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Introduction

Numerical simulations are an important tool to provide detailed insight into
the behavior of complex systems and to study phenomena that would be too
expensive, dangerous or even impossible to analyze by direct experimentation.
The quest for higher levels of detail and realism in such simulations requires
enormous computational capacity and the development of ad hoc knowledge
to utilize it in an efficient way.

Computational Science and Engineering (CSE) [66, 67, 68, 82] is a rapidly
growing multidisciplinary area with connections to science, engineering, mathematics
and computer science that provides to the scientist the tools and computational
environment to allow the fruitful exploitation of available resources without
having to resort to non-physical approximations simply to reduce the model
to a tractable form. Although it includes elements from computer science,
applied mathematics, engineering and science (as illustrated in figure 1 extracted
from [82]), CSE focuses on the integration of knowledge and methodologies
from all of these disciplines, and as such is a subject which is distinct from
any of them.

The following formal definition for CSE, extracted from [66], can be given:

Computational Science (and Engineering) deals with the development
of models and applications, algorithms for solving issues arising in
the modeling process, and the matching of algorithms to architectures.

This thesis aims at describing the work that has been done in the PhD
course developed in the context of Computational Sparse Linear Algebra
(CSLA), which is a subset of the topics that define CSE.

Many problems arising from different scientific disciplines such as fluid
dynamics, astronomy, chemistry or even econometry can be modeled through
the use of equations that involve partial derivatives of unknown functions.
Such equations are called Partial Differential Equations (PDEs). The idea is
to describe a function indirectly by a relation between itself and its partial
derivatives, rather than writing down a function explicitly. The relation
should be local - it should connect the function and its derivatives in the same

1



2 Introduction

CSE

Applied
Mathematics Computer

Science

Engineering/
Science

Figure 1: Graphical representation of CSE playground.

point. A solution of the equation is any function satisfying this relation. A
rather common PDE is, for example, the Poisson equation:

uxx + uyy + uzz = f (1)

also commonly written as:

∆u = f (2)

where f(x, y, z) is a given function and ∆ is the so-called Laplacian
operator. The solution of this equation can be used to describe potential of
gravitational fields in the presence of masses. The typical way to solve such
equations is to approximate them by equations that involve a finite number
of unknowns. This method is called discretization. There are several different
ways to discretize a partial differential equation [64]. The simplest method
uses finite difference approximations for the partial differential operators.
The finite element method replaces the original function by a function which
has some degree of smoothness over the global domain, but which is piecewise
polynomial on simple cells, such as small triangles or rectangles. In between
these two methods, there are a few conservative schemes called finite volume
methods, which attempt to incorporate continuous conservation laws of physics.

Systems that arise from the discretization of a PDE are generally large
and sparse, i.e. they have very few nonzero entries. This peculiar characteristic



Introduction 3

come from the fact that differential operators are local operators. For example
take the Poisson problem in 3 and 4 where Ω is the rectangle (0, l1)× (0, l2)
and Γ its boundary;

− (
∂2u

∂x2
1

+
∂2u

∂x2
2

) = f in Ω (3)

u = 0 on Γ (4)

the finite elements discretization on a 3 × 5 2-d grid with square cells (see
figure 2) yields the sparse matrix represented in figure 3.

1 2 3 4 5

6 7 8 9 10

11 12 13 14 15

l

l

1

2

Figure 2: Sample 2-D discretization
grid with square cells.

Figure 3: Sparse matrix coming from
the Poisson equation discretized over
a 2-D grid with square cells.

As described above, a sparse matrix is defined somewhat vaguely as a
matrix which has very few nonzero elements. From a computational point
of view, a matrix can be called sparse whenever special techniques can be
utilized to take advantage of the large number of zero elements. When
storing and manipulating sparse matrices on the computer, it is possible to
modify the standard algorithms and take advantage of the sparse structure
of the matrix. Sparse data is by its nature easily compressed, which can
yield enormous savings in memory usage, and more importantly, even if
the definition of huge depends on the hardware and the computer programs
available, manipulating huge sparse matrices with the standard algorithms
may be impossible due to their sheer size. These sparse techniques arise from
the idea that zero elements need not be stored. Thus, traditional storage
schemes used to represent dense matrices, i.e. 2-D arrays, could be replaced
by more complex storage formats where only nonzero elements are stored
together with their column/row index informations. At the moment there
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is still no well-accepted standard on these storage formats, though some are
very common and widely used such as the Compressed Sparse Row (CSR)
and some others that will be presented in chapter 3.

A number of software packages exist that provide implementations for
many algebraic operations that can be executed on sparse matrices like the
PETSc [5] and Trilinos[46] packages or the PSBLAS[39] package, described
in section 2.1, that has been the workbench for the work presented in this
thesis.

The definition of Computational Science and Engineering depicted in
figure 1 helps us to outline a logical partition of the topics presented in
this thesis:

• Computer Science: chapter 2 describes the PSBLAS (Parallel Sparse
Basic Linear Algebra Subroutines) )software package (version 2.0). This
software package has been the testbed for all of the work presented in
this thesis.

Chapter 3 describes a self-adapting software solution to implement high
performance sparse algebric kernels. This technique is based on the
definition of a parametric storage format for sparse matrices. According
to the hardware and the input data characteristics, suitable values
are chosen for the storage format parameters that provide as high as
possible performance results.

• Applied Mathematics: chapter 1 presents a brief description of the
theory of Stationary and Non-Stationary iterative solvers, namely those
of the Krylov-subspace family, along with preconditioning methods.

Chapter 4 introduces Domain Decomposition Methods theories, describes
how they can be exploited to develop efficient Additive Schwarz preconditioning
techniques, shows how they can be implemented and used in real world
applications also presenting experimental results of their applications..

Chapter 5 introduces Multi-Grid Methods and describes how Two-Level
preconditioners can be implemented and used in real world applications
providing experimental results to demonstrate the effectiveness of such
methods.

• Engineering/Science: chapter 6 shows how CSE tools (namely the
PSBLAS software package) can be used to solve problems arising from
the modeling of engineering/science problems. Section 6.2 describes
the integratio of the PSBLAS solvers in an application developed for
combustion engines fluid dynamics studies. The mathematical model
discussed in chapter 6.2 is the complete system of general unsteady
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Navier-Stokes equations, coupled with chemical kinetic and spray droplet
dynamic models.
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Chapter 1

Iterative Solvers
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1.3.1 Jacobi and Block Jacobi preconditioning . . . . . . 27

1.3.2 Incomplete Factorization preconditioners . . . . . 28

Iterative methods for solving general, large sparse linear systems have
been gaining popularity in many areas of scientific computing. Until around
the ’80s direct solution methods where often preferred to iterative methods
due to their robustness and predictable behavior. However a number of
efficient iterative solvers were discovered and the increased need for solving
very large linear systems triggered a noticeable and rapid shift toward iterative
techniques in many applications. This trend can be traced back to the
1960s and 1970s when two important developments revolutionized solution
methods for sparse linear systems. First was the realization that one can
take advantage of “sparsity” to develop special methods and implement
operations in a way that can be quite economical when compared to the
dense equivalent. Second was the application of preconditioning techniques to
conjugate gradient-like methods for solving linear systems. It was found that
adding preconditioners to Krylov subspace iterative methods could provide
efficient and simple general-purpose procedures that could compete with

9



direct solvers. The rate at which an iterative method converges depends
greatly on the spectrum of the coefficient matrix which is the set of its
eigenvalues. Preconditioning involves a second matrix that transforms the
coefficient matrix into one with a more favorable spectrum. The transformation
matrix is called a preconditioner. The use of preconditioning techniques
lies on the idea of exploiting concepts from direct solvers theory. A good
preconditioner improves the convergence of the iterative method sufficiently
to overcome the extra cost of constructing and applying it.

Nowadays three dimensional models are commonplace and iterative methods
are almost mandatory. The memory and the computational requirements for
solving three dimensional PDEs, or two dimensional ones involving many
degrees of freedom per point, may seriously challenge even the most efficient
direct solvers available today.

The term “iterative method” refers to a wide range of techniques that
use successive approximations to obtain more accurate solution to a linear
system at each step, starting from an initial guess. A high-level definition of
an iterative method involves describing

• an initial guess x0

• an iteration function xk = f(A, b, xk−1) where A and b are, respectively,
the system matrix and right-hand side

• a stopping criterion that defines the convergence of the method.

The most commonly used iterative methods can be classified in two
different categories:

Stationary methods: these methods are older, simpler to understand
and implement, but usually not as effective. This class includes the
well known Jacobi method or the Gauss Seidel and SOR ones.

Nonstationary methods: nonstationary methods are a relatively recent
development; their analysis is usually harder to understand but they
can be highly effective. The most famous ones are based on the idea of
sequences of orthogonal vectors. This class includes the commonly used
Conjugate Gradient (CG), BiConjugate Gradient (BiCG) or Generalized
Minimal Residual (GMRES) methods.

The description in this chapter follows closely that in [7] and [64].
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1.1 Stationary Methods

Iterative methods that can be expressed in the simple form

x(k) = Bx(k−1) + c (1.1)

(where neither B nor c depend upon the iteration count k) are called stationary
iterative methods. Stationary methods are the first iterative methods used
for solving linear systems and are based on the relaxation of the coordinates.
Beginning with a given approximate solution, these methods modify the
components of the approximation, one or a few at a time and in a certain
order, until convergence is reached. Each of these modifications is called a
relaxation step and it is aimed at annihilating one or few components of the
residual vector.

Given an n×n real1 matrix A and a real n-vector b the problem considered
is:

Ax = b (1.2)

The formula 1.2 is a linear system where A is the coefficient matrix, b is the
right-hand side vector and x the vector of unknowns. Each of the equations
in 1.2 can be expressed as

n∑
j=1

ai,jxj = bi (1.3)

Solving 1.3 for xi while assuming the other entries of x remain fixed, yields:

xi = (bi −
∑
j 6=i

ai,jxj)/aii (1.4)

This suggests an iterative method defined by:

x
(k)
i = (bi −

∑
j 6=i

ai,jx
(k−1)
j )/aii (1.5)

The step in 1.5 is a component-wise form of an iteration of the Jacobi method.
The order in which the equation are examined is irrelevant since the Jacobi
method treats them independently. For this reason the Jacobi method is also
known as the method of simultaneous displacements.

In matrix terms, the definition of the Jacobi method in 1.5 can be expressed
as:

x(k) = D−1(L + U)x(k−1) + D−1b (1.6)

1the following discussion will be developed in the domain of the real numbers R. The
presented theories are general and thus are also valid in C
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where D, −L and −U are the diagonal, the strictly-lower and the strictly-
upper part of A. Comparing equation 1.6 with equation 1.1 it’s obvious why
the Jacobi method is a stationary one.

The Gauss Seidel method can be easily derived from the Jacobi one under
the assumption that previously computed results can be used as soon as they
are available. Formally the step in 1.5 becomes:

x
(k)
i = (bi −

∑
j<i

ai,jx
(k)
j −

∑
j>i

ai,jx
(k−1)
j )/aii (1.7)

which is the component-wise form of a step of the Gauss Seidel method. At
each k-th step the component x

(k)
i of the vector of unknowns depends upon

all the x
(k)
1 ...x

(k)
i−1 and thus all the updates cannot be performed at the same

time, as in the Jacobi method, but must be serialized. Moreover the iterate
x(k) depends on the order in which equations are examined, this is why the
Gauss Seidel method is also called the method of successive displacements.

The definition of the Gauss Seidel method in matrix terms is:

x(k) = (D − L)−1(Ux(k−1) + b) (1.8)

where D, L and U have the same meaning as in equation 1.6.
It is easily possible to show that if a stationary method converges, then

the limit is a solution of the original system. All the stationary iterative
methods define a sequence of iterates as defined in equation 1.1 where B is
a certain iteration matrix. If the iteration in 1.1 converges, then its limit x
satisfies:

x = Bx + c (1.9)

Whereas the matrix A can be split like A = D−L−U the previous becomes:

x = D−1(L− U)x + D−1b (1.10)

that is equivalent to equation 1.2.
Thanks to the simplicity of these stationary methods, several results and

laws have been found that state when and how fast such methods converge.
The following theorem states that a stationary method converges if and only
if the spectral radius of the matrix in 1.1 is less than one.

Theorem 1 Let B be a square matrix such that ρ(B) < 1. Then I − B is
nonsingular and the iteration 1.1 converges for any c and x0. Conversely if
the iteration 1.1 converges for any c and x0, then ρ(B) < 1.

Since it is expensive to compute the spectral radius of a matrix, sufficient
conditions that guarantee convergence can be useful in practice. One such
sufficient condition can be obtained by utilizing the inequality ρ(B) ≤ ‖B‖
for any matrix norm.
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Corollary 1 Let B be a square matrix such that ‖B‖ < 1 for some matrix
norm ‖ · ‖. Then I − B is nonsingular and the iteration 1.1 converges for
any initial vector x0.

Apart from knowing that the sequence 1.1 converges, it is also desirable
to know how fast it converges. The error dk = xk − x at step k satisfies:

dk = Bkd0

The quantity:

ρ = lim
k→∞

(
‖dk‖
‖d0‖

)1/k

is called the convergence factor of the sequence 1.1. It can be proven that
ρ = ρ(B). The convergence rate τ is the natural logarithm of the inverse of
the convergence factor:

τ = −lnρ

Unfortunately there are no such useful properties for non stationary iterative
methods.

1.2 Nonstationary Methods

The purpose of this section is to give a brief introduction on Krylov subspace
nonstationary iterative methods that are probably the most commonly used
techniques for the solution of sparse linear systems. These methods are based
on projection processes onto Krylov subspaces.

Consider again the linear system:

Ax = b (1.11)

where A is a n × n real matrix. Projection techniques extract approximate
solutions of the above problem from subspaces of Rn. If K is this subspace
of candidate approximations, or search subspace, an m is its dimension, then
m constraints must be imposed to be able to extract such an approximation.
A common choice is to impose m orthogonality conditions. Specifically
the residual vector b − Ax is constrained to be orthogonal to m linearly
independent vectors. This defines another subspace L called subspace of
constraints. This basic theory, common to many iterative solvers, is usually
referred as Petrov-Galerkin conditions. There are two broad classed of projection
methods:

• orthogonal: the subspace L is the same as K.
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• oblique: the subspace L is not the same as K and may be completely
unrelated to it.

Thus a projection technique onto the subspace K and orthogonal to L
is a process which finds an approximate solution x̃ to 1.11 by imposing
the conditions that x̃ belongs to K and the new residual vector b − Ax be
orthogonal to L,

Find x̃ ∈ K, such that b− Ax̃ ⊥ L (1.12)

To better exploit the knowledge of an initial guess x0 to the solution, the
approximation must be sought in the affine space x0 + K instead of the
homogeneous vector space K. The approximate problem should be redefined
as:

Find x̃ ∈ x0 +K, such that b− Ax̃ ⊥ L (1.13)

If x̃ is written in the form x̃ = x0 + δ, and the initial residual vector is
r0 = b− Ax0, the previous equation becomes:

Find x̃ ∈ x0 +K, such that r0 − Aδ ⊥ L (1.14)

Finally the approximate solution can be defined as

x̃ = x0 + δ, δ ∈ K,
(r0 − Aδ, ω) = 0, ∀ω ∈ L

Figure 1.1 sketches a visual interpretation of the orthogonality conditions
imposed to the new residual vector.
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Figure 1.1: Interpretation of orthogonality conditions.

Usually iterative methods consist of consecutive repetition of this projection
step. At each step k, x0 and r0 are assumed to be respectively the approximate
solution and the related residual found at step k − 1.
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Let V = [v1, ..., vm] an n × m matrix whose columns form a basis of K
and W = [w1, ..., wm] an n × m matrix whose columns form a basis of L.
Then the approximate solution can be written as a linear combination of the
vectors in V :

x̃ = x0 + V y

and the orthogonality conditions:

W T AV y = W T r0

Combining the above equations, a matrix formulation of a projection step is
obtained:

x̃ = x0 + V (W T AV )−1W T r0 (1.15)

It is important to note that equation 1.15 is only valid when W T AV is non-
singular (and thus invertible).

Algorithm 1 Projection method prototype

1: k := 1
2: repeat
3: Select a pair of subspaces K and L
4: Choose bases V = [v1, ..., vm] and W = [w1, ..., wm] for K and L
5: rk−1 := b− Axk−1

6: yk := (W T AV )−1W T rk−1

7: xk := xk−1 + Wyk

8: k := k + 1
9: until Convergence

Most of the iterative solvers used nowadays are based on projection
techniques onto Krylov subspaces which are subspaces spanned by vectors of
the form p(A)v where p is a polynomial.

A Krylov subspace method can be formally defined as a method for which
the subspace Km ∈ Rm is the Krylov subspace:

Km(A, r0) = span{r0, Ar0, A
2r0, ..., A

m−1r0}

Different flavors of Krylov subspace methods arise from different choices of
the subspace Lm and from the way in which the system is preconditioned
(see 1.3). Although all the techniques provide the same type of polynomial
approximations, the choice of Lm usually has an important impact on the
efficiency and quality of the iterative method with respect to several algebraic
properties of the system to be solved. Four broad choices for Lm give rise to
the best known techniques:
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1. Ritz-Galerkin approach: Lm = Km and thus requires that b − Axk ⊥
Kk(A, r0). This is the choice for the very well known Conjugate Gradient
method (see section 1.2.2).

2. minimum residual approach: this is a variant of the previous approach
and defines Lm = Km(AT , r0). It can be proven that such a choice is
equivalent to minimize the residual norm over all the vectors in x0+Km

(hence the name minimum residual). This approach is the base of
another well known method called Generalized Minimum Residual or
GMRES (see section 1.2.1).

3. Petrov-Galerkin approach: as stated before, this condition simply requires
the residual to be orthogonal to some suitablek-dimensional space Lm.
A good choice is define the subspace Lm to be a Krylov subspace
method associated with AT , namely Lm = Km(AT , r0). This is the basis
of methods such as the BiConjugate Gradient one (see section 1.2.3).
Recently some variants have been proposed like the BiConjugate Gradient
Stabilized or BiCGStab method.

4. minimum error approach: require ‖x− xk‖2 to be minimal over
ATKk(A

T , r0).

The subsections 1.2.1, 1.2.2, 1.2.3 and 1.2.4 will give some detail of
preconditioned versions the most commonly used methods while section 1.3
will briefly present some preconditioning techniques. For deeply detailed
dissertation about iterative methods (either stationary or nonstationary) and
preconditioners please refer to [7, 28, 64].

1.2.1 Generalized Minimum Residual Method

The Generalized Minimum Residual (GMRES) method is an extension of the
MINRES one (which is only applicable to symmetric systems) to unsymmetric
systems. It is based on the generation of a sequence of orthonormal vector by
means of the so called “Arnoldi method” which is a modified Gram-Schmidt
orthogonalization applied to the Krylov sequence {Ak, r0}:

ui = Avi

for k = 1 to i do
ui = ui − (ui, vk)vk

end for
vi+1 = ui/‖ui‖
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The inner product coefficients (ui, vk) and {wi} are stored in an upper
Hessemberg matrix H̄i. The GMRES iterates are constructed as

xi = x0 + V y

where V = [v1, ..., vi] is the matrix whose column are the result of previous
iterates and the coefficient vector y has been chosen to minimize the residual
norm ‖b− Axi‖.

Unlike MINRES and CG (discussed in section1.2.2), these orthogonal
vectors cannot be generated with short recurrences and thus a main practical
disadvantage of GMRES is that all the successive residual vectors must be
stored and that the construction of the projected system becomes increasingly
complex. Thus the GMRES method becomes unpractical as the number of
steps m increases due to the high memory and computational requirements.
One simple solution to this problem is based on “restarts” which yields the
GMRES(m) method. This technique consists of restarting the method at
some step m, i.e. clearing the accumulated data and choosing intermediate
result xm as the new initial guess x0:

Algorithm 2 Restarted GMRES prototype

1: Compute r0 = b− Ax0, β = ‖r0‖ and v1 = r0/β
2: Generate the Arnoldi basis anh H̄m starting with v1

3: Compute ym which minimizes ‖βe1 − H̄my and xm = x0 + Vmym

4: If satisfied the Stop, else set x0 := xm and GoTo 1.

The original method with no restarting is often referred to as the “full”
GMRES. The choice of m requires some skill and experience with the type
of problems that one wants to solve. Taking m too small could result in poor
convergence or no convergence at all.

Since the dimension of the Krylov subspace is bounded by n, the method
terminates in at most n steps if rounding errors are absent. In practice this
finite termination property is of no importance, since these iterative methods
are attractive, with respect to direct ones, only when they deliver a suitable
approximation to the solution in far less than n steps.

1.2.2 Conjugate Gradient Method

This method is derived from the symmetric Lanczos algorithm which is
a simplification of the Arnoldi’s method for the particular case when the
matrix is symmetric. In this case the Hessemberg matrix H̄m (discussed in
section 1.2.1) becomes symmetric tridiagonal. This leads to a three term
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recurrence in the Arnoldi process and short-term recurrences for solution
algorithms such as the Conjugate Gradient one.

The Conjugate Gradient method (CG) is an effective method for symmetric
positive definite systems. This method proceeds by generating vector sequences
of iterates (successive approximations to the solution), residual corresponding
to the iterates, and search directions used to update the iterates and the
residuals. Although the length of these sequences can become very large,
only a small number of vectors need to be kept in memory. In every iteration
of the method two inner products are performed in order to compute update
scalars that are defined to make the sequences satisfy the previously discussed
orthogonality conditions. On a symmetric positive definite linear system
these conditions imply that the distance to the true solution is minimized in
some norm.

The iterates xi are updated in each iteration by a multiple αi of the search
direction vector pi:

xi = xi−1 + αipi

Correspondingly the residuals ri = b− Axi are updated as:

ri = ri−1 − αqi where qi = Api (1.16)

The choice α = αi = rT
i−1ri−1/pi

T Api minimizes ri
T A−1ri over all possible

choices of α.
The search directions are updated using the residuals

pi = ri + βi−1pi−1 (1.17)

where the choice βi = ri
T ri/ri−1

T ri−1 ensures that ri and ri−1 are orthogonal.
Algorithm 3 contains the pseudocode for the preconditioned CG method.

Choosing M = I, then the unpreconditioned or standard conjugate gradient
method results. The unpreconditioned version constructs the ith iterate xi

as an element of x0 + span{r0, Ar0, ..., A
i−1} so that (xi − x̂)T A(xi − x̂) is

minimized where x̂ is the exact solution of equation 1.2. This minimum is
guaranteed to exist in general only if A is symmetric positive definite.

Stopping criteria are often based upon the norm of the current residual
vector ri. A naive stopping criterion, for example, would stop the procedure
is less than some given value eps. more robust stopping criteria are based
upon estimating the error in xi with respect to x̂ with information obtained
from the iteration parameters αi and βi. Anyway, in general a good stopping
criteria should2

2These considerations are valid for all the iterative methods presented here and not
just for the CG method.

