
Solving Systems of Linear Equations on the CELL Processor
Using Cholesky Factorization – LAPACK Working Note 184

Jakub Kurzak1, Alfredo Buttari1, Jack Dongarra1,2

1Department of Computer Science, University Tennessee,
Knoxville, Tennessee 37996

2Computer Science and Mathematics Division, Oak Ridge National Laboratory,
Oak Ridge, Tennessee, 37831

April 30, 2007

ABSTRACT: The STI CELL processor introduces
pioneering solutions in processor architecture. At the
same time it presents new challenges to development
of numerical algorithms. One is effective exploita-
tion of the differential between the speed of single
and double precision arithmetic, the other is efficient
parallelization between the short vector SIMD cores.
In this work the first challenge is addressed by uti-
lizing a mixed-precision algorithm for the solution of
a dense symmetric positive definite system of linear
equations, which delivers double precision accuracy,
while performing the bulk of the work in single pre-
cision. The second challenge is approached by intro-
ducing much finer granularity of parallelization than
has been used for other architectures, and using a
lightweight decentralized synchronization. The im-
plementation of the computationally intensive sec-
tions gets within 90% of peak floating point perfor-
mance, while the implementation of the memory in-
tensive sections reaches within 90% of peak memory
bandwidth. On a single CELL processor the algo-
rithm achieves over 170 Gflop/s when solving a sym-
metric positive definite system of linear equation in
single precision and over 150 Gflop/s when delivering
the result in double precision accuracy.

KEYWORDS: CELL BE, iterative refinement,
mixed-precision algorithms, Cholesky factorization

1 Motivation

In numerical computing, there is a fundamental per-
formance advantage of using single precision floating
point data formant over double precision data for-
mat, due to more compact representation, thanks to
which, twice the number of single precision data ele-
ments can be stored at each stage of the memory hi-
erarchy. Short vector SIMD processing provides yet
more potential for performance gains from using sin-
gle precision arithmetic over double precision. Since
the goal is to process the entire vector in a single op-
eration, the computation throughput can be doubled
when the data representation is halved.

Most of processor architectures available today
have been at some point augmented with short vec-
tor SIMD extensions. Examples include Streaming
SIMD Extensions (SSE) for AMD and Intel line of
processors, PowerPC Velocity Engine / AltiVec /
VMX, Sparc Visual Instruction Set (VIS), Alpha Mo-
tion Video Instructions (MVI), PA-RISC Multimedia
Acceleration eXtensions (MAX), MIPS-3D Applica-
tion Specific Extensions (ASP), and Digital Media
Extensions (MDMX), ARM NEON. The different ar-
chitectures exhibit big differences in their capabili-
ties. The vector size is either 64 bits or, more com-
monly, 128 bits. The register file size ranges from just
a few to as many as 128 registers. Some extensions

1

only support integer types, other also operate on sin-
gle precision floating point numbers, and yet others
also process double precision values.

Today the Synergistic Processing Element (SPE)
of the STI CELL processor [1–3] can probably be
considered the state of the art in short vector SIMD
processing. Possessing 128-byte long registers and
a fully pipelined fused add-multiply instruction, it is
capable of completing 8 single precision floating point
operations each clock cycle, which combined with the
size of the register file of 128 registers, delivers close
to peak performance on many common workloads.
At the same time, built with multimedia and em-
bedded applications in mind, the current incarnation
of the CELL architecture does not implement dou-
ble precision arithmetic on a par with single preci-
sion performance-wise, which makes the processor a
very attractive target for exploring mixed-precision
approaches.

Another important phenomenon in recent years
has been the gradual shift of focus in processor ar-
chitecture from aggressive exploitation of instruction
level parallelism towards thread-level parallelism, re-
sulting in the introduction of chips with multiple pro-
cessing units commonly referred to as multi-core pro-
cessors. The new architectures deliver the much de-
sired improvement in performance, and at the same
time challenge the scalability of existing algorithms,
and force the programmers to seek more parallelism
by going to much finer levels of problem granular-
ity. In linear algebra it enforces the departure from
the model relying on parallelism encapsulated at the
level of BLAS, and shift to more flexible methods of
scheduling work.

2 Related Work

Iterative refinement is a well known method for im-
proving the solution of a linear system of equations of
the form Ax = b. Typically, a dense system of linear
equations is solved by applying a factorization to the
coefficient matrix, followed by a back solve. Due to
roundoff errors, the solution carries an error related
to the condition number of the coefficient matrix. In
order to improve the computed solution, an iterative

refinement process can be applied, which produces
a correction to the computed solution at each itera-
tion. In principle the algorithm can produce solution
correct to the working precision.

Iterative refinement is a fairly well understood con-
cept, and was analyzed by Wilkinson [4], Moler [5]
and Stewart [6]. Higham gives error bounds for both
single and double precision iterative refinement algo-
rithms, where the entire algorithm is implemented
with the same precision (single or double respec-
tively) [7]. He also gives error bounds in single preci-
sion arithmetic, with refinement performed in double
precision arithmetic. Error analysis for the case de-
scribed in this work, where the factorization is per-
formed in single precision and the refinement in dou-
ble precision, is given by Langou et al.[8].

The authors of this work have previously presented
an initial implementation of the mixed-precision algo-
rithm for the general, non-symmetric, case using LU
factorization on the CELL processors. Although re-
spectable performance numbers were presented, both
the factorization and the refinement steps relied on
rather classic parallelization approaches. Also, some-
what general discussion of algorithmic and imple-
mentation details was presented. This work extends
the previous presentation by introducing a novel
scheme for parallelization of the computational com-
ponents of the algorithm, and also describing in much
more detail the implementation of both computation-
intensive, as well as memory-intensive operations.

