for QR factorization with dynamic scheduling (i.e.,
the dashed curves) is always higher than that of the LAPACK algorithm with
multithreaded BLAS even for low numbers of cores.

The scalability data reported on the right side of Figures 6, 7, 8 and 9 clearly
show how the fork-join approach has scalability limits that become more evident
for higher degree of parallelism leading also to slowdown in some cases (see Fig-
ure 8). The scalability of the tiled algorithm with dynamic scheduling resembles
that of vendors implementations. However, the data in the graphs suggest that
the tiled algorithm may have an advantage over the vendor implementations
when the degree of parallelism is higher than what was possible to achieve on
the systems used.

The actual performance of the tiled algorithm, even if considerably higher
than that of the fork-join one, is still far from the peak performance of the
systems used for the measures. This is mostly due to two factors. First the
nature of the BLAS operations involved; the DGEQR2 and the DLARFT in the
LAPACK algorithm and the DGEQT2 and DTSQT2 in the block algorithm are
based on Level 2 BLAS operations that, being memory bound, represent a
limit for performance. Second, the performance of BLAS routines on small
size blocks. The block size used in the experiments reported above is 200; this
block size represents a good compromise between flexibility of the scheduler and
performance of the BLAS operations but it is far from being ideal. Such a block
size, in fact, does not allow a good task scheduling for smaller size problems and
still the performance of BLAS operations is far from what can be achieved for
bigger size blocks.

5 On the use of recursion in the block LAPACK
algorithm

As pointed out in Section 2, the block QR algorithm in LAPACK suffers scalabil-
ity limitations due to the intrinsically sequential nature of the panel reduction.
Recursive techniques to perform the panel reduction as proposed by Elmroth et
al. [13] can be used to weaken these limitations. Even if recursive panel factor-
ization was introduced as a cache oblivious technique to improve data locality,
it must be noted that the usage of recursion allows to perform some of the op-
erations in the panel reduction by means of Level-3 BLAS subroutines which
means that the panel can be parallelized to some extent on shared memory ar-
chitectures. However, part of the panel reduction has still to be performed in
Level-2 BLAS operations which represents a limitation to the scalability of the
algorithm for the reasons discussed in Section 2. Due to the unavailability of
source code for the algorithm presented in [13], a variant of this algorithm was
implemented and its performance compared to that of the traditional LAPACK
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block algorithm and the tiled algorithm described in Section 3. Specifically, in
the implemented variant, recursion in the panel is stopped at a given point (set
through parameter that must be tuned according to the architecture character-
istics) after which conventional unblocked code (i.e. the LAPACK DGEQR2) is
used to perform the remainder of the computations. The results of this compar-
ison on the 8-socket Dual Opteron system in Table 2 are reported in Figure 10.
Figure 10 shows that, even if the recursive panel provides much better per-
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Figure 10: Comparison between the performance of the tiled algorithm with
dynamic scheduling using ACML-4.0.0 on an 8-socket Dual Opteron system,
the traditional LAPACK block algorithm and the block algorithm with recursive
panel.

formance with respect to the traditional LAPACK block algorithm, it is still
considerably slower than the proposed tiled algorithm for higher parallelism
degrees.

6 Conclusion

By adapting known algorithms for updating the QR factorization of a matrix,
we have derived an implementation scheme of the QR factorization for multicore
architectures based on dynamic scheduling and block data layout. Although the
proposed algorithm is performing 25% more flops than the regular algorithm,
the gain in flexibility allows an efficient dynamic scheduling which enables the
algorithm to scale almost perfectly when the number of cores increases.

While this paper only addresses the QR factorization, it is straightforward
to derive with the same ideas the two important computational routines that
consists in applying the Q factor to a set of vectors (see DORMQR in LAPACK)
and constructing the Q-factor (see DORGQR in LAPACK).
The ideas behind this work can be extended in many directions:

Explore techniques to reduce the extra flops. It can be noted that the
25% overhead can be reduced by using nonsquare tiles. For example, us-
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ing 2b×b tiles, the overhead reduces to 12.5%. Even though this may seem
an effective solution to the problem of extra computations, using rectan-
gular tiles yields a coarser granularity which limits the flexibility of the
dynamic scheduling and results in poorer parallelization of the elementary
operations. A potentially effective technique for reducing the amount of
extra flops consists in accumulating the transformations computed inside
the DTSQT2 operation in subsets of size s where s� b (this method is ex-
plained in [17]). The efficient implementation of this “internal blocking”
technique is not easy to accomplish since it has to face the limitations
of BLAS subroutines on small portions of data. The internal blocking is
currently under investigation.

Implement other linear algebra operations. The LU factorization can be
performed with an algorithm that is analogous to the QR one described
in Section 3. This algorithm has been discussed in [23, 28] as a way of im-
proving the out-of-core LU factorization. Even though the only difference
between the tiled algorithms for the LU and QR factorizations is in the
elementary operations, in the LU case the cost of the tiled algorithm is
50% higher than the LAPACK algorithm. For this reason, the benefits of
the improved scalability may be visible only at very high processor counts
or may not be visible at all. Techniques must be investigated to eliminate
or reduce the extra cost.

The same idea of tiled operations may also be applied to other two sided
transformations like Hessenberg reduction, Tridiagonalization and Bidi-
agonalization. In these transformations, Level 2 BLAS operations are
predominant and panel reductions account for almost 50% of the time of
a sequential execution. Breaking the panel into smaller tasks that can be
executed in parallel with other tasks may yield considerable performance
improvements.

Enforcing data locality. The results presented in [9] show that enforcing data
locality and CPU affinity may provide considerable benefits. It must be
noted that the improvements that can be expected on non-multicore SMPs
are higher than on currently available multicore systems and this is due to
the fact that on multicores, some of the higher level memories are shared
between multiple cores. Moreover enforcing data locality has a major
drawback in the fact that it seriously limits the scheduling of tasks since
each core can only be assigned tasks that operate on data that resides on
the memory associated with it. Preliminary results show that enforcing
data locality and CPU affinity provides a slight speedup on the 8-socket
Dual Opteron system which is a NUMA architecture. These techniques
require further investigation.

Implement the same algorithms in distributed memory systems. The
fact that the block algorithms for QR and LU factorizations only require
loose synchronization between tasks make them also good candidates for
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the implementation on distributed memory systems based on MPI com-
munications.

Implement the same algorithms on the STI Cell architecture. In the STI
Cell processor, no caches are present but a small, explicitly managed mem-
ory is associated to each core. Due to the small size of these local memo-
ries (only 256 KB), the LAPACK algorithms for LU and QR factorizations
cannot be efficiently implemented. The block algorithms for LU and QR
factorizations represent ideal candidates for the STI Cell architecture since
they can be parallelized with a very fine granularity.

Explore the usage of parallel programming environments. The task of
implementing Linear Algebra operations with dynamic scheduling of tasks
on multicore architectures can be considerably simplified by the use of
graph driven parallel programming environments. One such environment
is SMP Superscalar[5] developed at the Barcelona Supercomputing Center.
SMP Superscalar addresses the automatic exploitation of the functional
parallelism of a sequential program in multicore and SMP environments.
The focus in on the portability, simplicity and flexibility of the program-
ming model. Based on a simple annotation of the source code, a source
to source compiler generates the necessary code and a runtime library ex-
ploits the existing parallelism by building at runtime a task dependency
graph. The runtime takes care of scheduling the tasks and handling the
associated data. Besides, a temporal locality driven task scheduling can
be implemented.
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