18



Algorithm 3 Preconditioned Conjugate Gradient Method

1: Compute r0 = b− Ax0 for some initial guess x0

2: for i = 1 to ... do
3: solve Mzi−1 = ri−1

4: ρi−1 = rT
i−1zi−1

5: if i = 1 then
6: p1 = z0

7: else
8: βi−1 = ρi−1/ρi− 2
9: end if

10: qi = Api

11: αi = ρi−1/pi
T qi

12: xi = xi−1 + αipi

13: ri = ri−1 + αiqi

14: check convergence; continue if necessary
15: end for

1. identify when the error ei ≡ xi − x̂ is small enough to stop,

2. stop if the error is no longer decreasing or decreasing too slowly, and

3. limit the maximum amount of time spent iterating.

Accurate predictions of the convergence of iterative methods are difficult
to make, but useful bounds can be often obtained. For the CG method the
error can be bounded in terms of the spectral condition number κ of the
matrix M−1A. It can be proved that:

‖xi − x̂‖A ≤ 2

(√
κ− 1√
κ + 1

)i

‖x0 − x̂‖A

In practice the speed of convergence can be considerably faster, most
notably in situations in which the extreme eigenvalues are relatively well
separated from the rest of the spectrum.

1.2.3 BiConjugate Gradient Method

The Conjugate Gradient method is not suitable for nonsymmetric systems
because the residual vectors cannot be made orthogonal with short recurrences.
The GMRES method retains orthogonality of the residuals by using long
recurrences at the cost of a larger storage demand. The BiConjugate Gradient
method (BiCG) takes another approach replacing the orthogonal sequence
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of residuals by two mutually orthogonal sequences, at the price of no longer
providing a minimization.

The BiConjugate Gradient can be derived from the Lanczos “biorthogonalization”
in exactly the same way as the Conjugate Gradient can be derived by the
Lanczos orthogonalization one. The Lanczos biorthogonalization method is
an extension to nonsymmetric matrices of the symmetric Lanczos algorithm,
based on biorthogonal sequences instead of orthogonal ones.

Implicitly the algorithm solves not only the original system Ax = b but
also a dual linear system AT x̃ = b̃ with AT . This dual system is often ignored
in the formulations of the algorithm.

The BiConjugate Gradient algorithm process onto

Km = span{v1, Av1, ..., A
m−1v1}

orthogonally to

Lm = span{w1, A
T w1, ..., (A

T )m−1w1}

taking v1 = r0/‖r0‖2. The vector w1 is arbitrary provided that (v1, w1) 6= 0
but it is often chosen to be equal to v1. If there is a dual system AT x̃ = b̃ to
solve with AT , then w1 is obtained by scaling the initial residual b̃− AT x̃.

The update relations for residual in the Conjugate Gradient method are
augmented in the BiConjugate Gradient method by relations that are similar
but based in AT instead of A.

ri = ri−1 − αiApi, r̃i = r̃i−1 − αiA
T p̃i

pi = ri−1 + βi−1pi−1, p̃i = r̃i−1 + βi−1A
T p̃i−1

The choices

αi =
r̃T
i−1ri−1

p̃T
i Api

, βi =
r̃T
i ri

r̃T
i−1ri−1

ensure the biorthogonality relations

r̃T
i rj = p̃T

i Apj = 0 if i 6= j

Algorithm 4 contains the pseudocode for the BiCG method.
Few theoretical results are known about the convergence of BiCG. For

symmetric positive definite systems the method delivers the same results as
CG but at twice the cost per iteration. For unsymmetric matrices it has been
shown that in phases of the process where there is significant reduction of
the norm of the residual, the method is more or less comparable to GMRES.
In practice this is often confirmed, but it also observed that the convergence
behavior may be quite irregular and the method may even break down.x
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Algorithm 4 Preconditioned BiConjugate Gradient Method

1: Compute r0 = b− Ax0 for some initial guess x0

2: Choose r̃0 (for example r̃0 = r0)
3: for i = 1 to ... do
4: solve Mzi−1 = ri−1

5: solve MT z̃i−1 = r̃i−1

6: ρi−1 = zT
i−1z̃i−1

7: if ρi−1 = 0 method fails
8: if i = 1 then
9: p1 = z0

10: p̃1 = z̃0

11: else
12: βi−1 = ρi−1/ρi− 2
13: pi = zi−1 + βi−1pi−1

14: p̃i = z̃i−1 + βi−1p̃i−1

15: end if
16: qi = Api

17: q̃i = AT p̃i

18: αi = ρi−1/p̃
T
i qi

19: xi = xi−1 + αipi

20: ri = ri−1 + αiqi

21: r̃i = r̃i−1 + αiq̃i

22: check convergence; continue if necessary
23: end for

1.2.4 BiConjugate Stabilized Gradient Method

BiCGStab is based on the observation that the BiCG vector ri is orthogonal
to the entire subspace Ki(A

T , w1). As a result it is possible to construct
iteration methods by which xi are generated so that ri = Qi(A)Pi(A)r0 with
other ith degree polynomials Qi. An obvious possibility is to let Qi be a
polynomial of the form

Qi(t) = (1− ω(1)t)(1− ω(2)t)...(1− ω(i)t)

and to select suitable constants ω(j). This expression leads to an almost
trivial recurrence relation for the Qi.

In BiCGStab, ω(j) in the jth iteration step is chosen as to minimize rj,
with respect to ω(j), for residuals that can be written as rj = Qj(A)Pj(A)r0.

BiCGStab can be interpreted as the product of BiCG and repeatedly
applied GMRES(1). At least locally a residual vector is minimized, which
leads to a considerably smoother convergence behavior.

21



Algorithm 5 Preconditioned BiConjugate Gradient Stabilized Method

1: Compute r0 = b− Ax0 for some initial guess x0

2: Choose r̃0 (for example r̃0 = r0)
3: for i = 1 to ... do
4: ρi−1 = r̃T ri−1

5: if ρi−1 = 0 method fails
6: if i = 1 then
7: p1 = r0

8: else
9: βi−1 = (ρi−1/ρi− 2)/(αi−1/ωi−1)

10: pi = ri−1 + βi−1(pi−1 − ωi−1vi−1

11: end if
12: solve Mp̂ = pi

13: vi = Ap̂
14: αi = ρi−1/r̃

T vi

15: s = ri−1 − αivi

16: check norm of s; if small enough set xi = xi−1 + αip̂ and stop
17: solve Mŝ = s
18: t = Aŝ
19: ωi = tT s/tT t
20: xi = xi−1 + αip̂ + ωiŝ
21: ri = s− ωit
22: check convergence; continue if necessary (provided ωi 6= 0)
23: end for

1.3 Preconditioners

Lack of robustness is a widely recognized weakness of iterative solvers when
compared to direct ones. This drawback hampers the acceptance of iterative
methods in industrial applications despite their intrinsic appeal for very large
linear systems. Both the efficiency and robustness of iterative solvers can be
improved by the usage of preconditioning.

The convergence rate of an iterative method depends on the spectral
properties of the coefficient matrix. Hence one may attempt to transform
the linear system into one that is equivalent in the sense that it has the same
solution, but that has more favorable spectral properties. A preconditioner is
a matrix that performs such transformation. For instance, if the preconditioning
matrix M approximates the coefficient matrix A in some way, the transformed
system

M−1Ax = M−1b
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has the same solution as the original system Ax = b but the spectral properties
of its coefficient matrix M−1A could make it more suitable for being solved
by means of an iterative method.

The word “preconditioning” has been originally used by Turing in [74]
and since then became the standard terminology for problem transformation
in order to make solution easier. The first application of this word to the
idea of improving the convergence of an iterative method is in [33] and in [4]
preconditioning techniques are applied to the conjugate gradient method.

In general, the reliability of iterative techniques depends much more on
the quality of the preconditioner than on the particular Krylov subspace
method used.

The general problem of finding a preconditioner for a linear system Ax = b
is to find a Maire M (the preconditioner or preconditioning matrix) with the
properties that:

1. M is a good approximation of A in some sense,

2. the cost of the construction of M is not too high and

3. the system Mx = b is much easier to solve than the original system.

Krylov subspace methods need the operator of the linear system only
for computing matrix-vector products. This means that M−1A need not
be formed explicitly. Instead u = M−1Av it is formed by first computing
w = Av and then obtain u by solving Ku = w. Note that when solving
the preconditioned system using a Krylov subspace method,quite different
subspaces than for the original system will be obtained. The aim is that
approximation in this new sequence of subspaces will approach the solution
more quickly than in the original subspaces.

There are different ways of implementing preconditioning that can also
lead to quite difference convergence behaviors. Three main different implementations
are as follows:

Left preconditioning: apply the iterative method to M−1AX = M−1b.
However the symmetry of M and A does not imply the symmetry of
M−1A and thus the CG method (and all those methods only usable
with symmetric matrices) cannot be used in a straightforward way. A
simple solution to this problem is based on the observation that M−1A
is self-adjoint for the M -inner product

(x, y)M ≡ (Mx, y) = (x, My)

since

(M−1Ax, y)M = (Ax, y) = (x, Ay) = (x, M(M−1A)y) = (x, M−1Ay)M
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Therefore an alternative is to replace the usual Euclidean inner product
in the Conjugate Gradient algorithm by the M -inner product. Popular
formulations of CG are based on this observation.

If using a Minimum Residual method, it should be noted that with left
preconditioning the preconditioned residuals M−1(b − Axk) are being
minimized which may be quite different form the residuals b − Axk.
This could have consequences for stopping criteria that are based on
the norm of the residual.

Right preconditioning: apply the iterative method to AM−1y = b with

x = M−1y. (1.18)

This form of preconditioning also does not lead to a symmetric product
when A and M are symmetric. With right preconditioning special
attention must be given to stopping criteria that are based upon the
error: ‖y − yk‖2 may be much smaller than the error-norm ‖x − xk‖2
on which the stopping criterion is based.

Right preconditioning has the advantage that it only affects the operator
and not the right-hand side. This may be useful in the design of
software.

Two-sided preconditioning: for a preconditioner M with M = M1M2 the
iterative method can be applied to

M1
−1AM2

−1z = M1
−1b (1.19)

with x = M2
−1z. The matrices M1 and M2 are called left and right

preconditioners respectively.

If M is symmetric and M1 = M2
T (i.e. M is available in the form of

an incomplete Cholesky factorization M = LLT ) the iteration matrix
also becomes symmetric, hence the CG method can be applied.

The splitting of M is in practice not needed. By rewriting the steps of
the method it is usually possible to reintroduce a computational step

solve u from Mu = v

that is a step that applies the preconditioner in its entirety.

There is also another way to apply such a preconditioning scheme that
consist of applying an unpreconditioned iterative method to the system
in equation 1.19:
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1. Take a preconditioned iterative method and replace every occurrence
of M by I.

2. Remove any vectors from the algorithm that have become duplicates
in the previous step.

3. Replace every occurrence of A in the method by M1
−1AM2

−1.

4. After the calculation of the initial residual add the step

r0 ←M1
−1r0.

5. At the end of the method add the step

x←M2
−1x.

where x is the final calculated solution.

The choice of M varies from purely “black box” algebraic techniques
which can be applied to general matrices, to “problem dependent” preconditioners
which exploit special features of a particular problem class. Although problem
dependent preconditioners can be very powerful, there is still a practical
need for efficient preconditioning techniques for large classes of problems.
Moreover there is very little theory for what one can expect a priori with a
specific type of preconditioner.

It is important to note that preconditioning increases the computational
complexity of an iterative method and thus the use of a preconditioner must
be justified by an adequate reduction in the number of iterations.

Consider, for example, methods with a fixed amount of computational
overhead per iteration step independent of the iteration number (CG, BiCG
and MINRES are among those) and denote by tA the computing time for
the matrix-vector product with A and by tO the computational overhead per
iteration step. The computing time for k iteration steps is given by

TU = k(tA + tO). (1.20)

For the preconditioning process the following assumptions can be made with
respect to computing time:

1. the action of the preconditioner, for instance the computation of M−1w
takes αtA.

2. the construction cost for the preconditioner is tC .

3. preconditioning reduces the number of iterations by a factor f (f > 1).
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The computing time for the preconditioned process to obtain an approximation
comparable to the unpreconditioned process can be expressed as

TP =
k

f
((α + 1)tA + tO) + tC . (1.21)

The goal of preconditioning is that TP < TU , which is the case if

f >
(α + 1)tA + tO
tA + tO − tC

k

.

Obviously the construction of expensive preconditioners is pointless if the
number of iterations k for the unpreconditioned process is low. It is thus
realistic to consider only cases where k is so large that the initial cost plays
no role. Furthermore, in many cases the matrix-vector products are the most
expensive part of the computation (tA > tO) and thus preconditioning gives
some benefit only if the factor f is significantly bigger than α + 1.

As an example, let’s compare the choice of using an incomplete factorization
preconditioner (see section 1.3.2) versus an unpreconditioned solver. The
following timing have been measured on the solution of the matrix kivap2
arising from the application described in section 6.2. The solution is computed
using a BiCGSTAB iterative method as implemented in the PSBLAS library
(see section 2.6) on an AMD-Athlon 1800 architecture. Figure 1.2 shows the
total time for the solution in the cases described.
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Figure 1.2: The execution times for an unpreconditioned BiCGSTAB solver
and an ILU-0 preconditioned one (assume f = 1 in the first case).
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It turns out that the total number of iteration should be reduced by at
least a factor of 1.77 by the ILU preconditioner to achieve some reduction
in the time spent in the solver. Fortunately in the case of our example the
number of iterations has been reduced by a factor of 12 and the time for the
solution is reduced from 36.41 seconds to 4.98 seconds.

For methods like GMRES the overhead cost increases quadratically with
the number of iterations and thus the situation is slightly more complicated.

1.3.1 Jacobi and Block Jacobi preconditioning

The simplest preconditioner consists of just the diagonal of the matrix:

mi,j =

{
ai,j ifi = j
0 otherwise

This is known as the (point) Jacobi preconditioner.
It is possible to use this preconditioner without the need for any extra

storage beyond that of the matrix itself. However, division operations are
usually quite costly and then a memory area is allocated to store the inverse
of the diagonal.

The block-version of the Jacobi preconditioning technique can be derived
by a partitioning of the variables. If the index set S = {1, ..., n} is partitioned
as s =

⋃
i Si with the sets Si mutually disjoint, then

mi,j =

{
ai,j if i and j are in the same subset
0 otherwise

The preconditioner is now a block-diagonal matrix.
Often natural choices for the partitioning suggest themselves:

• In problem with multiple physical variables per node, groups can be
formed by grouping the equations per node.

• In structured matrices, such as those from PDEs on regular grids, a
partitioning can be based on the physical domain.

• On parallel environments, it is natural to let the partitioning coincide
with the division of variables over the processors.

Jacobi preconditioners require very little storage and they are easy both
to construct and to apply. Additionally they can be have straightforward
parallel implementation. On the other hand more sophisticated preconditioners
usually yield a larger improvement.
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1.3.2 Incomplete Factorization preconditioners

A broad class of preconditioners is based on incomplete factorizations of
the coefficient matrix. A factorization is called incomplete if during the
factorization process certain elements are ignored. These elements are called
fill elements and are nonzero elements that arise during the factorization in
positions where the original matrix had a zero. Discarding fill elements makes
the building phase of the preconditioner almost cheap when compared to
complete factorizations A = LU ; moreover, complete factorizations have one
major problem when applied to sparse matrices: even if the system matrix A
is sparse, L and U are not sparse in general and so could not be stored due to
the excessive memory requirements. However incomplete factorizations may
break down (division by zero pivot. In this cases some workarounds have
been proposed) or result in undefined matrices.

An important consideration for incomplete factorization preconditioners
is the cost of the factorization process itself. Even if the incomplete factorization
exists, the number of operations involved in creating it is at least as much as
for solving a system with such a coefficient matrix, so the cost may be the
same as for one or more iterations of the method.

In some cases it is possible to take advantage of the fact that the same
preconditioner can be used to solve more than one system, and thus the
construction cost has a lower impact.

Incomplete factorizations can be given in various forms. If M = LU
(with L and U nonsingular triangular matrices), solving a system proceeds
in the usual way, but often incomplete factorizations are given as M =
(D + L)D−1(D + U) (with D diagonal and L and U now strictly triangular
matrices). In that case, either of the following equivalent formulations could
be used for Mx = y:

(D + L)z = y, (I + D−1U)x = z

or

(I + LD−1)z = y, (D + U)x = z.

In either case, the diagonal elements are used twice and, since only divisions
with D are performed, it is practical to store D−1 instead of D.

The most common type of incomplete factorization is based on taking a
set S of matrix positions, and keep all the positions outside this set equal
to zero during the factorization. The resulting factorization is incomplete in
the sense that fill is suppressed.

The set S is usually chosen to encompass all the positions (i, j) for which
ai,j 6= zero. A position that is zero in A but not so in a complete factorization
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is called a fill position and, if it is outside S, the fill there is said to be
discarded. When S is chosen to coincide with the set of nonzero positions of
A the factorization is called Incomplete Factorization of level 0 (ILU(0)).

An incomplete factorization can be formally described as

for each k, i, j > k : ai,j ←
{

ai,j − ai,ka
−1
k,kak,j if (i, j) ∈ S

ai,j otherwise

For the ILU(0) method, the incomplete factorization produces no nonzero
elements beyond the sparsity structure of the original matrix so that the
preconditioner at most takes exactly as much space to store as the original
matrix. In a simplified version of ILU(0), called ILU(D) not only fill elements
are prohibited, but only the diagonal elements are altered.

Splitting the coefficient matrix into its diagonal, lower triangular and
upper triangular parts as A = DA + LA + UA, the preconditioner can be
written as M = (D + LA)D−1(D + UA) where D is the diagonal matrix
containing the pivots generated. Since the upper and lower triangle of the
system matrix remain unchanged in the preconditioner matrix, only storage
space for D is needed. As usual storing D−1 instead of D if the most efficient
choice.
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This section presents the software architecture and some implementation
features of a library of Basic Linear Algebra Subroutines for parallel sparse
applications, namely Parallel Sparse BLAS (PSBLAS) [39],which is a project
that has been prompted by the appearance of the proposal for serial sparse
BLAS [30].

The PSBLAS library, developed with the aim to facilitate the parallelization
of computationally intensive scientific applications, is designed to address
parallel implementation of iterative solvers for sparse linear systems through
the distributed memory paradigm. It includes routines for multiplying sparse
matrices by dense matrices, solving block diagonal systems with triangular

31



diagonal entries, preprocessing sparse matrices, and contains additional routines
for dense matrix operations. The current implementation of PSBLAS addresses
a distributed memory execution model operating with message passing. However,
the overall design does not preclude different implementation paradigms, such
as those based on a shared memory model.

The PSBLAS library is internally implemented in a mixture of Fortran 77
and Fortran 95 [54] programming languages. A similar approach has been
advocated by a number of authors, e.g. [52]. Moreover, the Fortran 95
facilities for dynamic memory management and interface overloading greatly
enhance the usability of the PSBLAS subroutines. In this way, the library
can take care of runtime memory requirements that are quite difficult or
even impossible to predict at implementation or compilation time. The
following presentation of the PSBLAS library follows the general structure
of the proposal for serial Sparse BLAS [30], which in its turn is based on the
proposal for BLAS on dense matrices [26, 27, 50].

The applicability of sparse iterative solvers to many different areas causes
some terminology problems because the same concept may be denoted through
different names depending on the application area. The PSBLAS features
presented in this section will be discussed mainly in terms of finite difference
discretizations of Partial Differential Equations (PDEs). However, the scope
of the library is wider than that: for example, it can be applied to finite
element discretizations of PDEs, and even to different classes of problems
such as nonlinear optimization, for example in optimal control problems.

The design of a solver for sparse linear systems is driven by many conflicting
objectives, such as limiting occupation of storage resources, exploiting regularities
in the input data, exploiting hardware characteristics of the parallel platform.
To achieve an optimal communication to computation ratio on distributed
memory machines it is essential to keep the data locality as high as possible;
this can be done through an appropriate data allocation strategy. The choice
of the preconditioner is another very important factor that affects efficiency
of the implemented application. Optimal data distribution requirements for a
given preconditioner may conflict with distribution requirements of the rest
of the solver. Finding the optimal trade-off may be very difficult because
it is application dependent. Possible solution to these problems and other
important inputs to the development of the PSBLAS software package has
come from an established experience in applying the PSBLAS solvers to
computational fluid dynamics applications (see chapter 6.2). As a typical
case, a complete simulation of an internal combustion engine can easily scale
up to some millions of variables and, thus, represents a challenging testbed
to verify the effectiveness of the PSBLAS library implementation.
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2.1 General overview

The PSBLAS library is designed to handle the implementation of iterative
solvers for sparse linear systems on distributed memory parallel computers.
The system coefficient matrix A must be square; it may be real or complex,
nonsymmetric, and its sparsity pattern needs not to be symmetric. The
serial computation parts are based on the serial sparse BLAS, so that any
extension made to the data structures of the serial kernels is available to
the parallel version. The overall design and parallelization strategy have
been influenced by the structure of the ScaLAPACK parallel library [21].
The layered structure of the PSBLAS library is shown in figure 2.1 ; lower
layers of the library indicate an encapsulation relationship with upper layers.
The ongoing discussion focuses on the Fortran 95 layer immediately below
the application layer; two examples of iterative solvers built through the
PSBLAS routines, will be also given in Section 2.6. The serial parts of the
computation on each process are executed through calls to the serial sparse
BLAS subroutines. In a similar way, the inter-process message exchanges are
implemented through the Basic Linear Algebra Communication Subroutines
(BLACS) library [24] that guarantees a portable and efficient communication
layer. The Message Passing Interface code is encapsulated within the BLACS
layer. However, in some cases, MPI routines are directly used either to
improve efficiency or to implement communication patterns for which the
BLACS package doesn’t provide any method.

Serial

BLAS
Sparse

BLACS

MPI

Device Drivers

Application

PSBLAS(Fortran95)

(F77)

Figure 2.1: PSBLAS library components hierarchy.

The PSBLAS library consists of two classes of subroutines that is, the
computational routines and the auxiliary routines. The computational routine
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set includes:

• Sparse matrix by dense matrix product;

• Sparse triangular systems solution for block diagonal matrices;

• Vector and matrix norms;

• Dense matrix sums;

• Dot products.

The auxiliary routine set includes:

• Communication descriptors allocation;

• Dense and sparse matrix allocation;

• Dense and sparse matrix build and update;

• Sparse matrix and data distribution preprocessing.

The following naming scheme has been adopted for all the symbols internally
defined in the PSBLAS software package:

• all the symbols (i.e. subroutine names, data types...) are prefixed by
psb_

• all the data type names are suffixed by _type

• all the constant values are suffixed by _

• all the subroutine names follow the rule psb_xxname where xx can be
either:

– ge: the routine is related to dense data,

– sp: the routine is related to sparse data,

– cd: the routine is related to communication descriptor (see 2.2.2).

For example the psb_geins, psb_spins and psb_cdins perform the
same action (see 2.5) on dense matrices, sparse matrices and communication
descriptors respectively. Interface overloading allows the usage of the
same subroutine interfaces for both real and complex data.
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2.2 Main PSBLAS data structures

2.2.1 Library design choices

In any distributed memory application, the data structures that represent
the partition of the computational problem are essential to the viability and
efficiency of the entire parallel implementation. The criteria guiding the
decomposition choices are:

1. maximizing load balancing,

2. minimizing communication costs,

3. optimizing the efficiency of the serial computation parts.