3 Algorithm

The standard approach to solving symmetric posi-
tive definite systems of linear equations is to use the
Cholesky factorization. The Cholesky factorization
of a real symmetric positive definite matrix A has the
form A = LLT , where L is a real lower triangular ma-
trix with positive diagonal elements. The system is
solved by first solving Ly = b (forward substitution),
and then solving LT x = y (backward substitution). In
order to improve the accuracy of the computed solu-
tion, an iterative refinement process is applied, which
produces a correction to the computed solution, x, at
each iteration.

2

Algorithm 1 Solution of a symmetric positive defi-
nite system of linear equations using mixed-precision
iterative refinement based on Cholesky factorization.
1: A(32), b(32) ← A, b
2: L(32), L

T
(32) ←SPOTRFa(A(32))

3: x
(1)
(32) ←SPOTRSb(L(32), L

T
(32), b(32))

4: x(1) ← x
(1)
(32)

5: repeat
6: r(i) ← b−Ax(i)

7: r
(i)
(32) ← r(i)

8: z
(i)
(32) ←SPOTRSb(L(32), L

T
(32), r

(i)
(32))

9: z(i) ← z
(i)
(32)

10: x(i+1) ← x(i) + z(i)

11: until x(i) is accurate enough
aLAPACK name for Cholesky factorization
bLAPACK name for symmetric back solve

64-bit representation is used in all cases where 32-bit repre-
sentation is not indicated by a subscript.

The mixed-precision iterative refinement algorithm
using Cholesky factorization is outlined by Algo-
rithm 1. The factorization A = LLT (line 2) and
the solution of the triangular systems Ly = b and
LT x = y (lines 3 and 8) are computed using single
precision arithmetic. The residual calculation (line 6)
and the update of the solution (line 10) are computed
using double precision arithmetic and the original
double precision coefficients. The most computation-
ally expensive operations, including the factorization
of the coefficient matrix A and the forward and back-
ward substitution, are performed using single preci-
sion arithmetic and take advantage of the single pre-
cision speed. The only operations executed in double
precision are the residual calculation and the update
of the solution.

It can be observed that all operations of O(n3)
computational complexity are handled in single pre-
cision, and all operations performed in double preci-
sion are of at most O(n2) complexity. The coefficient
matrix A is converted to single precision for the LU
factorization. At the same time, the original matrix
in double precision is preserved for the residual cal-
culation.

The algorithm described above, and shown on Al-
gorithm 1 is available in the LAPACK 3.1 library and
implemented by the routine DSGESV.

4 Implementation

4.1 Essential Hardware Features

Extensive hardware overview would be beyond the
scope of this publication. Vast amount of information
is publicly available for both experienced program-
mers [9], as well as newcomers to the field [10, 11].
It is assumed that the reader has some familiarity
with the architecture. Here the features are men-
tioned which influence the most the implementation
presented here.

The CELL is a multi-core chip including nine dif-
ferent processing elements. One core, the POWER
Processing Element (PPE), represents a standard
processor design implementing the PowerPC instruc-
tion set. The remaining eight cores, the Synergistic
Processing Elements (SPEs), are short vector Sin-
gle Instruction Multiple Data (SIMD) engines with
big register files of 128 128-bit vector registers and
256 KB of local memory referred to as local store
(LS). Although standard C code can be compiled
for execution on the SPEs, the SPEs do not exe-
cute scalar code efficiently. For efficient execution
the code has to be vectorized in the SIMD sense, by
using C language vector extensions (intrinsics), or by
using assembly code. The system’s main memory is
accessible to the PPE through L1 and L2 caches and
to the SPEs through DMA engines associated with
them. The SPEs can only execute code residing in
the local store and only operate on data in the local
store. All data has to be transferred in and out of
local store via DMA transfers, The theoretical com-
puting power of a single SPE is 25.6 Gflop/s in single
precision and roughly 1.8 Gflop/s in double precision.
Floating point arithmetic follows the IEEE format,
with double precision operations complying numeri-
cally with the standard and single precision not com-
plying. The theoretical communication speed for a
single SPE is 25.6 GB/s. The theoretical peak band-
width of the main memory is 25.6 GB/s as well.

3

A

C

A

B C

T TT

T = T – A  AT

SSYRK

T = LLT

SPOTRF
C = C – B  AT

SGEMM

C = C \ T
STRSM

A T

C

A

B C

TT

Figure 1: Top - steps of left-looking Cholesky factorization. Botton - tiling of operations.

The size of the register file and the size of the local
store dictate the size of the elementary operation sub-
ject to scheduling to the SPEs. The ratio of comput-
ing power to the memory bandwidth dictates overall
problem decomposition for parallel execution.

4.2 Factorization

A few flavors of Cholesky factorization are known. In
particular the right-looking variant, the left-looking
variant and the Crout variant [12]. It has also been
pointed out that those variants are borders of a con-
tinuous spectrum of possible execution paths [13].

Generally, the left-looking factorization is preferred
due to the following reasons: During the factorization
the most time is spent in calculating a matrix-matrix
product. In case of the right-looking factorization
this product involves a triangular matrix. In case
of the left-looking factorization this product only in-
volves rectangular matrices. It is generally more effi-
cient to implement a matrix-matrix product for rect-
angular matrices and it is easier to balance the load
in parallel execution. The implementation presented
here is derived from the left-looking formulation of
the Cholesky factorization, which follows the imple-
mentation of the LAPACK routine SPOTRF.