For dense linear algebra algorithms the ScaLAPACK library [21] has demonstrated
that a block-cyclic distribution of the row and column index spaces is general
and powerful enough to achieve a good compromise among the various factors
that affect parallel computation performance. PSBLAS library addresses
parallel sparse iterative solvers typically arising in the numerical solution of
PDEs. In these instances, it is necessary to pay special attention to the
structure of the problem from which the application originates. The nonzero
pattern of a matrix arising from the discretization of a PDE is influenced by
various factors, such as the shape of the domain, the discretization strategy,
and the equation/unknown ordering. The matrix itself can be interpreted as
the adjacency matrix of the graph associated with the discretization mesh;
this characteristic will be discussed in section 2.2.5. The allocation of the
coefficient matrix for the linear system is based on the “owner computes”
rule: the associated variable of each mesh point is assigned to a process that
will own the corresponding row in the coefficient matrix and will carry out
all related computations. This allocation strategy is equivalent to a partition
of the discretization mesh into sub-domains. PSBLAS routines support any
distribution that keeps together the coefficients of each matrix row; there are
no other constraints on the variable assignment. The available distribution
strategies include data distributions commonly used in ScaLAPACK such
as CYCLIC(N) and BLOCK, as well as completely arbitrary assignments of
equation indices to processes. Dense vectors conform to sparse matrices, that
is, the entries of a vector follow the same distribution of the matrix rows. It
is never required that the entire system matrix is available on a single node
and efficiency is obviously improved in the case where each node generates
its own portion of the system. However, it is possible to hold the entire
matrix in one process and distribute it explicitly, even though the resulting
bottleneck would make this option unattractive in most cases. The storage
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scheme used for the computational parts pertaining to each process conforms
to the storage formats defined in the serial sparse BLAS proposal [30]. The
data structures that describe the local matrix storage are kept separated
from those used for representing the communication pattern. This choice
satisfies the encapsulation relations among the PSBLAS layers as described
previously.

2.2.2 Communication descriptors

Once the distributed sparse matrix has been allocated and built, it is necessary
to arrange the data structures that will be used to perform inter-process
communications during the execution of routines such as matrix-vector products,
preconditioners and scalar products. The detailed contents of these data
structures depend on the sparsity pattern of the coefficient matrix. This
index space is classified according to the user defined assignment of its
elements to the processes of the parallel machine. The PSBLAS computational
model implies that the data allocation on the parallel distributed memory
machine is guided by the structure of the physical model, and specifically by
the discretization mesh of the PDE. Each point of the discretization mesh
will have (at least) one associated equation/variable, and therefore one index.
Point i depends on point j if the equation for a variable associated with i
contains a term in j, or equivalently if aij 6= 0. After the partition of the
discretization mesh into sub-domains assigned to the parallel processes, the
points of a given sub-domain can be classified as following:

Internal. An internal point of a given subdomain depends only on points
of the same subdomain. If all points of a domain are assigned to one
process, then a computational step (e.g., a matrix-vector product) of
the equations associated with the internal points requires no data items
from other subdomains and no communications.

Boundary. A point of a given subdomain is a boundary point if it depends
on points belonging to other subdomains.

Halo. A halo point for a given subdomain is a point belonging to another
subdomain such that there is a boundary point which depends on it.
Whenever performing a computational step, such as a matrix-vector
product, the values associated with halo points are requested from other
subdomains. A boundary point of a given subdomain is a halo point for
(at least) another subdomain; therefore the cardinality of the boundary
points set denotes the amount of data sent to other subdomains.
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Overlap. An overlap point is a boundary point assigned to multiple subdomains.
Any operation that involves an overlap point has to be replicated for
each assignment. This may be acceptable, for example to accelerate the
convergence rate of the overall iterative method through an improvement
of the preconditioning task [37].

The sets of internal, boundary and halo points for a given subdomain
are denoted by I, B and H respectively. Each subdomain is assigned to
one process; each process usually owns one subdomain in which case the
number of rows in the local sparse matrix is |Ii| + |Bi|, and the number of
local columns (i.e. those for which there exists at least one non-zero entry
in the local rows) is |Ii| + |Bi| + |Hi|. The representation of the points of
a subdomain assigned to a process is stored into integer arrays; the internal
format is described in more detail in [19]. Upon each invocation of a PSBLAS
subroutine, it is assumed that only one set of communication descriptors is
active. This assumption is not too restrictive in view of commonly addressed
applications. Indeed, if the library is used in the context of a PDE solver,
often have multiple equations are defined on the same discretization mesh,
so that the coefficient matrices of the linear systems have the same sparsity
pattern. The definition of the communication descriptors is the following.

MATRIX DATA A vector containing some general information, such as
the descriptor status, the size of the global matrix, the number of local
rows and columns and the BLACS communication context.

HALO INDEX The local list of the indices of halo points that have to be
exchanged with other processes. For each process, this list contains the
process identifier, the number and indices of points to be received, the
number and indices of points to be sent.

OVERLAP INDEX A (local) list of the overlap points, organized in groups
like the halo index descriptor; the format is identical to that of the halo
descriptor.

OVERLAP ELEM A (local) list containing for each overlap point its
local index and the number of processes sharing it. This information
is implicitly available in OVERLAP_INDEX; it is computed and stored
separately at initialization time for efficiency reasons.

Two auxiliary arrays are used to keep track of the mapping between local
and global indices. The Fortran 95 language allows a convenient packing of
the necessary data structures inside a single derived data type as reported in
figure 2.2.
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type psb_desc_type

integer, pointer :: matrix_data(:), halo_index(:)

integer, pointer :: overlap_elem(:), overlap_index(:)

integer, pointer :: loc_to_glob(:), glob_to_loc(:)

end type psb_desc_type

Figure 2.2: The PSBLAS defined data type that contains the communication
descriptor.

2.2.3 Sparse matrix storage

Assembling a sparse matrix requires that the user defines matrix entries in
terms of the global equation numbering. Then, each process in the parallel
machine builds the sparse matrix rows that are assigned to it by the user
by means of the psb_spins subroutine described below. Once the build
step is completed, the local part of the matrix undergoes a preprocessing
operation. During this step, performed through the psb_spasb subroutine,
the global numbering scheme is converted into the local numbering scheme,
and the local sparse matrix representation is converted to a format suitable
for subsequent computations.

The serial sparse BLAS routines [18, 30] are used to carry out the internal
storage conversion step and all other operations involving local sparse matrix
computations. The paper [30] contains a detailed discussion about the rationale
for the sparse matrix representation shown below. In particular, it describes
the format of the permutation vectors pr and pl. These permutations arise in
various sparse storage format conversions that may impose a renumbering of
the local equations and variables to achieve the desired runtime efficiency. In
PSBLAS, the sparse matrix storage conforms to the Fortran 95 implementation
of the serial sparse data structures reported in figure 2.3.

Complex matrices have a similar structure, with the appropriate type
declaration for member aspk. At the moment the PSBLAS library provides
the possibility to store sparse matrices in the Compressed Sparse Row (CSR),
Coordinate (COO) and Jagged Diagonal (JAD) formats (see section 3.1.2, 3.1.1
and 3.1.3) while the Blocked CSR, described in chapter 3, is being integrated.
However the psb_spmat_type data structure has been designed to be flexible
enough to easily allow the implementation of other storage formats. In this
sense, the content of the ia1, ia2 and aspk arrays is interpreted accordingly
to the content of the fida and infoa records. The implementation of the
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type psb_dspmat_type

integer :: m, k

character :: fida(5)

character :: descra(10)

integer :: infoa(10)

real(kind(1.d0)), pointer :: aspk(:)

integer, pointer :: ia1(:), ia2(:), pr(:), pl(:)

end type psb_dspmat_type

Figure 2.3: The PSBLAS defined data type that contains a sparse matrix.

BCSR storage format described in chapter 3 is an example of it is possible
to use the psb_spmat_type to integrate new matrix representations into the
PSBLAS library.

2.2.4 Preconditioner data structure

PSBLAS-2.0 offers the possibility to use many different types of preconditioning
schemes. Besides the simple well known preconditioners like Diagonal Scaling
or Block Jacobi (with ILU(0) incomplete factorization) also more complex
preconditioning methods are implemented like the Additive Schwarz and
Two-Level ones (see respectively chapters 4 and 5). A preconditioner is held
in the psb_prec_type data structure which depends on the psb_base_prec

reported in figure 2.4. The psb_base_prec data type may contain a simple
preconditioning matrix with the associated communication descriptor which
may be different than the system communication descriptor in the case of
parallel preconditioners like the Additive Schwarz one. Then the psb_prec_type
may contain more than one preconditioning matrix like in the case of Two-
Level (in general Multi-Level) preconditioners. The user can choose the type
of preconditioner to be used by means of the psb_precset subroutine; once
the type of preconditioning method is specified, along with all the parameters
that characterize it, the preconditioner data structure can be built using the
psb_precbuild subroutine. This data structure wants to be flexible enough
to easily allow the implementation of new kind of preconditioners. The values
contained in the iprcparm and dprcparm define tha type of preconditioner
along with all the parameters related to it; thus, iprcparm and dprcparm

define how the other records have to be interpreted. Chapters 4 and 5 show
that this data structure is general enough to implement Additive Schwarz
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and Two-Level preconditioners.

type psb_base_prec

type(psb_spmat_type), pointer :: av(:) => null()
real(kind(1.d0)), pointer :: d(:) => null()
type(psb_desc_type), pointer :: desc_data => null()
integer, pointer :: iprcparm(:) => null()
real(kind(1.d0)), pointer :: dprcparm(:) => null()
integer, pointer :: perm(:) => null()
integer, pointer :: mlia(:) => null()
integer, pointer :: invperm(:) => null()
integer, pointer :: nlaggr(:) => null()
type(psb_spmat_type), pointer :: aorig => null()
real(kind(1.d0)), pointer :: dorig(:) => null()

end type psb_base_prec

type psb_prec_type
type(psb_base_prec), pointer :: baseprecv(:) => null()
integer :: prec, base_prec

end type psb_prec_type

Figure 2.4: The PSBLAS defined data type that contains a preconditioner.

2.2.5 Data allocation strategies and graph partitioning

It has been previously mentioned that the user can take any decision about
the allocation of matrix rows and associated variables to processes; indeed,
some experimental tests were based on random assignments. However each
allocation choice will result in a different runtime efficiency. It can be
assumed that a good runtime efficiency, in PSBLAS, can be achieved through
the choice of a data allocation that aims at minimizing the execution time
of matrix-vector products. To motivate this assessment, it is necessary to
consider the computational and communication costs of target applications
of the PSBLAS library.

Modern iterative solvers are typically based on Krylov subspace approximations
(see section 1.2). In most instances, the cost of each iteration is constant
across iterations. It is made up of matrix-vector products, preconditioning
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operations, scalar products and dense vector sums. By analyzing these
operations it can be stated that:

• Dense vector sums do not involve any communication.

• Scalar products have a communication cost that is determined by the
number of processes in the parallel machine.

• Many preconditioners, such as Jacobi, SOR, diagonal scaling and basic
ILU variants, either do not require inter-process communications or
they are associated with matrices having the same sparsity pattern as
that of the coefficient matrix A.

The above observations imply that the only balance criterion for dense vector
operations is that the vector entries should be evenly distributed among
processes.

Incomplete factorization preconditioners that operate locally are also implemented
inside PSBLAS, because they usually give a good compromise between parallelization
efficiency and preconditioning effectiveness in terms of reduction of the number
of iterations. It would be also possible to implement a global factorization
preconditioner by using our communication descriptors, provided that some
constraints are imposed on the fill-in generation. However, this choice would
require heavy modifications on the triangular matrix T storage format. Moreover,
the performance of the triangular system solution would be much lower. In
summary, the applicability and efficacy of a global factorization preconditioner
do not seem general enough to warrant its implementation.

As a consequence of previous observations, with little loss of generality,
it makes sense to direct optimization efforts towards the improvement of the
parallel implementation of the matrix-vector product (see also section 3.2).
The search for the optimal data distribution for this basic operation can be
modeled as a weighted graph partitioning problem because the coefficient
matrix can be interpreted as the adjacency matrix of the graph associated
with the discretization mesh.

Each node of the graph models one row in the coefficient matrix; its
weight equals the number of nonzero coefficients, as this is proportional to
the computational cost of evaluating its contribution to the matrix-vector
product. Each arc of the graph models a nonzero coefficient that needs to
acquire the value of one variable to complete the computation associated with
an equation. It can be assumed that the cost of communicating a variable
value is constant, so that all arcs have the same (unitary) weight.

The optimality criteria for the graph partitioning problem are:

1. The total weight of the graph nodes should be evenly distributed.
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2. The weight of the edges crossing partition boundaries should be minimized.

If the variance degree is not too large, or equivalently if the graph structure
is sufficiently regular, the node weight criterion induces a distribution of the
graph nodes that balances performance of vector operations. Each vector
operation adds a fixed number of floating point operations per matrix row,
and this is equivalent to adding a constant value to each node weight.

The general graph partition problem is NP-complete [43] and, thus, a
vast body of heuristic has been developed to obtain reasonably good partitions
in an effective way (see [1, 45, 61], and references therein). PSBLAS can
be interfaced with popular tools such as Metis [1] with obvious benefits
in performance. However, the use of a graph partition tool is not strictly
required by PSBLAS. In fact, for most problems of interest to the PSBLAS
library, a surface to volume effect takes place, so that even a BLOCK distribution
may be satisfactory. Moreover, it is likely that the partition of the discretization
mesh can be guided by physical considerations. Note that many graph
partitioning algorithms work on undirected graphs, which would correspond
to matrices with a symmetric pattern, but this is not required by PSBLAS.
In these instances, it would be appropriate (even if simplistic) to apply the
partition tool to the graph associated with the nonzero pattern of A + AT ,
and to apply the resulting distribution to the original matrix.

For these reasons, the PSBLAS library is designed with the intention
of letting the user control the entire specification of the data allocation.
The only constraint is that the data allocation strategy satisfies the “owner
computes” paradigm discussed in section 2.2.1.

2.3 PSBLAS operations

For the description of the operations in the PSBLAS library the following
definitions and assumptions are used.

A is a sparse matrix distributed by rows as described above;

T is a sparse matrix with triangular blocks on the main diagonal and zeros
elsewhere; it is distributed by rows conforming to A;

B, C, X, Y are dense matrices distributed by rows conforming to A;

x, y are dense vectors distributed by rows conforming to A;

α, β are scalars;

P, PR, PC are block diagonal permutation matrices;
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D is a diagonal matrix distributed by rows conforming to A.

The block diagonal form of T is due to the choice of a factorization preconditioner
that works only on the part of the matrix local to each process. Hence,
each block extends across the rows of the matrix assigned to a process.
This preconditioner is usually called block Jacobi (sometimes block ILU ) or
overlapping additive Schwartz (see chapter 4) depending on the existence of
overlap among sub-domains.

The permutation matrices P, PR, PC are in block diagonal form too, because
they depend on the storage format chosen for the part of A local to each
process. Indeed, they do not appear explicitly in calling sequences because
they are encapsulated into the local part of A, as discussed in section 2.2.3.

The main operations in the PSBLAS library are:

• Matrix-matrix products

C ← αPRAPCB + βC

C ← αPRAT PCB + βC

• Triangular system solutions

C ← αPRT−1PCB + βC

C ← αDPRT−1PCB + βC

C ← αPRT−1PCDB + βC

C ← αPRT−T PCB + βC

C ← αDPRT−T PCB + βC

C ← αPRT−T PCDB + βC

• Matrix sums
Y ← αX + βY

• Scalar products
xT y or xHy

• Dense vector 1, 2 and infinity norms

‖x‖

• Sparse matrix infinity norm

‖A‖∞
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• Halo data communications

• Overlap data updates

The default behavior of the subroutines is to keep all vector entries
consistent across all subroutine calls, although this may be overridden for
efficiency reasons. As an example, the application of an ILU preconditioner
requires two successive calls to the triangular system solution routine: the
former for the L part, and the latter for the U part of the preconditioner.
As the preconditioning step is a local operation, it can be chosen to restore
consistency on overlap points only after the second call to the triangular
system solver routine.

2.4 Computational subroutines

Computational subroutines have been developed based on the assumption
that they must be by all processes. Even if there is there are no explicit
barrier constructs all computational subroutines employ global communications
for error checking, thus providing synchronization. In all the computational
subroutine interfaces, desc_a is the communication descriptor of type psb_desc_type
as described in section 2.2.2 while the info argument (present in all of the
PSBLAS subroutine interfaces) is used for error handling as described in
section 2.8.

The input parameters are ordered in such a way that the parameters
occurring after info are optional. Sparse matrices A and T must be declared
of type psb_spmat_type. Input scalars such as ALPHA and BETA must have
the same value on all processes; dense matrices and vectors such as X and x

must have the POINTER attribute.

psb gedot Computes the dot product (x, y) of two vectors

dot = psb_gedot(x, y, desc_a, info)

psb geaxpby Computes
Y ← αX + βY

call psb_geaxpby(alpha, x, beta, y, desc_a, info)

psb geamax Computes the maximum absolute value, or infinity norm of a
vector

amax← max
i
{|X(i)|} = ‖X‖∞.
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amax = psb_geamax(x, desc_a, info)

psb geasum Computes the 1-norm of a vector

asum←
∑

i

|X(i)| = ‖X‖1.

asum = psb_geasum(x, desc_a, info)

psb genrm2 Computes the 2-norm of a vector

nrm2← ‖X‖2.

nrm2 = psb_genrm2(x, desc_a, info)

psb spnrmi Computes the infinity-norm of a distributed sparse matrix

nrmi← ‖A‖∞.

nrmi = psb_spnrmi(a, desc_a, info)

psb spmm Computes the sparse matrix by dense matrix product

Y ← αPRAPCX + βY

Y ← αPRAT PCX + βY

The permutation matrices PR and PC are local, as they handle all
details of the local storage format. They do not appear explicitly in the
following call format because they are encapsulated into A, according
to the derived data type discussed in Section 2.2.3.

call psb_spmm(alpha, a, x, beta, y, desc_a, info, trans)

psb spsm Computes the triangular system solution:

Y ← αPRT−1PCX + βY

Y ← αDPRT−1PCX + βY

Y ← αPRT−1PCDX + βY

Y ← αPRT−T PCX + βY

Y ← αDPRT−T PCX + βY

Y ← αPRT−T PCDX + βY

The triangular sparse matrix T is block diagonal. This is equivalent to
the application of local ILU or IC preconditioning.
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call psb_spsm(alpha, t, x, beta, y, desc_a, info,

trans, unitd, iopt, d)

The character unitd parameter denotes how to use the diagonal D
(stored as a vector), which can be assumed unitary (and thus ignored),
or applied on the left or on the right. The iopt parameter denotes
whether the consistency of the overlap points for vector X has to be
enforced or not.

2.5 Auxiliary subroutines

The PSBLAS library contains a set of tools that define the parallel data
structure, and allocate and assemble the matrices involved in the computation.
The goal is to encapsulate the low-level details of the internal storage of the
communication descriptors and sparse matrices. The requirements placed on
the user that wants to write applications in PSBLAS are the following.

1. The allocation of the index space among the processes is defined by
means of the subroutine parts described below. Alternatively, a vector
v of size n, where n is the matrix size, can be used such that v(i)
contains the identifier of the process that owns point i.

2. The coefficients of the sparse matrix are given in terms of global numbering.

The choice of a subroutine argument aims to guarantee maximal flexibility;
the user can define an arbitrary data allocation scheme and experiment
various partition strategies in a simple way. The PSBLAS package includes
some predefined subroutines for simple distributions such as BLOCK and CYCLIC.
The coefficients of the linear system should be generated in a very simple
format (currently, Coordinate) that is handled through the subroutine psb_spins.
The library will manage other storage schemes through the preprocessing
facilities of the serial sparse BLAS [30].

For any application, the first PSBLAS routine invoked must be psb_cdall
that allocates a communication descriptor data structure and initializes the
parallel environment. At the time this subroutine is called, it is assumed that
the application has already initialized the BLACS communication environment;
each PSBLAS process will identify itself by means of its BLACS task index.

Auxiliary subroutines must be called by all processes, with the exception
of the insertion routines psb_cdins, psb_spins and psb_geins (equivalent
to the psb_spins for dense matrices). These routines are called independently
by each process to act on the local parts of the relevant sparse or dense
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matrices. The processes will synchronize upon the subsequent (and required)
call to psb_cdasb, psb_spasb and psb_geasb routines.

The auxiliary subroutines currently include:

parts This is a user provided subroutine. The index space allocation among
the processes is obtained through the library call

call parts(g_idx,procs,nprocs)

where g_idx is the input global index from the library routine, procs(*)
is the output vector containing the indices of the BLACS task(s) owing
the given index, and nprocs is the number of valid entries in procs. If
nprocs > 1, there is an overlap point.

psb cdall Allocates and initializes communication descriptors data structures
on the basis of the user information that is provided through the
subroutine PARTS;

call psb_cdall(m, n, parts, icontxt, desc_a, info)

call psb_cdall(m, n, v, icontxt, desc_a, info)

m and n are the global matrix dimensions: they are kept separate, even
though currently only square matrices are supported. The parameter
icontxt is the BLACS communication context returned by the BLACS
environment initialization routine. This routine can be fed with an
integer vector v specifying the process that owns each variable instead
of the parts subroutine.

psb spall Allocates data structures for Global Sparse Matrix. The user may
also provide an estimate of the number of nonzero elements that have
to be allocated for the local part of the sparse matrix.

call psb_spall(a, desc_a, info, nnz)

psb geall Allocates a dense matrix; dense matrices must be declared with
the pointer attribute.

call psb_geall(m, n, x, desc_a, info)

psb cdins Updates the communication descriptor accordingly to the communication
patterns defined by a set of points. The ia and ja arrays contain
respectively the row and column indices of the nnz points to be inserted.
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call psb_cdins(nnz, ia, ja, desc_a, info, is, js)

psb spins Inserts a sparse block into a sparse matrix. A local sparse matrix
in coordinate (COO) format is inserted into the local part of the matrix
A. This sparse is passed through the ia,ja and val arguments containing
respectively the row indices, the column indices and the values of the
block entries. It is not necessary to pass a complete matrix block to this
routine. For example, the user that wants to implement a finite element
application can denote the equations element by element without any
ordering constraint. PSBLAS is able to keep track of contributions from
different elements into the same equation (row of the sparse matrix).
Multiple contributions to the same matrix entry can be treated by
summing their values, by keeping just one of the specified values and
ignoring the others, or by raising an error condition, under the user
control.1

call psb_spins(nz, ia, ja, val, a, desc_a, info, is, js)

psb geins Inserts a dense block into a dense matrix.

call psb_dins(m, n, x, ix, jx, blck, desc_a, info, is, js)

psb cdasb Assembles the communication descriptor. It processes the communication
descriptor to put it into the final format that is suitable for the computational
routines.

call psb_cdasb(desc_a, info)

psb spasb Assembles Sparse Matrix. It processes the sparse matrix to
put it into the final format that is suitable for the computational
routines. This routine checks for errors that may have occurred during
the insertion phase.

call psb_spasb(a, desc_a, info)

psb geasb Analogous to psb_spasb for a dense matrix.

call psb_geasb(x, desc_a, info)

1This is done through the serial preprocessing routines; since this behavior is not strictly
specified in the serial sparse BLAS, it can be viewed as an extension to that specification.
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psb cdfree Deallocates the memory associated with the components of a
descriptor data structure.

call psb_cdfree(desc_a, info)

psb spfree Deallocates the memory associated with the components of a
sparse matrix.

call psb_spfree(a, desc_a, info)

psb gefree Deallocates a dense matrix.

call psb_gefree(x, desc_a, info)

psb spreinit Reinits a sparse matrix. This operation allows the regeneration
of a matrix on the base of information stored in a previous matrix
building.

call psb_spreinit(a, desc_a, info)

Substantial savings in the time needed to build a sparse matrix may
be achieved by considering that for many applications the same problem
has to be solved repeatedly, for example in successive time steps. If the
topology of the discretization mesh doesn’t change from on time step to
another, the system matrices will have the same sparsity pattern. In this
case extra information may be stored during the insert and assembly steps of
the first problem solution to be reused in successive system solution allowing
to perform the same steps in a shorter time.

During their existence, a sparse matrix and a communication descriptor
may be in different states. A sparse matrix may be in the bld, asb or upd

states while a descriptor may be in the bld or asb ones. Provided that all
the computational subroutines may be invoked only when both of them are
in the asb state, there are different paths to reach these states by means of
the insert and assembly routines to provide the user the higher flexibility as
possible. Namely there are to paths: one where the matrix and descriptor
constructions are handled separately and another one to build both of them
at once.

Figure 2.5 reports the typical layout of a PSBLAS application and shows
how the sparse matrix and descriptor data structures can be built and which
state transitions are determined by the invocation of some auxiliary subroutines
(note that either 2.1 or 2.2 step is performed):
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1 Initialize the communication descriptors with psb_cdall; initialize the
sparse matrix with psb_spall and right hand side with psb_geall.
After this step, both the sparse matrix and the communication descriptor
are in the bld state.

2.1 This step is associated to the right branch on figure 2.5:

a Loop on all mesh points owned by the current process, build
their equations and insert them into the communication descriptor
through calls to the psb_cdins subroutine;

b Assemble the communication descriptor through a call to the
psb_cdasb subroutine. At the end of this step the descriptor
is in the asb state;

c Loop on all mesh points owned by the current process (not necessarily
in the same order as in step a), build their equations and insert
them into the sparse matrix and right hand side through calls to
the psb_spins and psb_geins subroutines,

d Assemble the sparse matrix and the right hand side through calls
to the psb_spasb and psb_geasb subroutine. At the end of this
step the sparse matrix is in the asb state;

2.2 This step is associated to the left branch on figure 2.5:

a Loop on all mesh points owned by the current process, build their
equations and insert them into the communication descriptor,
sparse matrix and right hand side through calls to psb_spins

and psb_geins. If the descriptor is in the bld state instead of the
asb one (which is the case of the left branch in figure 2.5), the
psb_spins also takes care of inserting the points into it;

b Assemble the communication descriptor, sparse matrix and right
hand side through calls to the psb_cdasb , the psb_spasb and
the psb_geasb. At the end of this step both the descriptor and
the sparse matrix are in the asb state;

3 Compute the preconditioner and call the iterative method.

4 If a system with the same sparsity pattern must be solved, the system
matrix may be reinitialized through a call to the psb_spreinit subroutine.
At the end of this step the matrix is in the upd state

5 Loop on all the mesh points owned by the current process in the same
order as in step 2.1.c or 2.2.a, build their equations and insert them into
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the sparse matrix and right hand side through calls to the psb_spins

and psb_geins subroutines,

6 Assemble the sparse matrix and the right hand side through calls to
the psb_spasb and psb_geasb subroutine. At the end of this step the
sparse matrix is in the asb state; go to step 3.

The order in which the mesh points are visited in step 2.1.c or 2.2.a is
arbitrary. This is useful for finite element applications, where it may be
desirable to loop over the elements, rather than over the equations. As an
example, consider the sample application shown in Section 5 of [52]: the
Poisson matrix assemble loop in function assemble_matrix_a runs through
the elements. Recasting the sample code into PSBLAS calls, yields:

DO iel=1,ael%nel

blck = give_matrix_e(ael%el(iel),which)

! assume IMIN is the lowest row index among ael%index(i,iel)

CALL psb_spins(blck%info(psb_nnz_),

blck%ia1,blck%ia2,a,desc_a,info)

ENDDO

CALL psb_spasb(a,desc_a,info)

This example assumes that the original function give_matrix_e has been
rewritten to return a sparse matrix in coordinate format instead of a dense
matrix as in [52].

If the data distribution is independent of the discretization mesh structure,
for example when using a BLOCK distribution, the above application structure
has no serial bottlenecks. If a graph partitioning package is used, the cost of
the setup phase depends on the graph partitioning routine. If the subroutine
is serial, there is a serial bottleneck both in terms of processing time and
memory space, because one of the processes will hold the structure of the
entire discretization mesh. For many applications this would not be a serious
drawback, because the linear solver itself is a single step in an outer solution
algorithm, and often many (if not all) consecutive steps share the same mesh
topology.

The serial graph partitioning approach is not very suitable to applications
that use adaptive meshes with fast rates of change; extensions to PSBLAS
for such applications are currently being investigated [40].
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desc: empty

mat: bld
desc: bld
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psb_spasb

solver
+ solver
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psb_spins
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Figure 2.5: PSBLAS data structures building steps.

2.6 Iterative methods

To illustrate the use of the library routines, the templates for the CG and
Bi-CGSTAB methods from [7], with local ILU preconditioning and normwise
backward error stopping criterion [3] are reported in tables 2.1 and 2.2. The
examples show the high readability and usability features of the PSBLAS
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with Fortran 95 interface. The mathematical formulation of the algorithms
is quite comparable to the PSBLAS implementation.

Efficiency improvements can be obtained from this basic implementation
through optional parameters that are available in the subroutine interfaces.

Template from [7] PSBLAS Implementation

Compute r(0) = b−Ax(0) call psb_geaxpby(one,b,zero,r,desc_a,info)

call psb_spmm(-one,A,x,one,r,desc_a,info)

bni = psb_geamax(b,desc_a,info)

ani = psb_spnrmi(A,desc_a,info)

rho = zero

for i = 1, 2, . . . do it = 1, itmax

solve Mz(i−1) = r(i−1) call psb_precaply(PR,r,z,desc_a,info)

ρi−1 = r(i−1)T
z(i−1) rho_old = rho

rho = psb_gedot(r,z,desc_a,info)

if i = 1 if (it == 1) then

p(1) = z(0) call psb_geaxpby(one,z,zero,p,desc_a,info)

else else

βi−1 = ρi−1/ρi−2 beta = rho/rho_old

p(i) = z(i−1) + βi−1p(i−1) call psb_geaxpby(one,z,beta,p,desc_a,info)

endif endif

q(i) = Ap(i) call psb_spmm(one,A,p,zero,q,desc_a,info)

αi = ρi−1/p(i)T
q(i) sigma = psb_gedot(p,q,desc_a,info)

alpha = rho/sigma

x(i) = x(i−1) + αip
(i) call psb_geaxpby(alpha,p,one,x,desc_a,info)

r(i) = r(i−1) − αiq
(i) call psb_geaxpby(-alpha,q,one,r,desc_a,info)

Check convergence:

‖r(i)‖∞ ≤ ε(‖A‖∞ · ‖x(i)‖∞+ rni = psb_geamax(r,desc_a,info)

+ ‖b‖∞) xni = psb_geamax(x,desc_a,info)

err = rni/(ani*xni+bni)

if (err.le.eps) return

end enddo

Table 2.1: Sample CG implementation
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Template from [7] PSBLAS Implementation

Compute r(0) = b−Ax(0) call psb_geaxpby(one,b,zero,r,desc_a,info)

call psb_spmm(-one, A, x, one,r,desc_a,info)

Choose q (e.g. q = r(0)) call psb_geaxpby(one,r,zero,q,desc_a,info)

bni = psb_geamax(b,desc_a,info)

ani = psb_spnrmi(A,desc_a,info)

for i = 1, 2, . . . do it = 1, itmax

ρi−1 = qT r(i−1) rho_old = rho

rho = psb_gedot(q,r,desc_a,info)

if i = 1 if (it == 1) then

p(1) = r(0) call psb_geaxpby(one,r,zero,p,desc_a,info)

else else

if ρ = 0 failure if (rho==0) stop

βi−1 = (ρi−1/ρi−2)(αi−1/ωi−1) beta = (rho/rho_old)(alpha/omega)

p(i) = r(i−1) + βi−1(p(i−1) − ωi−1v(i−1)) call psb_geaxpby(-omega,v,one,p,desc_a,info)

call psb_geaxpby(one,r,beta,p,desc_a,info)

endif endif

solve Mp̂ = p(i−1) call psb_precaply(PR,p,phat,desc_a,info)

v(i) = Ap̂ call psb_spmm(one,A,phat,zero,v,desc_a,info)

αi = ρi−1/qT v(i) alpha = psb_gedot(q,v,desc_a,info)

alpha = rho/alpha

s = r(i−1) − αv(i) call psb_geaxpby(one,r,zero,s,desc_a,info)

call psb_geaxpby(-alpha,v,one,s,desc_a,info)

solve Mŝ = s call psb_precaply(PR,s,shat,desc_a,info)

t = Aŝ call psb_spmm(one,A,shat,zero,t,desc_a,info)

ωi = tT s/tT t omega = psb_gedot(t,s,desc_a,info)

temp = psb_gedot(t,t,desc_a,info)

omega=omega/temp

x(i) = x(i−1) + αip̂ + ωiŝ call psb_geaxpby(alpha,phat,one,x,desc_a,info)

call psb_geaxpby(omega,shat,one,x,desc_a,info)

r(i) = s− ωit call psb_geaxpby(one,s,zero,r,desc_a,info)

call psb_geaxpby(-omega,t,one,r,desc_a,info)

Check convergence:

‖r(i)‖∞ ≤ ε(‖A‖∞ · ‖x(i)‖∞ + ‖b‖∞) rni = psb_geamax(r,desc_a,info)

xni = psb_geamax(x,desc_a,info)

err = rni/(ani*xni+bni)

if (err.le.eps) return

end enddo

Table 2.2: Sample Bi-CGSTAB implementation
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2.7 Preconditioners

Preconditioning is somehow regarded as “black magic”. This is due to
the fact that theory doesn’t provide a reliable support in the choice of a
preconditioner. It is clear that the influence of a preconditioning technique
on the convergence behavior of an iterative method mostly depends on the
characteristics of the system matrix and of the method itself. Anyway it is
not possible a priori to say that one preconditioner is algebrically better than
another and this perfectly explains the importance of providing a wide range
of preconditioners techniques so that the user can find by itself which one
is more suitable for his problem. Moreover, there are some other issues to
consider when choosing a preconditioner such as balancing the overhead of
building the preconditioner with the reduction in the number of iterations.
PSBLAS contains the implementation of many preconditioning techniques
some of which are very flexible thanks to the presence of many parameters
that is possible to adjust to fit the user’s needs:

• Diagonal Scaling

• Block Jacobi with ILU(0) factorization

• Additive Schwarz with the Restricted Additive Schwarz and Additive
Schwarz with Harmonic extensions (see chapter 4)

• Two-Level Additive Schwarz; this is actually a family of preconditioners
since there is the possibility to choose between many variants as explained
in chapter 5

Preconditioners in PSBLAS are built and managed through the following
subroutines.

psb precset This subroutine defines which kind of preconditioner will be
contained in the p preconditioner data structure (of the type described
in 2.2.4). The type of preconditioner is specified by means of the iv,
rs and rv arguments.

call psb_precset(p, ptype, iv, rs, rv, info)

psb precbld It builds the preconditioner according to the rules fixed by the
psb_precset subroutine. A detail of the actions perfomed inside this
routine is given in chapters 4 and 5.

call psb_precbld(a, p, desc_a, info)
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psb precaply Applies the preconditioner. This routine is called inside the
iterative method (see figures 2.1 and 2.2). Again, refer to chapters 4
and 5 for a description of the actions performed inside it.

call psb_precset(p, x, y, desc_a, info)

2.8 Error Handling

The PSBLAS library error handling policy has been completely rewritten in
version 2.0. The idea behind the design of this new error handling strategy
is to keep error messages on a stack allowing the user to trace back up to
the point where the first error message has been generated. Every routine in
the PSBLAS-2.0 library has, as last non-optional argument, an integer info
variable; whenever, inside the routine, en error is detected, this variable is
set to a value corresponding to a specific error code. Then this error code
is also pushed on the error stack and then either control is returned to the
caller routine or the execution is aborted, depending on the users choice.
At the time when the execution is aborted, an error message is printed on
standard output with a level of verbosity than can be chosen by the user.
If the execution is not aborted, then, the caller routine checks the value
returned in the info variable and, if not zero, an error condition is raised.
This process continues on all the levels of nested calls until the level where
the user decides to abort the program execution.

Figure 2.6 shows the layout of a generic psb_foo routine with respect to
the PSBLAS-2.0 error handling policy. It is possible to see how, whenever an
error condition is detected, the info variable is set to the corresponding error
code which is, then, pushed on top of the stack by means of the psb_errpush.
An error condition may be directly detected inside a routine or indirectly
checking the error code returned returned by a called routine. Whenever an
error is encountered, after it has been pushed on stack, the program execution
skips to a point where the error condition is handled; the error condition is
handled either by returning control to the caller routine or by calling the
psb\_error routine which prints the content of the error stack and aborts
the program execution.

Figure 2.7 reports a sample error message generated by the PSBLAS-2.0
library. This error has been generated by the fact that the user has chosen
the invalid “FOO” storage format to represent the sparse matrix. From this
error message it is possible to see that the error has been detected inside
the psb_cest subroutine called by psb_spasb ... by process 0 (i.e. the root
process).
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subroutine psb_foo(some args, info)
...
if(error detected) then

info=errcode1
call psb_errpush(’psb_foo’, errcode1)
goto 9999

end if
...
call psb_bar(some args, info)
if(info .ne. zero) then

info=errcode2
call psb_errpush(’psb_foo’, errcode2)
goto 9999

end if
...

9999 continue
if (err_act .eq. act_abort) then
call psb_error(icontxt)
return

else
return

end if

end subroutine psb_foo

Figure 2.6: The layout of a generic psb foo routine with respect to PSBLAS-
2.0 error handling policy.

In the following, a brief description of the error handling routines is given.

psb errpush : this subroutine is used to push an error code on the error
stack along with the name of the routine where the error has been
detected. Other optional error informations can be specified depending
on the particular error code.

call psb errpush(err code,name)

psb error : this subroutine should be invoked when an error is detected to
abort the program execution. It prints out the content of the stack
(with a verbosity that can be set by the user) and then aborts the
execution.
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==========================================================

Process: 0. PSBLAS Error (4010) in subroutine: df_sample

Error from call to subroutine mat dist

==========================================================

Process: 0. PSBLAS Error (4010) in subroutine: mat_distv

Error from call to subroutine psb_spasb

==========================================================

Process: 0. PSBLAS Error (4010) in subroutine: psb_spasb

Error from call to subroutine psb_cest

==========================================================

Process: 0. PSBLAS Error (136) in subroutine: psb_cest

Format FOO is unknown

==========================================================

Aborting...

Figure 2.7: A sample PSBLAS-2.0 error message. Process 0 detected an error
condition inside the psb cest subroutine

call psb error(comm context)

psb set err verbosity : it can be used to set the verbosity of the error
messages.

call psb set err verbosity(verb level)

psb set erraction : used to specify which action must be performed when
an error condition is detected. The program execution can be interrupted
in the same subroutine where the error has been detected or the control
may be returned to the caller subroutine.

call psb set erraction(err action)

psb errcomm : it is a simple communication routine to notify other processes
that an error has occured.

call psb errcomm(comm context,err code)
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Part II

Improving low level computing
kernels

59





Chapter 3
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At the heart of the performance problem is that sparse operations are far
more bandwidth-bound than dense ones. Most processors have a memory
subsystem considerably slower than the processor, and this situation is not
likely to improve substantially any time soon. Consequently, optimizations
are needed, likely to be intricate, and very much dependent on architectural
variations even between closely related versions of the same processor.

The classical approach to the optimization problem consists in hand
tuning the software according to the characteristics of the particular architecture
which is going to be used, and according to the expected characteristics of the
data. This approach yields significant results but poses a serious problem on
portability because the software becomes tightly coupled with the underlying
architecture.

The Self Adaptive Numerical Software efforts [25, 81] aim to address this
problem. The main idea behind this new approach to numerical software
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optimization consists in developing software that is able to adapt its characteristics
according to the properties of the underlying hardware and of the input data.

The state of kernel optimization in numerical linear algebra is furthest
advanced in dense linear algebra. The ATLAS software [81], for example,
gives near optimal performance on the BLAS kernels. Factorizations of
sparse matrices (MUMPS [2, 84], SuperLU [51], UMFPACK [23, 86]) also
perform fairly well, since these lead to gradually denser matrices throughout
the factorization. Kernel optimization leaves most to be desired in the
optimization of the components of iterative solvers for sparse systems: the
sparse matrix-vector product and the sparse ILU solution.

In this chapter the theory and the implementation of an adaptive strategy
for sparse matrix-vector products is presented. The optimization studied
consists in performing the operation by blocks instead by single entries, which
allows for more optimizations, thus possibly leading to faster performance
than the scalar – reference – implementation. The parameter optimized is
the choice of the block dimensions, which is a function of the particular
matrix and the machine.

An approach along these lines has already been studied in [48, 79] and,
more recently, extended in [78]. Essentially the same optimizations is employied,
but relaxing one restriction in that research. However, a more accurate
performance model is presented, which leads to better predictions of the block
size, and consequently higher performance. The accuracy of the models and
the resulting performance numbers will be also compared.

Other authors have proposed similar and different techniques for accelerating
the sparse matrix-vector product. For instance, Toledo ([71] and the references
therein) mentions the possibility of reordering the matrix (in particular with
a bandwidth reducing algorithm) to reduce cache misses on the input vector.
Pinar and Heath [60] also consider reordering the matrix; they use it explicitly
to find larger blocks, which leads to a Traveling Salesman Problem.

While the reordering approach gives an undoubted improvement, there
are two reasons for not considering it in this study. For one, in the context
of a numerical library for sparse kernels, permuting the kernel operations
has many implications for the calling environment. Secondly, the blocking
strategy presented hereby can equally well be applied to already permuted
matrices, so the following discussion will be orthogonal to this technique.

Blocking approaches have also been tried before. Both Toledo [71] and
Vuduc [79] propose a solution where a matrix is stored as a sum of differently
blocked matrices, for instance on with the 2×2 blocks, one with 2×1 blocks,
and the third one with the remaining elements. The code described here
has been released as a package ‘AcCELS’ (Accelerated Compressed-storage
Elements for Linear Solvers); it will also be part of the PSBLAS library [39].
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In addition to the matrix-vector product, also a block-optimized version of
the triangular solve operation is include in the software package. This routine
is useful in direct solution methods (for the backward and forward solve) and
in the application of some preconditioners.

Matrix-vector multiplication and triangular system solving are very common
yet expensive operations in sparse algebra computations. total time These
two operations typically account for more than 50% of the total time spent
in the solution of a linear sparse system using an iterative method and,
moreover, they tend to perform very poorly on modern architectures. There
are several reasons for the low performance of these two operations:

• Indirect addressing/low spatial locality: sparse matrices are stored
in data structures where in addition to the values of the entries the row
indices and the column indices have to be explicitly stored. The most
common formats are Compressed Sparse Row (CSR) and Compressed
Sparse Column (CSC) storage [7, §4.3]. During the matrix-vector
product, in the case of CSR storage of the matrix (resp. CSC) the
discontinuous way the elements of the source vector (resp. destination
vector) are accessed is a bottleneck that causes low spatial locality.

• Low temporal locality: In order to minimize memory access, it is
important to maximize the number a data is reused. During a sparse
matrix-vector product with a matrix stored in Compressed Sparse Row
(CSR) format, the elements of the matrix are accessed sequentially in
row order and are used once, the elements of the destination vector
are accessed sequentially and each of them is reused as many times as
the number of elements in the corresponding row of the sparse matrix
which is optimal with respect to the temporal locality. Unfortunately,
the elements of the initial vector are accessed according to the column
indices of the elements of the active row of A. The elements of x
are reused during the matrix-vector product when their row indices
belongs to two (or more) consecutive rows of the matrix A where there
are elements on the corresponding column. Using the CSR storage
format for the matrix implies that all the computations are performed
row by row, thus, while moving from one row to the next the cache
is in general overwritten. This leads to poor temporal locality of the
source vector.

• Low ratio between floating-point operations and memory operations:
apart from the elements of the matrix, the indices also have to be
explicitly read from memory which leads to a high consumption of the
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CPU-memory bandwidth. Basically, there are two reads per floating-
point multiply-add operation. The ratio is one in the dense case. The
comparison with the dense linear algebra is even starker considering
that there is one write operation per row. Since there typically are
far fewer elements per row in the sparse case, this type of overhead is
relatively higher in the sparse case. Moreover retrieving and manipulating
the column/row indices information implies an amount of integer operations
that is not negligible.

• High loop overhead: Connected to the low number of elements per
row in sparse systems, the loop overhead is correspondingly higher.
Furthermore, since the loop length is not constant throughout the
matrix, there is more indexing computation involved, and because of
the non-uniformity several compiler techniques such as loop interchange
are not possible in straightforward manner. Consider the matrix-vector
product Ax = y where A is a sparse matrix stored in Compressed
Sparse Row (CSR) format [7] and x and y are dense vectors. All
the elements of the matrix A are accessed sequentially in row order
and cannot be reused; all the elements of the destination vector y
are accessed sequentially but each of them can be reused as many
times as the number of elements in the corresponding row of A; finally
the elements of x are accessed according to the column indices of the
elements in each row of A and are not reused. The elements of x can
be reused only if in two (or more) consecutive rows of the matrix A
there are elements on the same column; unfortunately using the CSR
storage format for A means that all the computations are performed
row by row, thus, while moving from one row to the next the cache can
be completely overwritten.

The optimization of the sparse matrix-vector operations presented here
consists in tiling the matrix with small dense blocks that are chosen to
cover the nonzero structure of the matrix. This causes an improvement
in scalar performance due to reduced indexing and greater data locality of
the dense blocks. Unfortunately the number of operations increases due
to the operations performed on the zeros arising in the dense blocks (this
phenomenon will be referred to as fill-in). There is clearly a trade-off, which
is going to be analyzed in sections 3.2 and 3.3.

Optimizing the sparse matrix-vector product kernels has two components:

1. Assessing the performance for blocks of different sizes. This performance
is a non-trivial function of various architectural features;
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2. Finding the best tiling for a given matrix. Each different block size
results in a different number of stored nonzeroes, and therefore a different
number of operations performed. This needs to be balanced with the
performance of the dense blocks, in a way that will be explained below.

Previously, the Atlas project [81] has been singularly successful in optimizing
dense linear algebra kernels. The ATLAS strategy consists in optimizing the
different parameters to the architecture in a installation phase.

In the sparse case, the structure of the matrix has a great influence on the
optimal parameters and the resulting performance. A static approach like
this one is not possible. Since the structure of the matrix is only known at
run time, the choice of the parameters for the sparse matrix-vector product
is performed at run time. Consequently the block size selection is on the
basis of information that is gathered in two distinct phases:

1. Installation-time phase: in this phase the impact of the architecture
characteristics on the performance of the block operations is analyzed.