Due to the limited size of the local store, all numeri-
cal operations have to be decomposed into elementary

operations which fit in the local store. The simplic-
ity of implementing Cholesky factorization lies in the
fact that it can be easily decomposed into tile oper-
ations - operations on fixed-size submatrices which
take from one to three tiles as input and produce one
tile as output. These elementary operations will fur-
ther be referred to as tile kernels. Figure 1 presents
the steps of the left-looking Cholesky factorization
and how each step is broken down to tile operations.

4.2.1 Computational Kernels

Implementation of the tile kernels assumes fixed size
of the tiles. Smaller tiles (finer granularity) have pos-
itive effect on scheduling for parallel execution and
facilitate better load balance and higher parallel ef-
ficiency. Bigger tiles provide better performance in
sequential execution on a single SPE.

I case of the CELL chip the crossover point is
rather simple to find for problems in dense linear al-
gebra. From the standpoint of this work, the most
important operation is matrix multiplication in sin-
gle precision. It turns out that this operation can
achieve within a few percent off the peak performance
on a single SPE for matrices of size 64×64. The fact
that the peak performance can be achieved for a tile
of such a small size has to be attributed to the big
size of the register file and fast access to the local

4

Operation BLAS / LAPACK Call

T ← T −A×AT
cblas ssyrk(CblasRowMajor,

CblasLower, CblasNoTrans,
64, 64, 1.0, A, 64, 1.0, T, 64);

C ← C −B ×AT
cblas sgemm(CblasRowMajor,

CblasNoTrans, CblasTrans,
64, 64, 64,
1.0, B, 64, A, 64, 1.0, C, 64);

B ← B × T−T
cblas strsm(CblasRowMajor,

CblasRight, CblasLower,
(B = B/TT)a

CblasTrans, CblasNonUnit,
64, 64, 1.0, T, 64, B, 64);

T ← L× LT
lapack spotrf(lapack lower,

64, trans(T), 64, &info);b

ausing MATLAB notation
busing LAPACK C interface by R. Delmas and J. Langou,

http://icl.cs.utk.edu/∼delmas/lapwrapc.html

Table 1: Single precision Cholesky tile kernels.

store, undisturbed with any intermediate levels of
memory. Also, such matrix occupies 16 KB block
of memory which is the maximum size of a single
DMA transfer. Eight of such matrices fit in half of
the local store providing enough flexibility for multi-
buffering and, at the same time, leaving enough room
for the code. Discussion of tile size consideration was
also presented before by the authors of this publica-
tion [14]. Table 1 represents the Cholesky tile kernels
for tile size of 64×64 as BLAS and LAPACK calls.

It has already been pointed out that a few deriva-
tions of Cholesky factorization are known. In particu-
lar the right-looking variant, the left-looking variant
and the Crout variant [12]. Dynamic scheduling of
operation is another possibility. No matter, however,
which static variant is used, or whether dynamic ex-
ecution in used, the same set of tile kernels is needed.
The change from one to another will only alter the
order in which the tile operations execute.

All the kernels were developed using SIMD C lan-
guage extensions. Extra effort was invested into op-
timization of the matrix multiplication (SGEMM1)
kernel performing the calculation C = C − B × AT ,
since this operation dominates the execution time.
All the tile kernels were written by consistently ap-
plying the idea of blocking with block size of four.
Short discussion of each case follows.

1Tile kernels are referred to using the names of BLAS and

The SSYRK kernel applies a symmetric rank-k up-
date to a tile. In other words, it performs the opera-
tion T ← T −A×AT , where only the lower triangu-
lar part of T is modified. The SSYRK kernel consists
of two nested loops, where in each inner iteration a
4×4 block of the output tile is produced and the body
of the inner loop is completely unrolled. The #define
and nested #define directives are used to create a sin-
gle basic block - a block of straight line code. Static
offsets are used within the basic block and pointer
arithmetic is used to advance pointers between iter-
ations.

Algorithm 2 SSYRK tile kernel T ← T −A×AT .
1: for j = 0 to 15 do
2: for i = 0 to j − 1 do
3: Compute block [j,i]
4: Permute/reduce block [j,i]
5: end for
6: Compute block [j,j]
7: Permute/reduce block [j,j]
8: end for

block is a 4×4 submatrix of tile T .

The construction of the SSYRK tile kernel is pre-
sented by Algorithm 2. The unrolled code consists
of four distinct segments. A computation segment
(line 3) includes only multiply and add operations to
calculate a product of two 4×64 blocks of tile A and
produces 16 4-element vectors as output. A permu-
tation/reduction segment (line 4) performs transposi-
tions and reductions on these 16 vectors and delivers
the 4 4-element vectors constituting the 4×4 block of
the output tile. The two segments mentioned above
handle the off-diagonal, square blocks (lines 3 and 4)
and two more segments handle the triangular, diag-
onal blocks (lines 6 and 7). It is an elegant and com-
pact, but suboptimal design.

The SGEMM kernel performs the operation
C ← C −B ×AT , which is very similar to the opera-
tion performed by the SSYRK kernel. One difference
is that it updates the tile C with a product of two
tiles, B and AT , and not the tile A and its transpose.

LAPACK routines implementing the same functionality.

5

Algorithm 3 SGEMM tile kernel C ← C −B ×AT

1: Compute block 0
2: for i = 1 to 127 do
3: Permute/reduce blk 2i−2 & compute blk 2i−1
4: Permute/reduce blk 2i− 1 & compute blk 2i
5: end for
6: Permute/reduce blk 254 & compute blk 255
7: Permute/reduce blk 255

blk is a 4×4 submatrix of tile C.