2. Run-time phase: in this phase the sparsity structure of the matrix
is analyzed to understand how it influences the fill-in ratio.

3.1 Storage Formats Overview

This section describes some of the most widely used storage format for sparse
matrices. Many more formats are described in literature (see [7, 18]) but
many of them have similar properties from a performance point of view and
thus it’s not worth describing or implementing all of them. In the following
the same notation as in [18] will be used for the description of the storage
formats:

NNZ(A) The number of entries of a matrix A where an entry means any
matrix coefficient which is handled explicitly. Typically the entries of
A are simply the nonzero elements of A. If the entries are r× c blocks,
then NNZ(A) is the number of block entries.

NZE(A) The set of entries of A.

NZI(A) The set of row indices corresponding to the entries of matrix A.
The ordering of the elements in NZI(A) should be the same as those
of NZE(A).

NZJ(A) The set of column indices corresponding to the entries of matrix A.
The ordering of the elements in NZI(A) should be the same as those
of NZE(A).
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Ai∗ The vector consisting of the elements of the i-th row of A.

A∗j The vector consisting of the elements of the j-th column of A.

diagi(A) The vector consisting of the elements from the i-th diagonal of A.

The matrix in 3.1 will be used to show examples of each storage scheme.

A =


a11 0 a13 a14 0
0 0 a23 a24 0

a31 a32 a33 a34 0
0 a42 0 a44 0

a51 a52 0 0 a55

 (3.1)

3.1.1 The COO storage Format

In the COO storage format each nonzero element is stored along with its row
and column indices. Three arrays are thus needed to store a matrix in this
format:

VAL An array of length NNZ(A) that contains the elements of NZE(A)
in any order.

INDX An array of length NNZ(A) that contains the elements of NZI(A)
with the same ordering as in V AL.

JNDX An array of length NNZ(A) that contains the elements of NZJ(A)
with the same ordering as in V AL.

The matrix A in 3.1 can thus be represented as:
VAL = ( a11 a13 a14 a23 a24 a31 a32 a33 a34 a42 a44 a51 a52 a55 ),
INDX = ( 1 1 1 2 2 3 3 3 3 4 4 5 5 5 ),
JNDX = ( 1 3 4 3 4 1 2 3 4 2 4 1 2 5 ).

This storage format is very easy and almost straightforward to implement.
Anyway it is not very good for performance. As stated before, elements
must not be stored in a specific order (provided that in the three arrays the
ordering remains the same) but it must be noted that row or column ordering
can improve performance thanks to a more regular memory access pattern.

3.1.2 The CSR storage Format

In the Compressed Sparse Row storage format each nonzero element is stored
along with its column index sorted in a row-wise order. Offset values are then
used to access each row individually. As for the COO format, three vectors
are used to represent a matrix in CSR form:
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VAL An array of length NNZ(A) that contains the elements of NZE(A)
in row-wise order.

V AL = (NZE(A1∗, NZE(A2∗, ..., NZE(Am∗))

JNDX An array of length NNZ(A) that contains the elements of NZJ(A)
with the same ordering as in V AL.

JNDX = (NZJ(A1∗, NZJ(A2∗, ..., NZJ(Am∗))

INDX An array of length m + 1 where INDX(i) contains a pointer to the
beginning of the i-th row inside the previous two arrays. INDX(m +
1) = NNZ(A) + 1. Thus INDX(i) points to the location in V AL
where the first element of NZE(A1∗) is stored.

INDX(i) =
i−1∑
j=1

NNZ(Aj∗) + 1 i = 1, ...,m + 1

The matrix A in 3.1 can thus be represented as:
VAL = ( a11 a13 a14 a23 a24 a31 a32 a33 a34 a42 a44 a51 a52 a55 ),
JNDX = ( 1 3 4 3 4 1 2 3 4 2 4 1 2 5 ),
INDX = ( 1 4 6 10 12 15 ).

Using the offset information contained in INDX implies an heavy usage
of indirect addressing but anyway this storage format has proven to be
efficient on many architectures and this is the reason why it is probably
the best known and most widely used among all the sparse storage formats.

3.1.3 The JAD storage Format

Standard JAD

The Jagged Diagonal storage format requires a permutation matrix P that
sorts the rows of the matrix A in descending order of NNZ(Ai∗). Such a
permutation matrix can be represented by an integer vector IPERM . Let
Ā = PA be the permuted matrix and i′ denote the row of Ā corresponding
to the i-th row of A, then i = IPERM(i′). For this storage format four
arrays are needed:

VAL An array of length NNZ(A) that contains the elements of A. The first
element in this array is the first element of NZE(Ā1∗ followed by the
first element of NZE(Ā2∗ and so on up to the first value of NZE(Ām∗.
The m + 1-th element of V AL is the second element of NZE(Ā1∗ and
so on.
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JNDX An array of length NNZ(A) that contains the elements of NZJ(A)
with the same ordering as in V AL.

PNTR An integer array of length MAXNZ + 1 where

MAXNZ = max
1≤i≤m

NNZ(Ai∗)

such that PNTR(j) points to the location in V AL of the j-th element
of NZE(Ā1∗). PNTR(MAXNZ + 1) is set to NNZ(A) + 1.

IPERM An integer array of length m such that i = IPERM(i′).

A suitable permutation matrix for matrix 3.1 would be:

P =


0 0 1 0 0
1 0 0 0 0
0 0 0 0 1
0 1 0 0 0
0 0 0 1 0


and thus the permuted matrix Ā would be:

A =


a31 a32 a33 a34 0
a11 0 a13 a14 0
a51 a52 0 0 a55

0 0 a23 a24 0
0 a42 0 a44 0


The JAD representation for matrix 3.1 is:
VAL = ( a31 a11 a51 a23 a42 a32 a13 a52 a24 a44 a33 a14 a55 a34 ),
JNDX = ( 1 1 1 3 2 2 3 2 4 4 3 4 5 4 ),
INDX = ( 1 6 11 14 15 ),
PNTR = ( 3 1 5 4 4 ).

The Jagged Diagonal storage format is almost difficult to implement but
has proven to be efficient on vector machines.

JAD Implementation in PSBLAS

The PSBLAS library uses a minor variant of the Jagged Diagonal storage
format that can be considerably more efficient especially with those matrices
that have a regular sparsity structure.

Matrices represented in this format are partitioned into sets of rows. All
the rows that belong to the same set have the same number of nonzero
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elements. Where needed “short” rows can be padded with zero values to be
included in block. This padding zero values are called “fill-in” elements and
within each block the number of these elements cannot be greater than an
upper bound defined by a tolerance value. Whenever the fill-in ratio becomes
higher than the given tolerance, the CSR storage format is used to represent
the tail of the block. This tail includes all the elements whose column index
is greater than the column index of the last element in the shortest row of
the block.

The data structure used to represent a matrix in this JAD variant has
the following records:

NG A scalar value that defines the number of blocks into which the matrix
is partitioned.

VAL An array of length NNZ(A) + fill− in containing the nonzero values
of A NZE(A) plus the eventual fill-in elements that have been added.
All the elements in a block are stored close together in a column-wise
order.

JNDX An array of length NNZ(A)+fill−in containing the column indices
for the values in V AL

INDX A bi-dimensional array of size 3×NG. INDX(1, i) contains the row
index of the first row in the i-th block of Ā. INDX(2, i) points to the
element of PNTR containing the position of the first column of the
i-th block within V AL and JNDX. INDX(3, i) points to the element
of PNTR containing the position of the first column of the CSR tail
of the i-th block within V AL and JNDX.

PNTR An array containing pointers to the beginning of each column of
each block inside V AL and JNDX.

Figure 3.1 shows the portion of a block that is stored as a CSR tail.

3.2 The Block Sparse Matrix Format

The Block Compressed Sparse Row storage format for sparse matrices exploits
the benefits of data blocking in numerical computations. This format is
similar to the CSR format except that single value elements are replaced
by dense blocks of general dimensions r × c. Thus a BCSR format with
parameters r = 1 and c = 1 is equivalent to the CSR format. All the blocks
are row-aligned which implies that the first element of each block (i.e., the
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CSR Tail

Figure 3.1: The CSR tail of a JAD block

upper leftmost element) has a global row index that is a multiple of the block
row dimension r. It is possible to choose whether or not to let the blocks
also be column-aligned.

A matrix in BCSR format is thus stored as three vectors: one that
contains the dense blocks (whose elements can be stored by row or by column);
one that contains the column index of each block (namely the column index
of the first element of each block); and one which contains the pointers to
the beginning of each block-row inside the other two vectors (a block row is
a row formed by blocks, i.e. an aligned set of r consecutive rows).

Formally (in Fortran 1-based indexing),

for j=ptr[i]...ptr[i+1]-1:
for k=1...(r*c):

elem[(j-1)*r*c+k] contains
A((i− 1) ∗ r + (k − 1)/c + 1, col ind[j] + mod(k − 1, c) + 1)

All elements of the matrix A belong to a small dense block; this means
that when the number of nonzero elements is not enough to build up a block,
zero values are explicitly stored to fill the empty spaces left in the blocks.
These added zero values are called fill-in elements (see red-plus elements on
figure 3.2 right).

The fill-in ratio is computed as the ratio between the total number of
elements (original nonzeroes plus fill-in zeros) and the nonzero elements; for
the matrix in Figure 3.2(right) with 3× 3 block size the fill-in ratio is 1.59.
Performing the matrix-vector product with the matrix in Figure 3.2(right)
stored in BCSR format with 3 × 3 block size, 1.59 times as many floating
point operations as in the case of the CSR format have to be executed.
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Figure 3.2: Blocking of a portion of venkat01 matrix with 4× 4 blocks (left)
and bcsstk35 matrix with 3× 3 blocks (right).

Fortunately, in most sparse matrices the elements are not randomly distributed,
so such a block tiling often makes sense. Either the matrices have an intrinsic
block structure (in which case the fill-in is zero) like in the case of the matrix
in figure 3.2 (left), or elements are sufficiently clustered so that it is possible
to find a block size for which the fill-in is low. However, experimental results
presented in the next sessions show that, even in the cases where the fill-
in ratio is high on the average, a reduction in the matrix-vector product
execution time can still be achieved thanks to the substantial increase in the
flop rate.

A lower fill-in ratio can be often achieved by relaxing the limitation that
the blocks must be column aligned. Each block inside a block row begins at
a column index that is not necessarily a multiple of the column size c. While
this choice increases the time spent during the matrix building phase since
more possibilities have to be evaluated, it has no extra overhead during the
matrix-vector product operation.

Figure 3.3 shows the tiling of the same matrix with 3×3 row and column
aligned blocks on the left and row aligned but column unaligned blocks on
the right. In this case the fill-in ratio is reduced form 2.83 to 2.36.

For the matrices in the testset described in appendix A, the fill in ratio for
unaligned and aligned blocks is shown in figure 3.4 Using column-unaligned
blocks yields a substantial reduction in fill-in ratio especially as the size of the
small dense blocks grows and thus a reduction in the matrix-vector product
execution times. Anyway having column-unaligned blocks raise the need for
a more complex algorithm for the matrix assembly and also for the fill-in

71



Figure 3.3: Fill-in for 3 × 3 row and column aligned blocks (left) and row
aligned but column unaligned blocks (right).
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Figure 3.4: Fill in ratio for matrices in testset with aligned and unaligned
blocks.
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estimate. Depending on the matrix, the architecture and the user’s needs it
could be valuable to choose column aligned blocks instead of unaligned ones.

Figures 3.5 3.6 3.7 3.8 show how expensive is to estimate the fill-in
and convert a matrix to the BCSR storage format with unaligned blocks
as compared with the case where aligned blocks are used (the top part of
each figure). It is possible to see that the average cost of estimating the fill-
in (with accuracy set to 1%) and converting a matrix to the BCSR storage
format having unaligned blocks can be bound between one and five times the
cost of these operations in the case of aligned blocks. Evaluating the benefits
of the fill-in reduction due to the unaligned blocks (as it can be done referring
to figure 3.4) it is possible to understand when using unaligned blocks yields
an effective advantage with respect to having aligned blocks. On the bottom
part of each figure 3.5 3.6 3.7 3.8 the cost of estimating the fill-in (with
accuracy set to 1%) and converting a matrix into the BCSR storage format is
shown, measured in numbers of unblocked matrix-vector product. Depending
on the architecture (where “architecture” means hardware plus compiler) and
the particular matrix used, the cost of estimating the fill-in varies from few
tens up to more than one hundred (on the Itanium2 architecture 3.7). Thus,
the BCSR format results to be valuable only when used in those applications
where a high number of matrix-vector products must be performed like, for
example, the solution of systems through iterative solvers.
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Figure 3.5: Comparison between the time spent in fill-in estimate
(accuracy=0.01) plus storage format conversion for aligned and unaligned
blocks on the AMD Athlon 1200 machine (top). Cost of fill-in estimate
measured in unblocked matrix-vector products on the AMD Athlon 1200
machine (bottom).
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Figure 3.6: Comparison between the time spent in fill-in estimate
(accuracy=0.01) plus storage format conversion for aligned and unaligned
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Figure 3.7: Comparison between the time spent in fill-in estimate
(accuracy=0.01) plus storage format conversion for aligned and unaligned
blocks on the Itanium2 machine (top). Cost of fill-in estimate measured in
unblocked matrix-vector products on the Itanium2 machine (bottom).
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Figure 3.8: Comparison between the time spent in fill-in estimate
(accuracy=0.01) plus storage format conversion for aligned and unaligned
blocks on the Power3 machine (top). Cost of fill-in estimate measured in
unblocked matrix-vector products on the Power3 machine (bottom).
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3.3 Performance Optimization and Modeling

The BCSR Matrix-Vector Product source code

Figures 3.9 and 3.10 show the source code for the matrix-vector product
y = Ax for the BCSR (in the case of 2× 3 blocks) and for the reference CSR
(equivalent to the 1 × 1 BCSR) formats. Array ia1 contains the column
indices for the (block) elements, array ia2 contains the (block-row) row
pointers and array aspk contains the nonzero (blocks) elements.

...

for(i=0;i<*m;i++,y+=2){

int j;

register double y0=y[0];

register double y1=y[1];

for(j=ia2[i];j<ia2[i+1];j++,ia1++,aspk+=6){

y0 += aspk[0]*x[*ia1 +0];

y1 += aspk[3]*x[*ia1 +0];

y0 += aspk[1]*x[*ia1 +1];

y1 += aspk[4]*x[*ia1 +1];

y0 += aspk[2]*x[*ia1 +2];

y1 += aspk[5]*x[*ia1 +2];

}

y[0]=y0;

y[1]=y1;

}

...

Figure 3.9: Matrix-vector product source code for 2×3 BCSR storage format.

The difference of performance between the two implementations for the
matrix-vector product may be understood from the following analysis:

• memory space occupancy, and thus also memory-CPU bandwidth consumption
may be eventually reduced. Following the discussion presented in [79]
it is easily possible to quantify to which extent the BCSR format affects
memory space occupancy and memory-CPU bandwidth consumption.
Let k be the number of nonzeroes in A, and let Krc be the number of
nonzero r×c blocks in the BCSR representation of A. The fill-in ratio if
equal to frc = Krc·r·c

k
. The matrix, as represented in BCSR format, has
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...

for(i=0;i<*m;i++,y+=1){

register double y0=y[0];

for(j=ia2[i];j<ia2[i+1];j++,ia1++,aspk+=1){

y0 += aspk[0]*x[*ia1+0];

}

y[0]=y[0];

}

...

Figure 3.10: Matrix vector product source code for reference CSR
implementation.

Mrc =
⌈

m
r

⌉
block-rows (where m is the number of rows of the matrix).

Thus to represent a matrix in BCSR format a double-precision array
as big as Krc · r · c, an integer array of dimension Krc to store the
column indices of each block end another integer array of dimension
Mrc + 1 to store the row pointers are needed. Assume that there are γ
integers in a floating point word (which, for example, means γ = 2 with
32-bits integer values and 64-bits floating point values). The memory
occupancy for a matrix in the BCSR format is

Vrc = Krc · r · c +
1

γ
Krc +

1

γ

(⌈m

r

⌉
+ 1
)

= kfrc

(
1 +

1

γrc

)
+

1

γ

(⌈m

r

⌉
+ 1
)

(3.2)

To understand the difference in memory occupancy between the CSR
and the BCSR formats assume that k >> m (which is the case for
most of the sparse matrices coming from real world applications) and
that γ = 2. These assumptions imply:

V11

Vrc

≈
3
2
k

kfrc

(
1 + 1

2rc

) =
3

2
· 1

frc

(
1 + 1

2rc

) (3.3)

This means that in the optimistic case where there is no fill-in for the
BCSR representation, it is possible to expect a reduction in the memory
occupancy that is no more than 3/2 with respect to the CSR case. This
translates in the fact that whenever the fill-in ratio is bigger than 3/2
more memory space is required to store a matrix in BCSR than in CSR.
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• the inner loop, i.e. the loop where all the computations related to a
small dense block are performed, is completely unrolled. This reduces
loop overhead in the overall matrix-vector product computation and
offers the opportunity to have a better scheduling of the instruction
which results in a better usage of the processor pipeline.

• register reuse is substantially increased. Elements of the source vector
x accessed within the inner loop can be held in registers and reused
as many times as the column block dimension c. As the number of
registers is limited and usually almost low, beyond a certain block size,
performance is likely to be degraded by register spilling, as also pointed
out in [79]). Register spilling is a phenomenon that happens when a
segment of code tries to use more variables than the available number
of registers; this means that variables have to be ,migrated back and
forth from memory.

• memory access pattern is more regular as the r × c size of the dense
blocks increases. Like in the dense matrix-vector product memory is
accessed with a fixed stride when dealing with each single dense block
which yields better cache behavior.

Architecture ref. best speedup dgemv

(MFlops) (MFlops) (MFlops)

Itanium2 343.4 1482.6 4.31 1440.4
Athlon AMD 64-bit 3500+ 452.0 732.5 1.62 750.8
Xeon 288.8 459.6 1.59 403.2
Athlon AMD 1800 105.7 209.8 1.98 206.6
Athlon AMD 1200 65.0 265.4 4.08 262.2
Power3 113.9 194.6 1.70 193.0
PentiumIII 49.1 142.0 2.89 150.2
MIPS 42.1 89.9 2.13 95.0

Table 3.1: This table shows a comparison between Flop rates of the reference
implementation and the best case BCSR (i.e. the block size which yields the
highest rate). The absolute speedup is reported on the third column while
the dense dgemv (ATLAS library implementation) flop rate is reported on
the fourth column.

To evaluate the performance of the source code listed in figure 3.9 for
each different combination of block sizes r and c up to a certain limit, a
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Figure 3.11: Matrix-vector product Flop rate for a 1500× 1500 dense matrix
stored in BCSR format on an AMD Athlon 1200 architecture.

1500×1500 dense matrix stored in BCSR format has been used. This choice
(also suggested by [79]) is almost natural since the storage of a dense matrix
in BCSR format is not affected by any fill-in (when blocks dimension is not
a submultiple of the matrix dimension there is some fill-in but it is very
small and thus negligible) and then the attention can be focused on just flop
rates without taking care of “noise” introduced by the presence of padding
zeroes. The block size has been limited to 10× 10 because beyond this limit
usually the fill-in ratio for matrices coming from real-world applications is
unbearable.

Figures 3.11 to 3.15 show the flop rate of the matrix-vector product
operation on different architectures for the 1500× 1500 dense matrix stored
in BCSR format with block sizes between 1 × 1 and 10 × 10. The columns
on the right side of each figure show that blue squares denote low values and
red squares denote high values for flop rates.

Looking at figures 3.11 to 3.15 the following information can be derived:

• performance is a very irregular function of the block dimensions r and c.
As pointed out before, performance should grow with higher block sizes
thanks to an higher register reuse (achieved with higher values for r)
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Figure 3.12: Matrix-vector product Flop rate for a 1500× 1500 dense matrix
stored in BCSR format on an AMD Athlon 1800 architecture.

and a better memory access pattern (achieved with higher values for c).
This behavior is only partially observed in these tests: the performance
of the matrix-vector product operation in BCSR format on the AMD
Athlon 1200 (figure 3.11), AMD Athlon 1800 (figure 3.12) and MIPS
(figure 3.15) architectures seems to have a regular growth with higher
values for the block sizes but figures 3.14 3.13 3.18 3.16 3.17 don’t show
any relation between flop rates and block dimension.

• register spilling doesn’t seem, in general, to affect flop rates for higher
dimensions of the dense blocks. Only on the Power3 architecture 3.17 it
is possible to detect a degradation of performance for higher dimensions
of the blocks that is likely to be triggered by register spilling.

• performance behavior is deeply affected by architecture characteristics
and it is not possible, in general, to derive a general model that describes
how performance changes according to different values of r and c.

• performance behavior is also deeply affected by compilers. Figure 3.14
shows that two different compilers generate code whose flop rate changes
differently with the block dimensions r and c.
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Figure 3.13: Matrix-vector product Flop rate for a 1500× 1500 dense matrix
stored in BCSR format on an Itanium2 architecture.

• speedup can be considerable going from a minimum of 1.59 on the Xeon
architecture up to a maximum of 4.31 on the Itanium2 one although we
don’t have, at the moment, a precise understanding of all the factors
that contribute to it.

• the performance achieved with the best combination of r and c on most
of the architectures used is higher than the the performance of the dense
matrix-vector product operation as implemented in the ATLAS [81]
library.

Performance can, thus, considerably change with r and c and this obviously
means that making the right choice for the block size can substantially reduce
the execution times for the matrix-vector product operation. Unfortunately
when choosing the block size one has to take into account fill-in. The presence
of fill-in increases the execution times because the overall number of floating
point operations increases even if the floating point operations introduced by
the presence of fill-in elements don’t have any effect from an algebraic point
of view. Thus, looking for the block size that yields the lower execution times
actually means looking for the best compromise between high flop rates and
low fill-in ratios. As an example, observe how different choices for r and c
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contribute to execution times by determining different values of flop rates and
fill-in for matrix number 29 (i.e. “venkat01”) on the Itanium2 architecture.

Figure 3.19 reports flop rates (top-left), fill-in ratios (top-right) and execution
times (bottom-left) for the matrix-vector product on the Itanium2 architecture
with “venkat01” matrix. As pointed out before, the best choice for the block
size, that is the block size that yields the lower execution times, is the one
that gives the best compromise between high flop rates and low fill-in ratios;
this means that the execution times plot can be seen (and in fact it is) as a
merge between the other two. Even if the higher flop rate is achieved with
8×5 blocks, the lower execution time is achieved with 4×2 blocks thanks to
the low (in this particular case null) fill-in. Analyzing figure 3.19, it is also
possible to understand that the block size choice cannot be driven just by
the knowledge of the sparsity structure of the matrix. In this case, in fact,
the matrix has a regular intrinsic 4×4 block structure but this doesn’t mean
that 4× 4 is the block size that gives the lower execution times.