The second difference is that the output is the entire
tile and not just its lower triangular portion. Also,
since the SGEMM kernel is performance-critical, it is
subject to more optimizations compared to the SSYK
kernel.

The main idea behind further optimization of the
SGEMM kernel comes from the fact that the SPE
is a dual issue architecture, where arithmetic oper-
ations can execute in parallel with permutations of
vector elements. Thanks to this fact a pipelined exe-
cution can be implemented, where the operations of
the permute/reduce segment from iteration k can be
mixed with the operations of the compute segment
from iteration k + 1. The two nested loops used for
SSYRK are replaced with a single loop, where the
256 4×4 blocks of the output tile are produced in a
linear row-major order, what results in Algorithm 3.

Algorithm 4 STRSM tile kernel B ← B × T−T .
1: for j = 0 to 15 do
2: for i = 0 to j − 1 do
3: Apply block i towards block j
4: end for
5: Solve block j
6: end for

block is a 64×4 submatrix of tile B.

The STRSM kernel computes triangular solve with
multiple right-hand-sides B ← B × T−T . The com-
putation is conceptually easiest to SIMD’ize if the
same step is applied at the same time to different
right-hand-sides. This can be easily achieved if the
memory layout of tile B is such that each 4-element

vector contains elements of the same index of differ-
ent right-hand-sides. Since this is not the case here,
each 4×4 block of the tile is transposed, in place, be-
fore and after the main loop implementing the solve.
The operation introduces a minor overhead, but al-
lows for very efficient implementation of the solve -
one which achieves good ratio of the peak with small
and simple code.

Algorithm 4 presents the structure of the code im-
plementing the triangular solve, which is an applica-
tion of the lazy variant of the algorithm. The choice
of the lazy algorithm versus the aggressive algorithm
is arbitrary. The code includes two segments of fully
unrolled code, which both operate on 64×4 blocks
of data. The outer loop segment (line 5) produces a
64×4 block j of the solution. The inner loop segment
(line 3) applies the update of step i to block j.

Algorithm 5 SPOTRF tile kernel T ← L× LT .
1: for k = 0 to 15 do
2: for i = 0 to k − 1 do
3: SSYRK (apply block [k,i] to block [k,k])
4: end for
5: SPOTF2 (factorize block [k,k])
6: for j = k to 15 do
7: for i = 0 to k − 1 do
8: SGEMM (apply block [j,i] to block [j,k])
9: end for

10: end for
11: for j = k to 15 do
12: STRSM (apply block [k,k] to block [j,k])
13: end for
14: end for

block is a 4×4 submatrix of tile T .

The SPOTRF kernel computes Cholesky factoriza-
tion, T ← L×LT , of a 64×64 tile. It is the lazy vari-
ant of the algorithm, more commonly referred to as
the left-looking factorization, where updates to the
trailing submatrix do not immediately follow panel
factorization. Instead updates are applied to a panel
right before factorization of that panel.

It could be expected that this kernel is imple-
mented using Level 2 BLAS operations, as this is the
usual way of implementing panel factorizations. Such

6

Kernel Source Compilation Object Execution Execution Fraction
Kernel Code Code Time Rate of Peak

[LOC] [KB] [µs] [Gflop/s] [%]
SSYRK 160 spuxlca -O3 4.7 13.23 20.12 78
SGEMM 330 spu-gccb -Os 9.0 22.78 23.01 90
STRSM 310 spuxlca -O3 8.2 16.47 15.91 62
SPOTRF 340 spu-gccb -O3 4.1 15.16 5.84 23
aversion 1.0 (SDK 1.1)
bversion 4.0.2 (toolchain 3.2 - SDK 1.1)

Table 2: Performance of single precision Cholesky factorization tile kernels.

solution would, however, lead to code being difficult
to SIMD’ize and yielding very poor performance. In-
stead, the implementation of this routine is simply
an application of the idea of blocking with block size
equal to the SIMD vector size of 4. Algorithm 5
presents the structure of SPOTRF tile kernel.

Table 2 compares the tile kernels in terms of source
and object code size and performance. Although per-
formance is the most important metric, code size is
not withough meaning, due to limited size of local
store. Despite the fact that code can be replaced
in the local store at runtime, it is desirable that the
entire code implementing the single precision factor-
ization fits into local store at the same time. Code
motion during the factorization would both compli-
cate the code and adversely affect performance.

Although the matrix multiplication achieves quite
good performance - 23 Gflop/s, which is 90% of the
peak, there is no doubt that yet better performance
could be achieved by using assembly code instead
C language SIMD extensions. Performance in excess
of 25 Gflop/s has been reported for similar, although
not identical, SGEMM kernels [15]. It is remarkable
that this performance can be achieved for operations
of such small granularity, which has to be attributed
to the unique features of the CELL architecture, es-
pecially register file and memory organization.

It is worth noting that, although significant effort
was required to optimize the SGEMM kernel (and yet
more would be required to further optimize it), the
other kernels involved rather small programming ef-
fort in a higher level language to deliver satisfactory
performance (execution time shorter than execution

time of SGEMM kernel). This means that the Pareto
principle (also known as the 80-20 rule) applies very
well in this case. Only small portion of the code re-
quires strenuous optimizations for the application to
deliver close to peak performance.

4.2.2 Parallelization

The presentation of the parallelization of the
Cholesky factorization needs to be preceded by a dis-
cussion of memory bandwidth considerations.