The following section presents a method to exploit self-adaptativity of
this matrix-vector product operation through the automatic selection of the
most efficient block size. According to what said in the previous lines, given a
matrix A, a straightforward approach for this automatic block-size selection
would be:

1. for each r × c measure the matrix-vector flop rate perfA(r, c);

2. for each r×c measure the fill-in ratio fillA(r, c) for the BCSR representation;

3. choose the block size r × c that minimizes:

etimeA(r, c) ∝ fillA(r, c)

perfA(r, c)
(3.4)

While this procedure certainly results in the exact selection of the block
size that yields the lower execution times, it is very expensive; step one, in
fact, is as expensive as computing r · c matrix-vector products (where other
issues related to the accuracy of timing measures are not considered) and
step two is as expensive as converting r · c matrices into BCSR format (the
cost of each conversion is reported in figures 3.5 to 3.8).

The automatic selection of the block size can, by the way, be accomplished
using estimates instead of the actual values of fillA(r, c) and perfA(r, c).
The cost of computing these estimates is much lower based on the following
considerations:

• the matrix-vector product flop rate is mostly dependent on the architecture.
This means that this information can be generated once and for all the
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matrices at installation time. Thus, at installation time, according to
some consideration that will be discussed later, a particular reference
matrix R is chosen, for each r and c (up to some limit) the performance
of the matrix-vector product is measured and this information is stored
in a file. Later, when selecting the block size for a particular matrix A
which is given at run time, the following approximation can be assumed:

perfA(r, c) ≈ perf ′A(r, c) = perfR(r, c)

where perf ′ is an estimate that is equal to the actual performance
measured in the case of the reference matrix R.

• matrices coming from real-world applications usually have some regularity.
It could be, thus, possible to sample a matrix A with a certain accuracy,
build out a submatrix A′ from the chosen samples and assume:

fillA(r, c) ≈ fill′A(r, c) = fillA′(r, c)

that is, the fill-in of the whole A matrix is equal to the fill-in of a part
of it.

Section 3.3.1 describes an approach in computing the fill-in estimate for a
generic matrix A and in section 3.3.2 two methods of computing an estimate
of the flop rates of the matrix-vector product operation in BCSR format; the
former is the method presented in [79] while the latter, based on a different
model, has been presented in [15].
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Figure 3.14: Matrix-vector product Flop rate for a 1500× 1500 dense matrix
stored in BCSR format on an AMD Athlon 64-bit 3500+ architecture. The
top part of the figure shows values measured on code generated by the Intel-
9.0 compiler while the bottom part shows values measured on code generated
by the GNU compiler v4.0.
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Figure 3.15: Matrix-vector product Flop rate for a 1500× 1500 dense matrix
stored in BCSR format on a MIPS architecture.
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Figure 3.16: Matrix-vector product Flop rate for a 1500× 1500 dense matrix
stored in BCSR format on an PentiumIII 900 architecture.
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Figure 3.17: Matrix-vector product Flop rate for a 1500× 1500 dense matrix
stored in BCSR format on a Power3 architecture.

1 2 3 4 5 6 7 8 9 10

1 

2 

3 

4 

5 

6 

7 

8 

9 

10

column dimension

ro
w

 d
im

en
si

on

Xeon

300

350

400

450

Figure 3.18: Matrix-vector product Flop rate for a 1500× 1500 dense matrix
stored in BCSR format on an Xeon 3060 architecture.
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Figure 3.19: This figure shows how different choices for r and c affect
execution times through flop rates and fill-in ratios. In the each part of
the figure assume that “red is better” (i.e. higher flop rates, lower fill-in
ratios and lower execution times). On the top-left part is depicted how flop
rate changes with different values of r and c, on the top-right part is depicted
how fill-in changes with r and c and on the bottom-left part is depicted how
the execution times change with r and c.
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3.3.1 Estimating the Fill-In

Computing an estimate of the fill-in of a given matrix is a task that must
be performed at run time. This imposes a particular attention on the cost
of this operation that must be reduced as much as possible to better exploit
the benefits coming from the usage of the BCSR format. Most of the
matrices coming from real world application has some regularity and thus
it is possible to take advantage of this assumption to keep the cost of the
estimate computation limited while achieving good accuracy. Based on this
assumption the fill-in can be estimated sampling the matrix, computing the
fill-in ratio on these samples and assume that it is the same as the fill-in ratio
of the whole matrix. Algorithm 6 shows the pseudocode for the fill-in ratio
estimate; acc is a parameter that can be fixed by the user and that defines
how many samples should be taken during the estimate.

Algorithm 6 Fill-in ratio estimate pseudocode

1: compute the number of block-rows Mrc =
⌈

m
r

⌉
2: split the set of block-rows into n = acc ·Mrc

3: for i = 0 to n do
4: randomly select a block row within the i-th set
5: compute the fill-in ratio for the selected block-row
6: end for
7: compute the average fill-in ratio

The cost of this operation obviously depends on the size of the matrix,
on the accuracy acc chosen by the user and, to some extent, by the sparsity
structure of the matrix. As in the operation of converting the storage format
of a matrix to BCSR, also computing an estimate of the fill-in in the case of
column unaligned blocks is more expensive with respect to the case where
blocks are column aligned. Figures 3.20 to 3.26 show how expensive is to
compute the estimate of the fill-in versus the accuracy acc. The cost is
expressed in number of unblocked matrix-vector product. To plot these
figures matrices number 28, 31 and 34 (i.e. “ct20stif”, “gupta1” and “3dtube”)
have been choosen to compare with the data reported on [79] where the same
analysis is made in the case of column aligned blocks.

The cost of this operation grows linearly with the accuracy acc starting
from less than one unblocked matrix-vector product for very low values of
accuracy up to more than a hundred unblocked matrix-vector products for
100% accuracy.
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Figure 3.20: Cost of the fill-in estimate in unblocked spmv versus accuracy pf
the estimate on an AMD Athlon 1200 architecture. The cost is expressed in
number of unblocked matrix-vector product for accuracy ranging from 4e−4
to 1.
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Figure 3.21: Cost of the fill-in estimate in unblocked spmv versus accuracy of
the estimate on an AMD Athlon 1800 architecture. The cost is expressed in
number of unblocked matrix-vector product for accuracy ranging from 4e−4
to 1.
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Figure 3.22: Cost of the fill-in estimate in unblocked spmv versus accuracy
of the estimate on an AMD Athlon 64-bit 3500+ architecture. The cost is
expressed in number of unblocked matrix-vector product for accuracy ranging
from 4e− 4 to 1.
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Figure 3.23: Cost of the fill-in estimate in unblocked spmv versus accuracy of
the estimate on an Itanium2 architecture. The cost is expressed in number
of unblocked matrix-vector product for accuracy ranging from 4e− 4 to 1.
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Figure 3.24: Cost of the fill-in estimate in unblocked spmv versus accuracy
of the estimate on a PentiumIII 900 architecture. The cost is expressed in
number of unblocked matrix-vector product for accuracy ranging from 4e−4
to 1.
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Figure 3.25: Cost of the fill-in estimate in unblocked spmv versus accuracy
of the estimate on a MIPS architecture. The cost is expressed in number of
unblocked matrix-vector product for accuracy ranging from 4e− 4 to 1.
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Figure 3.26: Cost of the fill-in estimate in unblocked spmv versus accuracy of
the estimate on a Intel Xeon architecture. The cost is expressed in number
of unblocked matrix-vector product for accuracy ranging from 4e− 4 to 1.
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3.3.2 Modeling the Block Matrix Performance

The most important step in the automatic selection of the block size is
building a model for the performance of the BCSR matrix-vector product.
This model is used to produce an estimate of the matrix-vector product flop
rate at run time when, also based on a fill-in estimate, a block size must be
chosen. In the next paragraph, the model presented in [79] is briefly described
and, after that, a different model is introduced. Experimental results are
also reported that show how the latter performance model, presented in [15],
improves the accuracy of the performance estimate.

Performance Modeling by Dense Matrix

As already discussed, the flop rates for the BCSR (with different values
for r and c) matrix-vector product mostly depend on the architecture and
the compiler used. Assume, for the moment, that these flop rates only
depend on the architecture/compiler (the next section demonstrates how
this assumption cannot be considered valid); based on this assumption,
the matrix-vector product performance for a given block size r × c can be
considered always the same regardless of the matrix which is being multiplied.

This suggests that the matrix-vector product performance, in general and
thus also for the BCSR storage format, can be modeled by the performance
of a generic reference matrix. As discussed in [79], a dense matrix is a natural
choice to accomplish this task. Algorithm 7 describes the strategy used for
the automatic selection of the block size as presented in [79]:

Figures 3.27 to 3.34 show the accuracy of the performance estimate computed
by means of the model based on a dense matrix performance. These figures
have been plotted with data measured on the 1 × 1 reference case; graphs
related to other block size cases show exactly the same trend and, thus,
are not reported here. It is possible to see that, in general, the method of
performance prediction based on the dense matrix model tends to overextimate
the flop rate for the matrix-vector product. There are few matrices on the
PentiumIII and the MIPS architecture whose estimated performance turns
out to be lower that the effective measured one. Considering that matrices
in the test set have been sorted in increasing number of nonzero elements
per row and looking at figures 3.27 to 3.34 it is possible to understand
the performance prediction based on the dense matrix model is considerably
inaccurate mostly for matrices that have few number of nonzero elements per
row. Even on those architecture where the measured flop rate results to be
higher than the predicted one for some matrices, the approach based on the
usage of a dense matrix as a reference for the model always overextimates
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Algorithm 7 Block size selection based on dense matrix model. The top
part is executed once at compile time while the bottom part is the run time
phase executed for each matrix.

Compile time phase

1: Build a dense reference matrix D
2: for i = 1 to maxr do
3: for j = 1 to maxc do
4: compute perfD(i, j)
5: store perfD(i, j) on a file
6: end for
7: end for

Run time phase

1: Given a input matrix A
2: mtime :=∞
3: for i = 1 to maxr do
4: for j = 1 to maxc do
5: compute fill-in estimate fill′A(r, c)
6: fetch perfD(i, j) from the file built at install time
7: assume perf ′A(i, j) = perfD(i, j)

8: if mtime >
fill′A(i,j)

perf ′A(i,j)
then

9: mtime =
fill′A(i,j)

perf ′A(i,j)

10: r = i
11: c = j
12: end if
13: end for
14: end for
15: return r and c

the performance of the matrix-vector product for those matrices that are on
the left part of each of the figures 3.27 to 3.34 (i.e. those with a low number
of nonzero elements per row).

The following section will discuss a possible reason for this misfunction
and propose a method that addresses the problem of accurately estimate the
performance even for matrices that have a low number of nonzero elements
per row.
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Figure 3.27: Predicted (red line) versus measured (blue “plus” signs)
performance for the matrices in the testset on an AMD Athlon 1200
architecture.
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Figure 3.28: Predicted (red line) versus measured (blue “plus” signs)
performance for the matrices in the testset on an AMD Athlon 1800
architecture.
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Figure 3.29: Predicted (red line) versus measured (blue “plus” signs)
performance for the matrices in the testset on an AMD Athlon 64-bit 3500+
architecture.
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Figure 3.30: Predicted (red line )versus measured (blue “plus” signs)
performance for the matrices in the testset on an Itanium2 architecture.
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Figure 3.31: Predicted (red line) versus measured (blue “plus” signs)
performance for the matrices in the testset on a MIPS architecture.
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Figure 3.32: Predicted (red line) versus measured (blue “plus” signs)
performance for the matrices in the testset on an Intel PentiumIII
architecture.
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Figure 3.33: Predicted (red line) versus measured (blue “plus” signs)
performance for the matrices in the testset on a Power3 architecture.
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Figure 3.34: Predicted (red line) versus measured (blue “plus” signs)
performance for the matrices in the testset on a Xeon architecture.

Improved Performance Model

As discussed in the previous section, the assumption that the flop rates
of the matrix-vector product operation are only dependent on the machine
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architecture cannot be considered valid. Analyzing figures 3.27 to 3.34 it is
clear that this assumption leads to poor quality of the performance estimate
in the case of matrices having a low number of nonzero elements per row
(recall that the matrices the test set are sorted, and thus numbered, in
ascending number of nonzero elements per row). This obviously suggests
that there should be some dependency between the matrix-vector product
operation performance and the number of nonzero elements per row when a
compressed row storage format is used.

...

for(i=0;i<*m;i++,y+=1){

register double y0=y[0];

for(j=ia2[i];j<ia2[i+1];j++,ia1++,aspk+=1){

y0 += aspk[0]*x[*ia1+0];

}

y[0]=y[0];

}

...

Figure 3.35: Matrix vector product source code for reference CSR
implementation.

The code for the matrix-vector production the 1×1 BCSR storage format
is reported in figure 3.35. The product is performed row-wise and for each
row the partial result is held in an accumulator y0; then, at the end of
the loop for a given row, the value in the accumulator is written back to
memory. Thus, for each row, 2 × nnzrow floating point operations, where
nnzrow is the number of nonzero elements per row, and a write memory
access are performed. Considering that a write memory access is much more
expensive than a floating-point operation, a high ratio between the number
of floating-point operations and write memory accesses obviously implies
higher performance. The number of write memory accesses depends on the
size of the matrix thus the matrix-vector product is likely to have better
performance for those matrices which have a higher number of elements per
row.

Consider, again, to the source code in figure 3.35; for each row:

• 2 ∗ nnzrow floating point operations are performed;

• nnzrow integer memory reads for the elements column indices;
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• 2 ∗ nnzrow double precision memory reads, respectively one to fetch an
element of the matrix and one to fetch an element of the source vector;

• one double precision memory write.

The flop rate of the matrix-vector product operation for a matrix A can
be thus considered proportional to:

perfA ∝
nnzrow

c1 · nnzrow + c2

(3.5)

where c1 and c2 are two constants. The green plus signs on figures 3.36
to 3.43 confirm this hypothesis. This data show the performance versus the
number of nonzero elements per row for the matrices in the testset on several
architectures and they are likely to follow the trend of an hyperbola like the
one in equation (3.5). The data related to two block sizes (namely 1 × 1
and 2 × 3) is shown in these figures because all the other block sizes have
analogous behavior.

The low flop rates on the left side of each figure show that, as expected,
low number of nonzero element per row imply low performance.

The c1 and c2 parameters in equation (3.5) obviously depend on the
architecture characteristics and the block size. The proposed approach for
estimating the perfomance is based on the idea that, at istallation-time, a
curve like equation (3.5) can be built for each blocks size stored on a file.
This information can, then, be used at run-time (i.e. once the actual number
of nonzero elements per row is known) to estimate the performance of the
matrix-vector product operation. The following discussion explains how this
approach is implemented in the AcCELS software package and also implicitly
presents a validation of the model in equation (3.5).

Computing values for the c1 and c2 parameters involves measuring the
performance of the matrix-vector product operation at installation time. For
this purpose, the usage of matrices from real world applications (like those
used to plot the green plus signs in figures 3.36 to 3.43) is not feasible mainly
for two reasons:

• packaging the software becomes unpractical if large sparse matrices
have to be included only to perform these installation time measures,

• even a big sample of matrices, besides being diffult and expensive to
handle, can never be general enough to represent all the sparse matrices
typologies.

To accomplish the task of evaluating the parameters of equation (3.5), reference
matrices can be used that can be easily hand-built at installation time.
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Figure 3.36: Performance versus nonzero elements per row for the 1×1 (left)
and the 2 × 3 (right) block size cases. The green plus signs show data that
is related to the matrices in out testset, the red dots show data measured on
hand built banded matrices while the blue line shows how the red dots can
be fitted with a hyperbola. The architecture on which this data has been
measured is the AMD Athlon 1200.
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Figure 3.37: Performance versus nonzero elements per row for the 1×1 (left)
and the 2 × 3 (right) block size cases. The green plus signs show data that
is related to the matrices in out testset, the red dots show data measured on
hand built banded matrices while the blue line shows how the red dots can
be fitted with a hyperbola. The architecture on which this data has been
measured is the AMD Athlon 1800.
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Figure 3.38: Performance versus nonzero elements per row for the 1×1 (left)
and the 2 × 3 (right) block size cases. The green plus signs show data that
is related to the matrices in out testset, the red dots show data measured on
hand built banded matrices while the blue line shows how the red dots can
be fitted with a hyperbola. The architecture on which this data has been
measured is the AMD Athlon 64-bit 3500+.
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Figure 3.39: Performance versus nonzero elements per row for the 1×1 (left)
and the 2 × 3 (right) block size cases. The green plus signs show data that
is related to the matrices in out testset, the red dots show data measured on
hand built banded matrices while the blue line shows how the red dots can
be fitted with a hyperbola. The architecture on which this data has been
measured is the Itanium2.
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Figure 3.40: Performance versus nonzero elements per row for the 1×1 (left)
and the 2 × 3 (right) block size cases. The green plus signs show data that
is related to the matrices in out testset, the red dots show data measured on
hand built banded matrices while the blue line shows how the red dots can
be fitted with a hyperbola. The architecture on which this data has been
measured is the MIPS.
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Figure 3.41: Performance versus nonzero elements per row for the 1×1 (left)
and the 2 × 3 (right) block size cases. The green plus signs show data that
is related to the matrices in out testset, the red dots show data measured on
hand built banded matrices while the blue line shows how the red dots can
be fitted with a hyperbola. The architecture on which this data has been
measured is the PentiumIII 900.
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Figure 3.42: Performance versus nonzero elements per row for the 1×1 (left)
and the 2 × 3 (right) block size cases. The green plus signs show data that
is related to the matrices in out testset, the red dots show data measured on
hand built banded matrices while the blue line shows how the red dots can
be fitted with a hyperbola. The architecture on which this data has been
measured is the Power3.

0 20 40 60 80 100 120 140 160 180 200
0

50

100

150

200

250

300

Performance of 1x1 block size

# of nozeroes per row

sm
vp

 p
er

fo
rm

an
ce

 (M
Fl

op
s)

0 20 40 60 80 100 120 140 160 180 200
0

50

100

150

200

250

300

350

400

Performance of 2x3 block size

# of nozeroes per row

sm
vp

 p
er

fo
rm

an
ce

 (M
Fl

op
s)

meas. perf.
testset
hyp. fit

meas. perf.
testset
hyp. fit

Intel Xeon

Figure 3.43: Performance versus nonzero elements per row for the 1×1 (left)
and the 2 × 3 (right) block size cases. The green plus signs show data that
is related to the matrices in out testset, the red dots show data measured on
hand built banded matrices while the blue line shows how the red dots can
be fitted with a hyperbola. The architecture on which this data has been
measured is the Xeon.
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Experimental results show that banded matrices like the one in figure 3.44 are
good candidates for this purpose. These matrices present one diagonal whose
bandwidth defines the number of nonzero elements per row, thus, different
numbers of nonzero elements per row are obtained generating matrices with
different bandwidths. Performance measures for these banded matrices are
plotted by the red dots in figures 3.36 to 3.43 for 1 ≤ nnzrow ≤ 200.
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nz = 4425

Banded sparse matrix used for training

Figure 3.44: A portion of a banded matrix used during the training stage.
These matrices have one diagonal whose bandwidth is varied to measure how
flop rates change with a different number of nonzero elements per row.

It must be noted that banded matrices represent an optimistic case because
of their excellent properties in terms of cache behavior: elements along each
row are in contiguous positions providing high spatial locality on the source
vector elements and the number of elements with the same column index is
high providing high temporal locality for the elements of the source vector.
Figures 3.36 to 3.43 show, anyway, that these banded matrices behave almost
the same as matrices coming from real world applications like those in the
testset. Moreover exploring the way elements are distributed along each row
adds more complexity to the run time phase which is, obviously, undesirable
because the automatic block size selection should be performed as fast as
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possible.
A validation of the models can be accomplished by fitting the red dots in

figures 3.36 to 3.43 with a function of the type (3.5). Anyway the function
used in the AcCELS package for this purpose is of the type:

perfA ∝ a +
b

nnzrow + c
(3.6)

because it better fits the data and because experimental tests show that
ac = −b within few percents. The blue curves in figures 3.36 to 3.43 show
how the red dots can be fitted with an hyperbola function like the one in 3.6.
These curves show that the performance of the matrix-vector product, which
is a function of the number of nonzero elements per row, can be modeled
with an hyperbola like (3.6) (or (3.5) according to the considerations above).

The fitting procedure is also used at istallation time to build the hyperbola
associated to each block size but, for these purpose, only few matrix-vector
products have to be performed (5 or 6).

Algorithm 8 shows the pseudo-code describing the actions executed at
both the installation (top)and run-time phase (bottom) to perform the automatic
block size selection.

Comparing the method described in algorithm 8 to the one in 7, the
following considerations can be done:

• the accuracy of the performance prediction is improved (section 3.3.3
will give experimental verification of this assertion) by the fact that the
new model is aware of the number of nonzero elemtns per row,

• the cost of the installation time is higher with respect to the case of the
dense matrix based model. In the latter only one matrix is generated
at installation time (i.e. the dense reference matrix) and only one
matrix-vector operation is performed for each block size. In the case of
the hyperbola based performance model, for each block size, a banded
matrix has to be generated for at least 5 or 6 different numbers of
nonzero elements per row (i.e. a number of points that is enough
to accurately perform the fitting procedure) and the matrix-vector
product operation has to be run on all of them to identify few points
of the associated hyperbola; the fitting has, then, to be performed on
these points to compute the parameters a, b and c for the block size
with which the points have been measured. Anyway this increased cost
is negligible since the installation is performed just once.

• the cost of the run time phase is almost the same as in the dense matrix
based prediction. Once the a, b and c parameters have been fetched
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Algorithm 8 Block size selection based on hyperbola model. The top part
is executed once at compile time while the bottom part is the run time phase
executed for each matrix.

Compile time phase

1: for i = 1 to maxr do
2: for j = 1 to maxc do
3: for nzr = j to 200 step j · b20/jc do
4: build a matrix R with nzr nonzeroes per row
5: compute perfR(i, j, nzr)
6: end for
7: fit the points with an hyperbola a + b

x+c

8: store aij,bij and cij on file
9: end for

10: end for

Run time phase

1: Given a input matrix A with nzr nonzeroes per row
2: mtime :=∞
3: for i = 1 to maxr do
4: for j = 1 to maxc do
5: compute fill-in estimate fill′A(r, c)
6: nzr′ = nzr · fill′A(r, c) {the nnzrow increases due to fill-in}
7: fetch aij, bij and cij from the file built at install time

8: compute perf ′A(i, j) = aij +
bij

nzr′+cij

9: if mtime >
fill′A(i,j)

perf ′A(i,j)
then

10: mtime =
fill′A(i,j)

perf ′A(i,j)

11: r = i
12: c = j
13: end if
14: end for
15: end for
16: return r and c

from file for a block size the performance value is estimated through
the formula a + b/(nnzrow + c). The added cost for the run time phase
is just three floating point operations which is absolutely negligible if
compared to the cost of the fill-in estimate.

Algorithm 8 also show that for real sparse matrices even higher speedups
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can be obtained on the matrix-vector product operation flop rate than in
the dense case due to the fill-in. Assume, for example, that matrix A has
nzr nonzero elements per row when represented in CSR format. When
representing matrix A in BCSR format the fill-in fillA(r, c) is likely to be
greater than one; this means that the number of nonzero elements per row
increases by a factor equal to the fill-in ratio. The new number of nonzero
elements per row actually becomes nzr′ = fillA(r, c) · nzr.
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Figure 3.45: Having a fill-in ratio greater than one causes an increase in the
matrix-vector product performance due to the fact that number of elements
per row has grown. Thus, moving from the CSR representation to the BCSR
representation with r × c blocks, there is an overall speedup that is defined
by the sum of the speedup coming from register reuse, loop unrolling etc.
and the extra speedup shown in this figure. Here nzr′ = fillA(r, c) · nzr.