The SGEMM kernel can potentially execute at the
rate very close to 25.6 Gflop/s on a single SPE. In
such case it performs the 2×643 = 524288 operations
in 20.48 µs. The operation requires transmission of
three tiles from main memory to local store (tiles A,
B and C) and a transmission of one tile from local
store to main memory (updated tile C), consuming
the bandwidth equal to:

4tiles × 642 × 4sizeof(float)[B]
20.48[µs]

= 3.2[GB/s].

This means that 8 SPES performing the SGEMM op-
eration at the same time will require the bandwidth
of 8× 3.2GB/s = 25.6GB/s, which is the theoretical
peak main memory bandwidth.

It has been shown that arithmetic can execute al-
most at the theoretical peak rate on the SPE. At the
same time it would not be realistic to expect the-
oretical peak bandwidth from the memory system.
By the same token data reuse has to be introduced
into the algorithm to decrease the load on the main
memory. A straightforward solution is to introduce

7

1D processing, where each SPE processes one row of
tiles of the coefficient matrix at a time.

Please follow Figure 1 for the following discussion.
In the SSYRK part, one SPE applies a row of tiles
A to the diagonal tile T , followed by the SPOTRF
operation (factorization) of the tile T . Tile T only
needs to be read in at the beginning of this step and
written back at the end. The only transfers taking
place in between are reads of tiles A. Similarly, in
the SGEMM part, one SPE applies a row of tiles
A and a row of tiles B to tile C, followed by the
STRSM operation (triangular solve) on tile C using
the diagonal, triangular tile T . Tile C only needs to
be read in at the beginning of this step and written
back at the end. Tile T only needs to be read in
right before the triangular solve. The only transfers
taking place in between are reads of tiles A and B.
Such work partitioning approximately halves the load
on the memory system.

It may also be noted that 1D processing is a nat-
ural match for the left-looking factorization. In the
right-looking factorization the update to the trailing
submatrix can easily be partitioned in two dimen-
sions. However, in case of the left-looking factoriza-
tion, 2D partitioning would not be feasible due to the
write dependency on the panel blocks (tiles T and C).

1D partitioning introduces a load balancing prob-
lem. With work being distributed by block rows, in
each step of the factorization, a number of proces-
sors is going to be idle, which is equal to the number
of block rows factorized in a particular step modulo
the number of processors. Figure 2 shows three con-
secutive steps on a factorization and the processors
being occupied and idle in these steps. Such behav-
ior is going to put a harsh upper bound on achievable
performance.

It can be observed, however, that at each step of
the factorization, a substantial amount of work can
be scheduled, to the otherwise idle processors, from
the upcoming steps of the factorization. The only op-
erations which cannot be scheduled at a given point
in time are these that involve panels that have not
been factorized yet. This situation is illustrated on
Figure 3. Of course, this kind of processing requites
dependency tracking in two dimensions, but since all
operations proceed at the granularity of tiles, this

 1

 2

 3

 4

 2

 3 2

 1

 1

5

6

7

8

4

5

6

7

3

4

5

6

8 7

8

Figure 2: Load imbalance caused by 1D processing.

does not pose a problem.

 1

 2

 3

 4

 6

 7 ...

 5

 8

Figure 3: Pipelining of factorization steps.

In the implementation presented here all SPEs fol-
low a static schedule presented on Figure 3, with
cyclic distribution of work from the steps of the fac-
torization. In this case static schedule works well, due
to the fact that performance of the SPEs is very de-
terministic (unaffected by any non-deterministic phe-
nomena, like cache misses). This way the potential
bottleneck of a centralized scheduling mechanism is
avoided.

Figure 4 presents the execution chart (Gantt chart)
of factorization of a 1024×1024 matrix. Colors corre-
spond to the ones in Figure 1. The two shades of gray
distinguish the SGEMM operation in odd and even
steps of the factorization. The yellow color marks
the barrier operation, which corresponds to the load
imbalance of the algorithm.

It can be observed that: load imbalance is mini-
mal (the yellow region), dependency stalls is minimal
(the white gaps), communication and computation

8

Figure 4: Execution chart of Cholesky factorization of a matrix of size 1024×1024. Color scheme follows the
one from Figure 1. Different shades of green correspond to odd and even steps of the factorization.

overlapping is very good (the colored blocks repre-
sent purely computational blocks).

4.2.3 Synchronization

With the SPEs following a static schedule, synchro-
nization is required, such that an SPE does not pro-
ceed if data dependencies for an operation are not
satisfied.

Following dependencies have to be tracked: The
SSYRK and SGEMM operations cannot use as in-
put tiles A and B that have not been factorized yet.
The off-diagonal tiles A and B are factorized if the
STRSM operation has completed on these tiles. In
turn the STRSM operation cannot use as input a
diagonal tile T that has not been factirized yet. A
diagonal tile T is factorized if the SPOTRF operation
has completed on this tile,

Dependency tracking is implemented by means of
a replicated progress table. The progress table is a
2D triangular array with each entry representing a
tile of the coefficient matrix and specifying if the tile
has been factorized or not, which means completion
of SPOTRF operation for diagonal tiles and STRSM
operation for off-diagonal tiles.

By replication of the progress table, the potential
bottleneck of a centralized progress tracking mecha-
nism is avoided. Each SPE can check dependencies
by testing an entry in its local copy of the progress
table. The SPE completing factorization of a tile up-
dates the progress tables of all other SPEs, which
is done by a DMA transfer and introduces no over-
head due to the non-blocking nature of these trans-
fers. Since the smallest amount of data subject to
DMA transfer is one byte, the progress table entries
are one byte in size. These transfers consume in-

significant amount of bandwidth of the EIB and their
latency is irrelevant to the algorithm.

4.2.4 Communication

The most important feature of communication is
double-buffering of data. With eight tile buffers avail-
able, each operation involved in the factorization can
be double-buffered independently.

Thanks to this fact, double-buffering is imple-
mented not only between operations of the same type,
but also between different operations. In other words
data is always prefetched for the upcoming operation,
no matter what operation it is. In absence of depen-
dency stalls, the SPEs never wait for data, what re-
sults in big portions of the execution chart without
any gaps between computational blocks (Figure 5).

Figure 5: Magnification of a portion of the execution
chart from Figure4.

9

Tiles are never exchanged internally between local
stores, but always read from main memory and writ-
ten to main memory. An attempt to do otherwise
could tie up buffers in local store and prevent asyn-
chronous operation of SPEs. At the same time, with
the work partitioning implemented here, the memory
system provides enough bandwidth to fully overlap
communication and computation.

Reads of tiles involve dependency checks. When it
comes to prefetching of a tile, a dependency is tested
and a DMA transfer is initiated if the dependency is
satisfied. The DMA completion is tested right be-
fore processing of the tile. If the dependency is not
satisfied in the time for the prefetch, the prefetch is
abandoned in order not to stall the execution. In-
stead, right before processing of the tile, the SPE
busy-waits for the dependency and then transfers the
tile in a blocking way (initiates the transfer and im-
mediately waits for its completion).

4.2.5 Performance

Figure 6 shows performance of the single precision
Cholesky factorization calculated as the ration of ex-
ecution time to the number of floating point opera-
tions calculated as N3/3, where N is the matrix size
of the input matrix.

Table 3 gives numerical performance values for se-
lected matrix sizes in Gflop/s and also as ratios rela-
tive to the peak of the processor of 204.8 Gflop/s and
the peak of the SGEMM kernel of 8× 23.01 = 184.8
Gflop/s.

Size Gflop/s % CELL Peak % SGEMM Peak
512 92 45 50
640 113 55 62
1024 151 74 82
1280 160 78 87
1536 165 80 89
1664 166 81 90
2176 170 83 92
4096 175 85 95

Table 3: Selected performance points of single preci-
sion Cholesky factorization.

0 1000 2000 3000 4000
0

25

50

75

100

125

150

175

200

Size

G
flo

p/
s

SP peak

SGEMM peak

DP peak

SPOTRF

Figure 6: Performance of single precision Cholesky
factorization.

The factorization achieves 95% of the peak of
the SGEMM kernel, which means that overheads of
data communication, synchronization and load im-
balance are minimal, and at this point the only in-
efficiency comes from the suboptimal performance of
the SGEMM kernel. Hopefully in the future the ker-
nel will be fully optimized, perhaps using hand-coded
assembly.

4.3 Refinement

The two most expensive operations of the refinement
are the back solve (Algorithm 1, steps 3 and 8) and
residual calculation (Algorithm 1, step 6).

The back solve consists of two triangular solves
involving the entire coefficient matrix and a
single right-hand-side (BLAS STRSV operation).
The residual calculation is a double precision
matrix-vector product using a symmetric matrix
(BLAS DSYMV operation).

Both operations are BLAS Level 2 operations and
on most processors would be strictly memory-bound.
The STRSV operation actually is a perfect example
of a strictly-memory bound operation on the CELL
processor. However, the DSYMV operation is on the

10

border line of being memory bound versus compute
bound due to very high speed of the memory sys-
tem versus the relatively low performance of double
precision arithmetic.

4.3.1 Triangular Solve

The triangular solve is a perfect example of a
memory-bound workload, where the memory access
rate sets the upper limit on achievable performance.
The STRSV performs approximately two floating
point operations per each data element of four bytes,
which means that the peak memory bandwidth of
25.6 Gflop/s allows for at most:

25.6 GB/s× 2ops/float/4bytes/float = 12.8 Gflop/s,

which is only 1/16 or 0.625 % of the single precision
floating point peak of the processor. Owing to this
fact, the goal of implementing memory-bound opera-
tions is to get close to the peak memory bandwidth,
unlike for compute-bound operations, where the goal
is to get close to the floating point peak, This task
should be readily achievable, given that a single SPE
possesses as much bandwidth as the main memory.

Practice shows, however, that a single SPE is not
capable of generating enough traffic to fully exploit
the bandwidth, and a few SPEs solving the problem
in parallel should be used. Efficient parallel imple-
mentation of the STRSV operation has to pursue two
goals: continuous generation of traffic in order to sat-
urate the memory system and aggressive pursuit of
the algorithmic critical path in order to avoid depen-
dency stalls. Related question is the one of desired
level of parallelism - optimal number of processing el-
ements used. Since the triangular solve is rich in de-
pendencies, increasing the number of SPEs increases
the number of execution stalls caused by interpro-
cessor dependencies. Obviously, there is a crossover
point, a sweet spot, for the number of SPEs used for
the operation.

Same as other routines in the code, the STRSV
operation processes the coefficient matrix by 64×64
tiles. Triangular solve is performed on the diagonal
tiles and a matrix-vector product (SGEMV equiva-
lent) is performed on the off-diagonal tiles. Process-
ing of the diagonal tiles constitutes the critical path in

the algorithm. One SPE is solely devoted to process-
ing of the diagonal tiles, while the goal of the others
is to saturate the memory system with processing of
the off-diagonal tiles. The number of SPEs used to
process the off-diagonal tiles is a function of a few pa-
rameters. The efficiency of the computational kernels
used is one of the factors. In this case the number four
turned out to deliver the best results, with one SPE
pursuing the critical path and three others fulfilling
the task of memory saturation. Figure 7 presents the
distribution of work in the triangular solve routines.