Figure 3.45 shows that the speedup of the BCSR format with respect
to the CSR one is the sum of the speedup coming from register reuse, loop
unrolling etc. (see section 3.3) and an extra speedup due to an increase in
the number of nonzero elements per row.
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Architecture Dense Hyperbola

AMD 1200 0.0906 0.0233
AMD 1800 0.0447 0.0224
AMD 64-bit 0.0844 0.0369
Itanium2 0.2326 0.0212
MIPS 0.0771 0.0313
PentiumIII 0.2963 0.2148
Power3 0.0818 0.0506
Xeon 0.0626 0.0225

Table 3.2: This table shows the average error on the performance prediction
with the dense matrix based approach and the hyperbola based approach on
the machines used.

The proposed approach has been tested on the matrices described in
appendix A. The average error on performance estimation for the matrices
is reported in table 3.2. Performance estimate accuracy is considerably
improved with respect to the method based on the dense matrix model:
in the case of the Itanium2 architecture, the error is reduced by a factor of
ten, from 23% to 2%; the worst case is on the PentiumIII 900 architecture
where still the error is reduced from 29% to 21%.

Figures 3.46 to 3.53 show the accuracy of the two discussed performance
prediction methods on the machines and the matrices described in appendix A.
Recall that matrices are numbered in ascending order of nonzero elements
per row. It is possible to see that, for the dense matrix based model, the
error on the performance estimate can be fitted with a hyperbola function of
the type (3.6) plotted by the red line. Fitting the results obtained with the
hyperbola based model, instead, yields a straight line (except in the case of
the PentiumIII 900 machine) meaning that this approach obtains the same
accuracy regardless the number of nonzero elements per row. Figure 3.49
shows that the hyperbola based approach yields considerably good results
on the Itanium2 architecture where, in fact, as it can be seen in figure 3.39,
the distance between the beginning and the asymptote of the hyperbola is
higher with respect to the other architectures.
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Figure 3.46: Estimate error with the dense matrix based model (red stars)
and with the hyperbola based model (blue squares) on an AMD Athlon 1200
machine. Points are fitted respectively with the red and the blue curves.
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Figure 3.47: Estimate error with the dense matrix based model (red stars)
and with the hyperbola based model (blue squares) on an AMD Athlon 1800
machine. Points are fitted respectively with the red and the blue curves.
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Figure 3.48: Estimate error with the dense matrix based model (red stars)
and with the hyperbola based model (blue squares) on an AMD Athlon 64-
bit 3500+ machine. Points are fitted respectively with the red and the blue
curves.
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Figure 3.49: Estimate error with the dense matrix based model (red stars)
and with the hyperbola based model (blue squares) on an Itanium2 machine.
Points are fitted respectively with the red and the blue curves.
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Figure 3.50: Estimate error with the dense matrix based model (red stars)
and with the hyperbola based model (blue squares) on a MIPS machine.
Points are fitted respectively with the red and the blue curves.
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Figure 3.51: Estimate error with the dense matrix based model (red stars)
and with the hyperbola based model (blue squares) on a PentiumIII 900
machine. Points are fitted respectively with the red and the blue curves.
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Figure 3.52: Estimate error with the dense matrix based model (red stars)
and with the hyperbola based model (blue squares) on a Power3 machine.
Points are fitted respectively with the red and the blue curves.
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Figure 3.53: Estimate error with the dense matrix based model (red stars)
and with the hyperbola based model (blue squares) on an Intel Xeon machine.
Points are fitted respectively with the red and the blue curves.
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3.3.3 Results

The AcCELS package has been tested on the matrices and the architecture
described in appendix A. The timings measured on this test runs are reported
in this section.

Table 3.3 shows the speedup that can be achieved on the matrix-vector
product operation using the BCSR storage format as implemented in the
AcCELS package with respect to the reference CSR storage format. Again,
the architecture that gives the best results is the Intel Itanium2 where the
speedup can be as big as 3.45 with the “venkat01” matrix, where the dense
matrix has been excluded for obvious reasons. The Intel Xeon architecture is
the one that seems achieve less improvements by the usage of the hyperbola
based performance prediction method. In some cases the usage of the BCSR
storage format results to be not convenient; these are the cases in table 3.3
where the speedup is lower than 1. The occurrence of these cases reflect the
fact that either fill-in or performance estimate may be inaccurate resulting in
a wrong block size selection. This loss of efficiency is, however, just sporadic
and within few percents of the reference CSR performance.

It is important to note that using the hyperbola based model in performance
estimate comes at the cost of three floating-point operations when compared
to the dense matrix based one (i.e. the cost of computing the performance
rate with the formula in (3.6)). The cost of building and fitting the hyperbola
can be considered not relevant because these operations are performed at
installation time.

Figures 3.54 to 3.61 show the time spent in the matrix-vector product
with the CSR reference implementation (black cross) and with the BCSR
storage format both in the case where the block size has been selected
using the dense matrix based performance prediction (red stars) and the
hyperbola based performance prediction (blue squares) models. Values have
been normalized to the time measure for the best case BCSR block size. The
following information can be extracted by these pictures:

• improvement with respect to the dense based performance prediction
model: blue squares are systematically above the red stars except few
exceptions. This means that, even when mitigated with the inaccuracy
of the fill-in estimate model, the advantages coming the the usage the
hyperbola based performance prediction model are still considerable.
These advantages are more evident on the Itanium2 and Power3 architecture
while on other machines the two approaches behave almost the same.

• the automatic block size selection often results in the best block size
case or very close to it. This means that the performance prediction
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Mat. AMD AMD AMD Itanium2 MIPS PentiumIII Power3 Xeon
no. 1200 1800 64-bit

1 1.00 1.00 1.00 1.74 1.00 0.97 1.16 1.00
2 0.93 1.00 1.00 1.76 1.00 1.08 1.26 1.00
3 0.84 1.00 1.00 1.93 0.88 1.12 1.06 1.00
4 1.00 1.00 1.00 1.48 1.00 1.00 = 1.00
5 1.00 1.00 1.00 1.69 1.00 0.95 1.09 1.00
6 1.09 1.00 1.00 1.90 1.00 1.07 1.23 1.00
7 1.00 1.00 1.00 1.15 1.00 1.00 1.00 1.00
8 1.00 1.00 1.00 1.22 1.00 1.00 1.03 1.00
9 1.00 1.00 1.00 1.66 1.00 1.09 1.24 1.00
10 1.00 1.00 1.00 1.65 1.00 1.00 = 1.00
11 1.04 1.00 1.00 1.63 1.00 1.12 1.25 1.00
12 0.91 1.00 1.00 1.59 1.00 1.05 1.08 1.00
13 1.00 1.00 1.00 1.52 1.00 1.00 1.03 1.00
14 1.28 1.11 1.13 2.13 1.19 1.42 1.64 1.19
15 1.01 1.00 1.00 1.66 1.00 1.05 1.23 1.00
16 1.03 1.00 1.00 1.66 1.00 1.05 1.19 1.00
17 1.07 1.00 1.00 1.90 1.00 1.09 1.22 1.00
18 1.08 1.00 1.00 1.75 0.98 1.19 1.40 1.00
19 1.00 1.00 1.00 1.23 1.00 1.00 1.00 1.00
20 2.46 1.34 1.45 2.77 1.56 2.28 1.86 1.44
21 1.56 1.07 1.11 2.36 1.13 1.49 1.33 1.09
22 1.12 1.00 1.00 1.58 1.00 1.15 1.00 1.00
23 1.31 1.02 1.07 1.80 1.00 1.27 0.99 1.03
24 1.56 1.12 1.13 2.41 1.21 1.65 1.45 1.12
25 2.39 1.30 1.33 2.68 1.48 2.00 1.68 1.25
26 2.80 1.50 1.41 2.97 1.62 2.21 1.70 1.40
27 2.75 1.47 1.48 2.68 1.39 2.18 = 1.39
28 1.89 1.31 1.28 2.61 1.16 1.84 = 1.22
29 2.38 1.45 1.66 3.48 1.60 2.21 = 1.44
30 0.96 1.00 1.00 1.59 1.00 1.11 1.00 1.00
31 0.97 1.00 1.00 1.36 1.00 1.06 = 1.00
32 2.71 1.45 1.73 2.66 1.46 2.34 1.76 1.46
33 1.63 1.09 1.18 2.04 0.97 1.51 1.22 1.07
34 2.13 1.28 1.52 2.50 1.45 2.31 = 1.41
35 2.72 1.45 2.03 2.68 1.47 2.34 = 1.46
36 1.58 1.11 1.36 1.90 1.16 1.52 = 1.20
37 1.35 1.00 1.00 1.86 1.00 1.21 1.04 1.00
38 1.36 1.00 1.00 1.87 1.00 1.21 1.03 1.00
39 2.81 1.50 1.45 2.80 1.49 2.20 1.60 1.33
40 1.91 1.31 1.26 2.54 1.14 1.82 1.33 1.22
41 1.84 1.36 1.28 2.59 1.32 1.91 1.40 1.26
42 3.64 1.80 1.63 4.09 1.74 2.46 1.69 1.59
43 1.40 1.04 1.00 1.09 1.00 1.31 1.00 1.00

Table 3.3: This table reports the speedup data for the BCSR matrix-vector
with respect to the reference CSR case. The BCSR block size has been
selected with the hyperbola based model for the performance prediction.
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model and the fill-in estimate are accurate. On the Itanium2 and
Power3 architectures the dense based performance prediction model
results to be considerably less efficient than the hyperbola based one
leading to the selection of block sizes that yield performance results
substantially far from the best block size case.

• using the BCSR storage format is considerably more convenient with
matrices that have a high number of nonzero elements per row. Recall
that matrices in the testset are sorted in ascending order of nonzero
elements per row. Figures 3.54 to 3.61 show that the distance between
the CSR timings (black cross) and the BCSR ones (either red stars or
blue squares) is higher in the right side of each picture. This is due to
the fact that, when the number of nonzero elements per row is very
low, the fill-in grows very rapidly with the block size preventing the
possibility to use block sizes that can be very fast.

The speedup shown in table 3.3 as well as in figures 3.54 to 3.61 has
to be analyzed in conjunction with the data plotted in figures 3.20 to 3.26.
The cost of estimating the fill-in, in fact, makes the BCSR storage format
only convenient in those applications where a high number of matrix-vector
products has to be performed. For example, the speedup obtained on matrix
number 28 (i.e. “ct20stif” matrix) on the Itanium2 architecture is 2.61;
estimating the fill-in for this matrix on the Itanium2 architecture with the
accuracy set to 0.2 (which is the values used to plot the figures in this
section) is equal to the cost of performing 41.3 unblocked matrix-vector
products. This means that using the BCSR storage format is convenient
only if more than 67 matrix-vector products have to be performed. This
number can be substantially reduced decreasing the accuracy of the fill-in
estimate. Obviously, reducing the accuracy the fill-in estimate could lead to
erroneous block size selection but a good compromise, as suggested in [79],
is 0.01. In this case the cost of estimating the fill-in for matrix number 28 on
the Itanium2 architecture is just 2.08 and thus only 4 matrix-vector product
are enough to absorb the cost of the automatic block size selection 1.

1in this case reducing the fill-in estimate accuracy leads to the same block size selection.
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Figure 3.54: Comparison between the time spent in the matrix-vector
product operation with the block size selected with the dense matrix based
model (red stars), the block size selected with the hyperbola based model
(blue squares) and the CSR case (black cross). All the time measures have
been normalized to the value of the best-case block size. This data has been
measured on an AMD Athlon 1200 machine.
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Figure 3.55: Comparison between the time spent in the matrix-vector
product operation with the block size selected with the dense matrix based
model (red stars), the block size selected with the hyperbola based model
(blue squares) and the CSR case (black cross). All the time measures have
been normalized to the value of the best-case block size. This data has been
measured on an AMD Athlon 1800 machine.
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Figure 3.56: Comparison between the time spent in the matrix-vector
product operation with the block size selected with the dense matrix based
model (red stars), the block size selected with the hyperbola based model
(blue squares) and the CSR case (black cross). All the time measures have
been normalized to the value of the best-case block size. This data has been
measured on an AMD Athlon 64-bit 3500+ machine.
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Figure 3.57: Comparison between the time spent in the matrix-vector
product operation with the block size selected with the dense matrix based
model (red stars), the block size selected with the hyperbola based model
(blue squares) and the CSR case (black cross). All the time measures have
been normalized to the value of the best-case block size. This data has been
measured on an Itanium2 machine.
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Figure 3.58: Comparison between the time spent in the matrix-vector
product operation with the block size selected with the dense matrix based
model (red stars), the block size selected with the hyperbola based model
(blue squares) and the CSR case (black cross). All the time measures have
been normalized to the value of the best-case block size. This data has been
measured on a MIPS machine.
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Figure 3.59: Comparison between the time spent in the matrix-vector
product operation with the block size selected with the dense matrix based
model (red stars), the block size selected with the hyperbola based model
(blue squares) and the CSR case (black cross). All the time measures have
been normalized to the value of the best-case block size. This data has been
measured on an PentiumIII 900 machine.
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Figure 3.60: Comparison between the time spent in the matrix-vector
product operation with the block size selected with the dense matrix based
model (red stars), the block size selected with the hyperbola based model
(blue squares) and the CSR case (black cross). All the time measures have
been normalized to the value of the best-case block size. This data has been
measured on a Power3 machine.
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Figure 3.61: Comparison between the time spent in the matrix-vector
product operation with the block size selected with the dense matrix based
model (red stars), the block size selected with the hyperbola based model
(blue squares) and the CSR case (black cross). All the time measures have
been normalized to the value of the best-case block size. This data has been
measured on an Intel Xeon machine.
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Chapter 4

Parallel Preconditioners

Contents
4.1 Domain Decomposition Methods . . . . . . . . . 125

4.1.1 Domain Partitioning . . . . . . . . . . . . . . . . . 127

4.2 Additive Schwarz Procedure . . . . . . . . . . . . 131

4.2.1 Algebraic Schwarz Algorithms . . . . . . . . . . . . 136

4.3 Building and Applying AS Preconditioners in
PSBLAS . . . . . . . . . . . . . . . . . . . . . . . . 138

4.3.1 PSBLAS implementation of preconditioner application138

4.3.2 PSBLAS implementation of preconditioner setup . 139

4.4 Numerical Experiments . . . . . . . . . . . . . . . 140

4.1 Domain Decomposition Methods

In the context of numerical analysis, Domain Decomposition Methods (DDM)
refer to a collection of techniques based on the principle of divide-and-conquer.

Consider the problem of solving the Laplace equation{
∆u = f in Ω
u = uΓ on Γ = ∂Ω

(4.1)

over the L-shaped domain depicted in figure 4.1. A domain decomposition
approach would attempt to solve the problem on the whole domain Ω, by
solving the problem on a number of subdomains (three in this case) Ωi such
that:

Ω =
s⋃

i=1

Ωi
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Ω3

Γ1,3

Γ1,2

Figure 4.1: An L-shaped domain divided in three subdomains.

where s is the number of subdomains into which the global domain is partitioned.
Domain Decomposition Methods can be considerably advantageous in

the cases where it is much easier to solve the problem onto the subdomains
because of their simple shape as opposed to the shape of the whole domain,
as in the presented example. In other cases it can happen that the physical
problem can be split naturally into a small number of subregions where the
modeling equations are different. Finally, in parallel programming environments,
domain decomposition is often a natural choice because the solution of the
problem onto different subdomains can be committed to different processors.

The various domain decomposition techniques are characterized by four
features:

1. type of partitioning: the way the domain is decomposed. For example
on an edge basis or on a vertex basis (discussed in the following).

2. overlap: the subdomains need not necessarily be disjoint so how overlapped
they are can be an issue. This is the case

Ω =
⋃

i=1,s

Ωi, Ωi ∩ Ωj 6= ∅

3. processing of interface values: is the Schur complement approach used
(not discussed further here. See [64] for more informations)? Should
there be successive updates to the interface values?

Domain decomposition methods are all implicitly or explicitly based
on different ways of handling the unknowns at the interfaces.
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4. subdomain solutions: the problem on each subdomain can be solved
exactly or approximately by an iterative method.

This presentation of DDM and parallel preconditioners follows the treatment
in [64]; please refer to it and references therein for further details.

4.1.1 Domain Partitioning

There are different ways in which a domain can be partitioned. Two common
approaches are edge-based partitioning and vertex-based partitioning. The
edge-based technique does not allow edges to be split among two subdomains,
i.e. it is not possible to have an edge connecting two nodes in different
subdomains. The vertex-based approach is dual to the previous one, i.e. a
vertex cannot be split among two (or more) different subdomains. Figures 4.2
and 4.4 show, respectively, and edge-based and a vertex-based partitioning
of the domain in figure 4.1. In these two figures also different meshes are
used for the discretization of the domain, so, assuming that the problem is
discretized with centered differences, different matrices are associated with
the two cases (respectively in figure 4.3 and 4.5). The choice of different
meshes provides a more balanced partitioning.

In the general case of an edge-based partitioning into s, subdomains, the
linear system associated with the problem has the following structure:

B1 E1

B2 E2

. . .
...

Bs Es

F1 F2 · · · Fs C




x1

x2
...
xs

y

 =


f1

f2
...
fs

g

 (4.2)

where each xi represents the subvectors of unknowns that are interior to
subdomains Ωi and y represents the vector of all the interface unknowns. It
is useful to express the above system in a simpler form:

A

(
x

y

)
=

(
f

g

)
with A =

(
B E
F C

)
. (4.3)

where E represents the subdomain to interface coupling seen from the
subdomains, and F the interface to subdomain coupling seen from the interface
nodes.

From the graph theory point of view (which is very useful in domain
decomposition techniques), the edge-based partitioning is not as common
as the vertex-based one. In the vertex-based partitioning all the edges that
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Figure 4.2: Discretization in the problem in figure 4.1 with edge-based
domain decomposition.

Figure 4.3: Matrix associated with the finite difference mesh in figure 4.2.
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Figure 4.4: Discretization in the problem in figure 4.1 with vertex-based
domain decomposition.

Figure 4.5: Matrix associated with the finite difference mesh in figure 4.4.
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connect two nodes that are not in the same subdomain are defined as interface
edges. Consider the discretization mesh in figure 4.4 and the associated
matrix in figure 4.5.

Note that it would be possible to derive a matrix whose sparsity structure
is exactly the same as that of the matrix in figure 4.3 simply by choosing
a different number scheme than the one in figure 4.4, namely, a numbering
scheme where all the interface nodes are listed last.

However, the numbering proposed in this case makes it easier to exploit
the properties of the s-block structure of the matrix depicted in figure 4.5, s
being the number of subdomains.

In the case of our example s = 3 and so the block structure of the matrix,
defined by the solid lines in figure 4.5, can be represented as:

A =

 A11 A12 A13

A21 A22 A23

A31 A32 A33

 . (4.4)

In each of the subdomains, the variables are of the form

zi =

(
xi

yi

)
, (4.5)

where xi denotes interior nodes and yi denotes interface nodes associated with
subdomain i. Each of the Aii is the local matrix associated with subdomain
i and each of them presents the same sparsity structure of the matrix in
figure 4.3:

Aii =

(
Bi Ei

Fi Ci

)
(4.6)

in which, as before, Bi represents the matrix associated with the internal
nodes of subdomain i, and Ei and Fi represent the coupling to/from external
nodes. The submatrix Ci is the local part of the interface matrix C defined
before and represents the coupling between local interface points. Each of
the Aik blocks, where i 6= j, present a zero sub-block in the part that acts
on the internal unknowns xi.

Aij =

(
0

Eij

)
(4.7)

This is because the local unknowns xi and only coupled with the yj through
Eij but not with the xj unknowns. Moreover most of the Eij matrices are
zero since only those indices j of the subdomains that have couplings with
subdomain i will yield a nonzero Eij.
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4.2 Additive Schwarz Procedure

The original alternating procedure described by Schwarz in 1870 consisted
of three parts:

• alternate between two overlapping domains,

• solve the Dirichlet problem on one domain at each iteration,

• take boundary conditions based on the most recent solution obtained
from the other domain.

This procedure is called the “Multiplicative Schwarz” procedure (not discussed
further here; see [64]). It is possible to prove that, in some sense, this
procedure is equivalent to the block Gauss-Seidel method. The equivalent of
the block Jacobi method is the so called “Additive Schwarz” procedure and
is the topic of this section.

Ω1 Ω2

Ω3

Γ1,3

Γ3,0

Γ3,1

Γ1,2Γ2,1 Γ2,0Γ1,0

Figure 4.6: An L-shaped domain divided in three overlapping subdomains.

The domain decomposition depicted in figure 4.6, where each pair of
neighboring subdomains has a nonvoid overlapping region, will be assumed
as a reference in the following discussion. The boundary of subdomain Ωi that
is included in subdomain j is denoted by Γi,j. The boundary of Ωi consisting
of its original boundary (denoted with Γi,0) and the Γi,j will be called Γi

and the restriction of the solution u to the boundary Γj, iwill be called uji.
According to this notation, the original Schwarz Alternating Procedure can
be described as in algorithm 9.

131



Algorithm 9 Schwarz Alternating Procedure

1: Choose an initial guess u to the solution
2: repeat
3: for i = 1 to s do
4: Solve ∆u = f in Ωi with u = uij in Γi,j

5: Update u values on Γj,i,∀j
6: end for
7: until Convergence

The algorithm sweeps through the s subdomains and solves the original
equation in each of them by using boundary conditions that are updated
from the most recent values of u. As already told, this is the Multiplicative
Schwarz method and its equivalence with the Gauss-Seidel method can be
intuitively explained by the fact that updates are performed as soon as new
values are available. Switching to the Additive Schwarz method is simply a
matter of moving step 5 of the algorithm outside the inner loop. As in the
Jacobi method, then, updates are performed once for all the values at the
end of each inner sweep.

Algorithm 10 Additive Schwarz Procedure

1: Choose an initial guess u to the solution
2: repeat
3: for i = 1 to s do
4: Solve ∆u = f in Ωi with u = uij in Γi,j

5: end for
6: Update u values in Γi,j,∀i, j.
7: until Convergence

Since each of the subproblem is likely to be solved by an iterative method,
it is possible take advantage of a good initial guess. Each of the solutions at
step 4 of the algorithm can be translated into an update of the form:

ui := ui + δi

where δi, recalling the notation defined in equations 4.4, 4.5 and 4.6, solves
the system:

Aiδi = ri

Here ri is the local part of the global residual vector b− Ax, and the above
system represents the system associated with the problem in step 4 of the
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algorithm when a nonzero initial guess is used in some iterative procedure.
Writing

ui =

(
xi

yi

)
, δi =

(
δx,i

δy, i

)
, ri =

(
rx,i

ry,i

)
the correction to the current solution step in the algorithm leads to:(

xi

yi

)
=

(
xi

yi

)
+

(
Bi Ei

Fi Ci

)−1(
rx,i

ry,i

)
(4.8)

The Additive Schwarz procedure can now be formulated as in algorithm 11.