11

 2 2 2 2

 3 3 3 3
00

00

00

00

00

00

00

00

00

1 1

2 2

3 3

1 1

11

22

33

11

22

33

11

x

A

Figure 7: Distribution of work in the triangular solve
routine.

The solve is done in place. The unknown/solution
vector is read in its entirety by each SPE to its lo-
cal store at the beginning and returned to the main
memory at the end. As the computation proceeds,
updated pieces of the vector are exchanged internally
by means of direct, local store to local store, commu-
nication. At the end SPE 0 possessed the full solution
vector and writes it back to the main memory. Syn-
chronization is implemented analogously to the syn-
chronization in the factorization and based on the
replicated triangular progress table (the same data
structure is reused).

Figure 8 shows performance, in terms of GB/s of
the two triangular solve routines requited in the solu-
tion/refinement step of the algorithm. The two rou-
tines perform slightly differently due to different per-
formance of their computational kernels. The figure
shows clearly that the goal of saturating the memory
system is achieved quite well. Performance as high
as 23.77 GB/s is obtained, which is 93 % of the peak.

11

0 1000 2000 3000 4000
0

4

8

12

16

20

24

Size

G
B

/s

Memory peak

Figure 8: Performance of the triangular solve rou-
tines.

4.3.2 Matrix-Vector Product

For most hardware platforms the matrix-vector prod-
uct would be a memory-bound operation, the same
as the triangular solve. On the CELL processor, how-
ever, due to the relative slowness of the double pre-
cision arithmetic, the operation is on the border of
being memory-bound and compute-bound, and even
with use of all eight SPEs, saturation of the memory
is harder than in the case of the STRSV routine.

The DSYMV routine also operates on tiles. Here,
however, the double precision representation of the
coefficient matrix is used with tile size of 32×32, such
that an entire tile can also be transferred with a single
DMA request. The input vector is only read in once,
at the beginning, in its entirety, and the output vector
is written back after the computation is completed.
Since the input matrix is symmetric, only the lower
portion is accessed and implicit transposition is used
to reflect the effect of the upper portion - each tile is
read in only once, but applied to the output vector
twice (with and without transposition).

Since, load balance is a very important aspect of
the implementation, work is split among SPEs very
evenly by applying the partitioning reflected on Fig-
ure 9. Such work distribution causes multiple write

dependencies on the output vector and in order to let
each SPE proceed without stalls, the output vector is
replicated on each SPE, and followed by a reduction
step. The reduction is also performed in parallel by
all SPEs and introduces a very small overhead, com-
pensated by the benefits of very good load balance.

00

11

22

33
00 11 22 33

reduce

x

A

y

00

11

22

33

00

11

22

33

Figure 9: Distribution of work in the matrix-vector
product routine.

Figure 10 shows the performance, in terms of GB/s
of the double precision symmetric matrix-vector
product routine. The performance of 20.93 GB/s
is achieved, which is 82 % of the peak. Although
DSYMV routine represents a Level 2 BLAS operation
and is parallelized among all SPEs, it is still compute
bound. Perhaps its computational components could
be further optimized. Nevertheless, at this point the
delivered level of performance is considered satisfac-
tory

5 Limitations

The implementation presented here should be con-
sidered a proof of concept prototype with the pur-
pose of establishing the upper bound on performance
achievable for mixed-precision dense linear algebra
algorithms on the CELL processor. As such, it has
a number of limitations. Only systems of sizes be-
ing multiplicities of 64 are accepted and only sys-
tems with a single right hand side are supported.
There are no tests for overflow during conversions
from double to single precision. There is no test for
non-definiteness during the single precision factoriza-

12

0 1000 2000 3000 4000
0

4

8

12

16

20

24

Size

G
B

/s

Memory peak

Figure 10: Performance of the matrix-vector product
routine.

tion step. The current implementation is wasteful in
its use of the main memory. The entire coefficient
matrix is stored explicitly without taking advantage
of its symmetry, both in single precision representa-
tion and double precision representation. The maxi-
mum size of the coefficient matrix is set to 4096, what
makes it possible to fit the progress table in each lo-
cal store and also makes it possible to fit the entire
unknown/solution vector in each local store, which
facilitates internal, local store to local store, commu-
nication and is very beneficial for performance.

6 Results and Discussion

Figure 11 compares the performance of single preci-
sion factorization (SPOTRF), solution of the system
in single precision (SPOSV) and solution of the sys-
tem in double precision by using factorization in sin-
gle precision and iterative refinement to double pre-
cision (DSPOSV). These results were obtained on an
IBM CELL blade using one of the two available CELL
processors. Huge memory pages (16 MB) were used
for improved performance. The performance is calcu-
lated as the ratio of the execution time to the number
of floating point operations, set in all cases to N3/3.

0 1000 2000 3000 4000
0

25

50

75

100

125

150

175

200

Size

G
flo

p/
s

SP peak

SGEMM peak

DP peak

DSPOSV

SPOSV
SPOTRF

Figure 11: Performance of the mixed-precision algo-
rithm versus the single precision algorithm on IBM
CELL blade system.

In all cases well conditioned input matrices were used,
resulting in two steps of refinement delivering accu-
racy equal or higher than the one delivered by the
purely double precision algorithm.

At the maximum size of 4096 the factorization
achieves 175 Gflop/s and the system solution runs
at the relative speed of 171 Gflop/s. At the same
time, the solution of the system in double precision
using the refinement technique delivers the relative
performance of 156 Gflop/s, which is an overhead of
less than 9 % compared to the solution of the system
in single precision. It can also be pointed out that by
using the mixed-precision algorithm double precision
results are delivered at a speed over 10 times greater
than the double precision peak of the processor.

Figure 12 shows results obtained on the Sony
PlayStation 3, using the six available SPEs and
256 KB1 available memory, also allocated using huge
pages (16 MB). For the maximum problem size of
2048 the performance of 127 Gflop/s was achieved
for the factorization, 122 Gflop/s for the single preci-
sion solution and 104 Gflop/s for the double precision
solution. In this case the double precision solution

1only approximately 200 KB available to the application

13

0 500 1000 1500 2000
0

20

40

60

80

100

120

140

160

Size

G
flo

p/
s

SP peak

SGEMM peak

DP peak

DSPOSV

SPOSVSPOTRF

Figure 12: Performance of the mixed-precision algo-
rithm versus the single precision algorithm on Sony
PlayStation 3.

comes at the cost of roughly 15 % overhead compared
to the single precision solution.

7 Conclusions

The CELL Broadband Engine has a very high poten-
tial for dense linear algebra workloads offering a very
high peak floating point performance and a capabil-
ity to deliver performance close to the peak for quite
small problems. The same applies to the memory sys-
tem of the CELL processor, which allows to achieve
data transfer rates very close to the peak bandwidth
for memory-intensive workloads.

Although the double precision performance of the
CELL processor is much lower than the single pre-
cision performance, mixed-precision algorithms allow
to exploit the single precision speed while achieving
full double precision accuracy.

8 Future Plans

One of the main considerations for the future is appli-
cation of the pipelined processing techniques to fac-

torizations where the panel does not easily split into
independent operations, like the factorizations where
pivoting is used.

Another important question is the one of replac-
ing the static scheduling of operations with dynamic
scheduling by an automated system and also the im-
pact of such mechanisms on programming ease and
productivity.

9 Acknowledgements

The authors thank Gary Rancourt and Kirk Jor-
dan at IBM for taking care of our hardware needs
and arranging for partial financial support for this
work. The authors are thankful to numerous IBM
researchers for generously sharing their CELL exper-
teese, in particular Sidney Manning, Daniel Broken-
shire, Mike Kistler, Gordon Fossum, Thomas Chen
and Michael Perrone.

References

[1] H. P. Hofstee. Power efficient processor archi-
tecture and the Cell processor. In Proceedings of
the 11th Int’l Symposium on High-Performance
Computer Architecture, 2005.

[2] J. A. Kahle, M. N. Day, H. P. Hofstee, C. R.
Johns, T. R. Maeurer, and D. Shippy. Introduc-
tion to the Cell multiprocessor. IBM J. Res. &
Dev., 49(4/5):589–604, 2005.

[3] IBM. Cell Broadband Engine Architecture, Ver-
sion 1.0, August 2005.

[4] J. H. Wilkinson. Rounding Errors in Algebraic
Processes. Prentice-Hall, 1963.

[5] C. B. Moler. Iterative refinement in floating
point. J. ACM, 14(2):316–321, 1967.

[6] G. W. Stewart. Introduction to Matrix Compu-
tations. Academic Press, 1973.

[7] N. J. Higham. Accuracy and Stability of Numer-
ical Algorithms. SIAM, 1996.

14

[8] J. Langou, J. Langou, P. Luszczek, J. Kurzak,
A. Buttari, and J. J. Dongarraa. Exploiting the
performance of 32 bit floating point arithmetic
in obtaining 64 bit accuracy. In Proceedings of
the 2006 ACM/IEEE Conference on Supercom-
puting, 2006.

[9] IBM. Cell Broadband Engine Programming
Handbook, Version 1.0, April 2006.

[10] IBM. Cell Broadband Engine Programming Tu-
torial, Version 2.0, December 2006.

[11] A. Buttari, P. Luszczek, J. Kurzak, J. J. Don-
garra, and G. Bosilca. A rough guide to scien-
tific computing on the PlayStation 3, version 1.0.
Technical Report UT-CS-07-595, Computer Sci-
ence Department, University of Tennessee, 2007.
http://www.cs.utk.edu/ library/ TechReports/
2007/ ut-cs-07-595.pdf.

[12] J. J. Dongarra, I. S. Duff, D. C. Sorensen, and
H. A. van der Vorst. Numerical Linear Algebra
for High-Performance Computers. SIAM, 1998.

[13] J. Kurzak and J. J. Dongarraa. Implementing
linear algebra routines on multi-core processors
with pipelining and a look-ahead. In Proceed-
ings of the 2006 Workshop on State-of-the-Art in
Scientific and Parallel Computing (PARA’O6),
Umea, Sweden, 2006. Lecture Notes in Com-
puter Science series, Springer, 2007 (to appear).

[14] J Kurzak and J. J. Dongarra. Implementation
of mixed precision in solving systems of linear
equations on the CELL processor. Concurrency
Computat.: Pract. Exper, 2007. in press, DOI:
10.1002/cpe.1164.

[15] T. Chen, R. Raghavan, J. Dale, and E. Iwata.
Cell Broadband Engine architecture and its
first implementation, A performance view.
http://www-128.ibm.com/ developerworks/
power/ library/ pa-cellperf/, November 2005.

15