Algorithm 11 Additive Schwarz Procedure - Matrix Form

1: for i = 1 to s do
2: Solve Aiδi = ri

3: end for
4: Compute xi := xi + δx,i, yi := yi + δy,i

Algorithm 11 can be easily interpreted in terms of projectors. Let Si be
an index set

Si = {j1, j2, ..., jni
},

where indices jk are those associated with the ni mesh points of the interior
of the discrete subdomain Ωi. The Si’s, which are not necessarily disjoint,
form a collection of index sets such that⋃

i=1,...,s

Si = 1, ..., n.

Let Ri be a restriction operator from Ω to Ωi. By definition, Rix belongs to
Ωi and keeps only those components of an arbitrary vector x that are in Ωi.

From the linear algebra point of view, the restriction operator Ri is an
ni × n matrix formed by the transposes of columns ej on the n× n identity
matrix where j belongs to the index set Si. The transpose Ri

T of this matrix
is a prolongation operator which takes a variable from Ωi end extends it into
the equivalent variable in Ω.

The matrices in figure 4.7 represent the three projectors associated with
the subdomains in figure 4.4.

The matrix
Ai = RiARi

T

of dimension ni × ni defines a restriction of A to Ωi.
The basic Additive Schwarz procedure can now be formulated in terms

of projectors as in algorithm 12.
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Figure 4.7: The three projectors associated with the subdomains in figure 4.4.

Algorithm 12 Additive Schwarz Procedure

1: for i = 1 to s do
2: Compute δi = Ri

T Ai
−1Ri(b− Ax)

3: end for
4: Compute xnew = x +

∑
i=1

sδi

The new approximation (obtained after a cycle of s substeps in algorithm 12)
is:

xnew = x +
s∑

i=1

Ri
T Ai

−1Ri(b− Ax)

Each instance of the loop redefines different components of the new approximation.
It is important to note that there is no data dependency between the subproblems
involved in the loop and thus, this procedure, is characterized by a high
degree of parallelism. Because of the equivalence of the Additive Schwarz
procedure and a block Jacobi iteration, it is possible to recast one Additive
Schwarz sweep in the form of a global fixed-point iteration of the form
xnew = Gx + f . This is a fixed-point iteration for solving a preconditioned
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system M−1Ax = M−1b where the preconditioning matrix M and the matrix
G are related by G = I −M−1A.

The preconditioning matrix is rather simple to obtain for the Additive
Schwarz procedure. The new iterate satisfies the relation:

xnew = x−
s∑

i=1

Ti(b− Ax) =

(
I −

s∑
i=1

Pi

)
x +

s∑
i=1

Tib

where Pi = Ri
T Ai

−1RiA and Ti = PiA
−1. From the last formula it is

possible to obtain:

G = I −
s∑

i=1

Pi. f =
s∑

i=1

Tib

With the relation G = I−M−1A between G and the preconditioning matrix
M , the result is that

M−1A =
s∑

i=1

Pi

and

M−1 =
s∑

i=1

PiA
−1 =

s∑
i=1

Ti

Now the procedure for applying the preconditioning operator becomes
the one outlined in algorithm 13.

Algorithm 13 Additive Schwarz Preconditioner

1: Input:v; Output: z = M−1v
2: for i = 1 to s do
3: Compute zi := Tiv
4: end for
5: Compute z = z1+, ..., +zs

Note that the do loop can be performed in parallel because also in this
case there is no data dependency between the loops. Step 5 sums up the
vectors zi in each domain to obtain a global vector z. In the non-overlapping
case this step i parallel and consists of just forming this different components
since the addition is trivial.

135



Inbounds 
unknowns

overlap
level 1

level 2
overlap

level 3
overlap

Figure 4.8: Overlap levels.

4.2.1 Algebraic Schwarz Algorithms

Consider a linear system

Ax = b (4.9)

where A = (aij) is an n × n nonsingular sparse matrix having a nonzero
pattern that is symmetric. Let G = (W, E) be a graph where the set
of vertices W = {1, ..., n} represents the n unknowns and the edge set
E = {(i, j)|aij 6= 0} represents the pairs of vertices that are coupled by a
nonzero element in A. Assuming that A has a symmetric nonzero pattern, the
adjacency graph G is undirected. Two vertices are considered to be neighbors
if there is an edge connecting them. Assume that a graph partitioning has
been applied to G and has resulted in m nonoverlapping subsets W 0

i such
that

⋃m
i=1 W 0

i = W . This is called a 0-overlap partition of W . A δ-overlap
partition of W with δ > 0 can be defined recursively by considering the sets
W δ

i ⊃ W δ−1
i obtained by including the vertices that are neighbors of the

vertices in W δ−1
i as in figure 4.8.

Let nδ
i be te size of W δ

i and Rδ
i the nδ

i×n matrix formed by the row vectors
eT

j of the n × n identity matrix, with j ∈ W δ
i . For each v ∈ Rn, Rδ

i v is the
vector containing the components of v corresponding to the vertices in W δ

i ,
hence Rδ

i can be viewed as a restriction operator from R =n to Rnδ
i . Likewise,

the transpose matrix (Rδ
i )

T can be viewed as a prolongation operator from
Rnδ

i to R =n. The Additive Schwarz (AS) preconditioner, MAS, is then
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defined by

M−1
AS =

m∑
i=1

(Rδ
i )

T (Aδ
i )
−1Rδ

i

where the nδ
i ×nδ

i matrix Aδ
i = Rδ

i A(Rδ
i )

T is obtained by considering the rows
and columns of A corresponding to the vertices in W δ

i . Note that although
Ai is not invertible, it is possible to invert its restriction to the subspace

A−1
i ≡ ((Ai)|Li

)−1

where Li is the vector space spanned by the set W δ
i in Rn.

When δ = 0, MAS is the well-known Block Jacobi preconditioner. The
convergence theory for the AS preconditioner is well developed in the case of
symmetric positive definite matrices (see [20] and references therein). It
can be proven that, when the AS preconditioner is used in conjunction
with a Krylov subspace method, the convergence rapidly improves as the
overlap δ increases, while it deteriorates as the number m of subsets W δ

i

grows. Theoretical results are available also in the case of nonsymmetric and
indefinite problems.

Recently some variants of the AS preconditioner have been developed that
outperform the classical AS for a large class of matrices, in terms of both
convergence rate and of computation and communication time on parallel
distributed-memory computers [16, 32, 42]. In particular, the Restricted
Additive Schwarz (RAS) preconditioner, MRAS, and the Additive Schwarz
preconditioner with Harmonic extension (ASH), MASH , are defined by

M−1
RAS =

m∑
i=1

(R̃0
i )

T (Aδ
i )
−1Rδ

i , M−1
ASH =

m∑
i=1

(Rδ
i )

T (Aδ
i )
−1R̃0

i ,

where R̃0
i is the nδ

i×n matrix obtained by zeroing the rows of Rδ
i corresponding

to the vertices in W δ
i \W 0

i . The application of the AS preconditioner requires
the solution of m independent linear systems of the form

Aδ
i wi = Rδ

i v (4.10)

and then the computation of the sum

m∑
i=1

(Rδ
i )

T wi. (4.11)

In the RAS preconditioner, Rδ
i in 4.11 is replaced by R̃0

i ; hence, in a
parallel implementation where each processor holds the rows of A with indices
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in W 0
i and the corresponding components of right-hand side and solution

vectors, this sum does not require any communication. Analogously, in the
ASH preconditioner, Rδ

i in equation 4.10 is replaced by R̃0
i ; therefore, the

computation of the right-hand side does not involve any data exchange among
processors.

In the applications, the exact solution of system 4.10 is often prohibitively
expensive. Thus, it is customary to substitute the matrix (Aδ

i )
−1 with an

approximation (Kδ
i )
−1, computed by incomplete factorizations, such as ILU,

or by iterative methods, such as SSOR or Multigrid (see [20]).

4.3 Building and Applying AS Preconditioners

in PSBLAS

This section reviews the basic operations involved in the Additive Schwarz
preconditioners from the point of view of parallel implementation through
PSBLAS routines. What follows is based on the distinction between

preconditioner setup: the set of basic operations needed to identify W δ
i ,

to build Aδ
i from A, and to compute Kδ

i from Aδ
i ;

preconditioner application: the set of basic operations needed to apply
the restriction operator Rδ

i to a given vector v, to compute (an approximation
of) wi, by applying (Kδ

i )
−1 to the restricted vector, and, finally, to

obtain sum 4.11.

Existing PSBLAS computational routines implement the operations needed
for the application phase of AS preconditioners, provided that a representation
of the δ-partition is built and packaged into a new suitable data structure
during the phase of preconditioner setup. The next two sections are devoted
to these points.

4.3.1 PSBLAS implementation of preconditioner application

To compute the right-hand side in 4.10 the restriction operator Rδ
i must

be applied to a vector v distributed among parallel processes conformally
to the sparse matrix A. On each process the action of Rδ

i corresponds to
gathering the entries of v with indices belonging to the set W δ

i \W 0
i . This

is the semantics of the PSBLAS psb_halo routine, which updates the halo
components of a vector, i.e. the components corresponding to the 1-overlap
indices. The same code can apply an arbitrary δ-overlap operator, if a
suitable auxiliary descriptor data structure is provided.
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Likewise, the computation of sum 4.11 can be implemented through a
suitable call to the PSBLAS computational routine psb_ovrl; this routine
can compute either the sum, the average or the square root of the average of
the vector entries that are replicated in different processes according to an
appropriate descriptor.

Finally, the computation of (Kδ
i )
−1vδ

i , where vδ
i = Rδ

i v or vδ
i = R̃0

i v, can
be accomplished by two calls to the sparse block triangular solve routine
psb_spsm, given a local (incomplete) factorization of Aδ

i .
Therefore, the functionalities needed to implement the application phase

of the AS, RAS and ASH preconditioners, in the routine psb_precaply,
are provided by existing computational PSBLAS routines, if an auxiliary
descriptor psb_desc_type (see section 2.2.2) is built. Thus, the main effort
in implementing the preconditioners lies in the definition of a preconditioner
data structure and of routines for the preconditioner setup phase, as discussed
in Section 4.3.2.

4.3.2 PSBLAS implementation of preconditioner setup

The implementation of the AS preconditioners is based on the definition of
the psb_prec_type data structure (the one presented in section 2.2.4 that
has been successively extended to implement Multi-Level preconditioners)
that includes in a single entity all the items involved in the application of
the preconditioner (refer to psb_base_prec data structure in figure 2.4):

• a preconditioner identifier and the number δ of overlap layers in
iprcparm(:);

• two sparse matrices in av(:), holding the lower and upper triangular
factors of Kδ

i (the diagonal of the upper factor is stored in a separate
array, d(:));

• the auxiliary descriptor desc_data, built from the sparse matrix A,
according to the number of overlap levels.

Note that the sparse matrix descriptor is kept separate from the preconditioner
data; with this choice the sparse matrix operations needed to implement a
Krylov solver are independent of the choice of the preconditioner.

Algorithm 14 outlines the procedure to setup an instance of the
psb_prec_type structure for AS, RAS or ASH, with overlap n_ovr. By
definition the submatrices A0

i identify the vertices in W 1
i ; the relevant indices

are stored into the initial communication descriptor. Given the set W 1
i ,

process i may request the column indices of the non-zero entries in the
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rows corresponding to W 1
i \W 0

i ; these in turn identify the set W 2
i , and so

on. All the communication is performed in the steps 6 and 10, while the
other steps are performed locally by each process. A new auxiliary routine,
psb_asbld, has been developed to execute the steps 1–10. To compute the
triangular factors of Kδ

i (step 11), the existing PSBLAS routine psb_spilu,
performing an ILU(0) factorization of Aδ

i , is currently used. The two previous
routines have been wrapped into a single PSBLAS application routine, named
psb_asbld.

It would be possible to build the matrices Aδ
i while building the auxiliary

descriptor desc_data. Instead, the two phases have been separated, thus
providing the capability to reuse the desc_data component of an already
computed preconditioner; this allows efficient handling of common application
situations where multiple linear systems with the same structure must be
solved.

Algorithm 14 Preconditioner Setup Algorithm

1: Initialize the descriptor desc_data by copying the matrix descriptor
desc_a.

2: Initialize the overlap level: η = 0.
3: Initialize the local vertex set, W η

i = W 0
i , based on the current descriptor.

4: while η < n ovr do
5: Increase the overlap: η = η + 1.
6: Build W η

i from W η−1
i , by adding the halo indices of Aη−1

i , and exchange
with other processors the column indices of the non-zero entries in the
rows corresponding to W η

i \W
η−1
i .

7: Compute the halo indices of Aη
i and store them into desc_data.

8: end while
9: If ( n_ovr > 0 ) Optimize the descriptor desc_data and store it in its

final format.
10: Build the enlarged matrix Aδ

i , by exchanging rows with other processors.

11: Compute the triangular factors of the approximation Kδ
i of Aδ

i .

4.4 Numerical Experiments

The Additive Schwarz preconditioning implementations discussed above have
been tested with a number of matrices coming from real world applications
whose properties are described in table 4.1. The preconditioners, built for
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0, 1 and 2 overlap levels1, are applied as right preconditioners with the
BiCGSTAB solver available in PSBLAS, choosing the null vector as starting
guess. The iterations are stopped when the ratio between the 2-norms
of the residual and of the right-hand-side is less than 10−10; a maximum
number of 7000 iterations is also set, but it is never reached in the tests.
A row-block distribution of the matrices is used, where each processor holds
(approximately) equal-sized blocks of consecutive rows, according to the well-
known BLACS one-dimensional pure-block mapping. A conformal distribution
is applied to the right-hand side and solution vectors. This choice implicitly
defines a domain decomposition such that the number of subdomains is equal
to the number of processors.

The tests discussed here have been carried out on a cluster with dual-
processor nodes, installed at the Innovative Computing Laboratory of the
University of Tennessee at Knoxville. Each node has an AMD Opteron dual-
processor (model 240, 1.4 GHz), running the Debian Linux 3.1 operating
system with kernel 2.6.13, and 2 GBytes of memory; the nodes are connected
with Myrinet network interfaces. The tests have been run on 32 nodes, i.e. on
64 processors. A development snapshot of the GNU compilers version 4.2,
including both the C and Fortran 95 compilers, was used in conjunction with
the specific MPI implementation for the Myrinet interface.

Before going on with discussing the measured data, it is worth to remark
that theoretical results have been developed that show why Restricted Additive
Schwarz preconditioners tend to perform better than classical Additive Schwarz
ones (see [32] for details). These results are only partially applicable to de
case discussed in the present chapter; the reason lies in the fact that ILU(0)
incomplete factorization is used in PSBLAS to solve the preconditioning
system (1.18) yielding considerably different results with respect to the case
where the preconditioning system is exactly solved. Even if the obtained
results show that, in most of the cases, the Restricted Additive Schwarz
preconditioning behave better, in an algebraic sense, there are problems, like
the “memplus” one (see table 4.1, where using the classical Additive Schwarz
preconditioner may yield significant improvements.

Besides the number of iterations it is also important to remark that the
cost of each single iteration is not the same among the different Additive
Schwarz preconditioning implementations. In this sense, the RAS and ASH
preconditioners are less expensive than the classical AS one because, at
time when the preconditioner is applied, the prolongation and restriction

1higher overlap level have not been analyzed for reason that will be explained in the
following considerations. Remark, also, that every AS preconditioner where the number
of overlap levels is 0, is perfectly equivalent to the Block Jacobi one.
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Matrix Size nnz comment

add32 4960× 4960 19848 32-bit adder
model

language 399130× 399130 1216334 Finite-state machines
for natural language
processing

memplus 17758× 17758 91147 Memory circuit
model

poisson3Db 13514× 13514 352762 Test matrices from FEMLAB,
a finite-element method
toolbox for MATLAB

kivap1 86304× 86304 1575568 Automitove engine
design

therm2D 600000× 600000 2996800 Steady-state thermal
diffusion equation

Table 4.1: Properties of the matrices used to test Additive Schwarz
preconditioners.

operations, respectively, are not performed yielding a reduction of the time
per iteration.

Figure 4.9 show that Additive Schwarz preconditioning (regardless of
the variant) provides a strong reduction in the number of iterations on the
matrices described in table 4.1. Except for the “memplus” matrix, where the
classical AS turns out to be the most efficient, the Restricted AS provides
the strongest reduction in the number of iterations. For each matrix only
the most efficient variant of the AS preconditioning is reported in figure 4.9
for the sake of space.

Figure 4.9 also shows that, in general, it possible to say that the number
of iterations decreases as the number of overlapping levels grows. Matrix
“therm2D” shows an almost irregular behavior in this sense if compared to
the other matrices in the testset. However it is important to note that, as
the number of overlap levels increases, the amount of communication to be
performed at preconditioner application phase also increases. This translates
in a higher cost per iteration which is possible to see in table 4.2. Thus a
relatively small gain in the number of iterations may still yield higher solver
times due to the increased cost of the preconditioner application.

Figure 4.10 shows the overhead of building an Additive Schwarz preconditioner
compared to the time spent in solving the system. As it is possible to see, the
cost of building the preconditioner grows with the number of overlap level.
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Figure 4.9: Number of iterations versus number of processes for 0, 1 and 2
overlapping levels.
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add32
RAS-0 RAS-1 RAS-2

np it Tset. Tslv. it Tset. Tslv. it Tset. Tslv.
1 32 0.0027 0.0521 32 0.0029 0.0622 32 0.0029 0.0636
2 84 0.0012 0.1285 20 0.0114 0.0393 19 0.0180 0.0376
4 104 0.0008 0.0833 18 0.0167 0.0389 14 0.0250 0.0311
8 58 0.0004 0.0537 19 0.0110 0.0297 10 0.0167 0.0165

16 67 0.0002 0.0402 17 0.0063 0.0183 10 0.0101 0.0108
32 65 0.0002 0.0314 19 0.0047 0.0152 11 0.0079 0.0092
64 64 0.0001 0.0281 27 0.0054 0.0185 12 0.0102 0.0107

language
RAS-0 RAS-1 RAS-2

np it Tset. Tslv. it Tset. Tslv. it Tset. Tslv.
1 7 0.1354 1.3910 7 0.1237 1.5330 7 0.1238 1.5200
2 10 0.0730 1.1610 8 0.4216 1.2150 7 0.8012 1.2800
4 13 0.0449 0.9331 9 0.4106 1.1630 8 0.8747 1.3850
8 19 0.0243 0.7583 10 0.3638 0.7348 8 0.7687 0.8381

16 20 0.0157 0.4660 9 0.2289 0.3817 7 0.5824 0.5049
32 24 0.0116 0.3323 10 0.1507 0.2746 7 0.4722 0.3732
64 24 0.0094 0.2383 10 0.1178 0.1979 8 0.3688 0.3270

memplus
AS-0 AS-1 AS-2

np it Tset. Tslv. it Tset. Tslv. it Tset. Tslv.
1 408 0.0766 3.6770 408 0.0769 3.9810 408 0.0769 4.0060
2 1356 0.0799 8.4520 361 0.1134 3.8500 287 0.1779 3.6780
4 1628 0.0396 9.7260 398 0.1380 5.6220 282 0.2136 4.8620
8 1047 0.0238 4.5750 306 0.1404 3.0070 229 0.2721 3.9530

16 2458 0.0100 6.8890 469 0.1368 4.0600 254 0.3193 4.1710
32 975 0.0060 2.9180 580 0.1522 4.3600 345 0.3544 5.5570
64 835 0.0047 2.6110 736 0.1648 5.6520 560 0.4858 9.8790

poisson3Db
RAS-0 RAS-1 RAS-2

np it Tset. Tslv. it Tset. Tslv. it Tset. Tslv.
1 99 1.3200 16.2900 99 1.3210 16.2200 99 1.3190 16.0700
2 151 0.3582 12.3700 83 1.6900 11.1600 83 2.8150 11.4800
4 180 0.1013 11.3900 80 2.1320 13.0800 86 4.3270 14.4000
8 250 0.0466 10.1100 83 2.2370 10.3300 81 4.8140 10.7300

16 240 0.0224 7.3080 80 2.4740 9.6710 73 5.0240 10.6800
32 289 0.0134 6.4220 82 2.1280 7.7350 76 4.1530 9.0860
64 308 0.0078 5.4590 96 1.6650 6.7270 80 4.3310 11.3100

kivap1
RAS-0 RAS-1 RAS-2

np it Tset. Tslv. it Tset. Tslv. it Tset. Tslv.
1 12 0.2661 1.2040 12 0.2668 1.2520 12 0.2667 1.2500
2 16 0.1296 0.7108 13 0.1613 0.6258 11 0.2030 0.5694
4 16 0.0635 0.3712 13 0.1170 0.3474 12 0.1884 0.3662
8 20 0.0311 0.2279 14 0.0789 0.2046 14 0.1484 0.2565

16 22 0.0157 0.1330 15 0.0579 0.1281 14 0.1144 0.1601
32 23 0.0081 0.0779 14 0.0528 0.0828 13 0.1069 0.1137
64 24 0.0044 0.0388 14 0.0446 0.0610 13 0.0972 0.0848

therm2D
RAS-0 RAS-1 RAS-2

np it Tset. Tslv. it Tset. Tslv. it Tset. Tslv.
1 614 0.2201 172.8000 614 0.2212 187.5000 614 0.2214 187.4000
2 749 0.1185 108.0000 834 0.1229 130.0000 694 0.1254 116.5000
4 775 0.0623 54.9800 970 0.0682 75.0900 640 0.0771 54.5300
8 751 0.0348 26.9800 741 0.0410 29.4700 744 0.0505 32.1800

16 884 0.0214 15.2900 783 0.0285 15.2000 697 0.0375 14.8000
32 778 0.0140 6.7590 680 0.0220 6.7170 707 0.0315 7.7370
64 906 0.0113 5.0670 812 0.0225 5.6390 684 0.0337 5.4020

Table 4.2: Additive Schwarz preconditioners measured performance in terms
of number of iterations, preconditioner setup time and solver time.
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Figure 4.10: Additive Schwarz preconditioner setup and system solver times
for 0, 1 and 2 overlap levels.
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This is fully explained by the fact that when the number of overlap levels
grows:

1. building the preconditioner communication descriptor becomes more
expensive,

2. the amount of communications performed when building the Aδ matrix
increases,

3. the aδ matrix size also increases making it more expensive to compute
its ILU(0) factorization.

It is important to note that there are cases where, even if the solver time
is reduced as the number of overlap levels grows, the total time may still
be higher due to the overhead of building the AS preconditioner. This, for
example, happens for the “language” and “kivap1” matrices: moving from
0 to 1 overlap levels, the solver time is reduced but the overall computation
time is higher due to the building phase cost. Anyway even in these cases,
using Additive Schwarz preconditioners may still yield some improvement
because:

• the same preconditioner may be used more than once like in applications
where the same matrix has to be solved against many right hand sides,

• if two matrices have the same sparsity structure, then the associated
AS preconditioners will also share the same sparsity structure abd
communication descriptor; inthese cases it is possible to reuse topological
information on all subsequent preconditioner build steps.

Figure 4.11 plots the solver time for the AS preconditioners versus the
number of processors for 0, 1 and 2 overlap levels. This figure shows that
AS preconditioned solvers have good scalability properties except for the
“poisson3Db” and “memplus” matrices where it is not possible to identify a
regular behavior. Figure 4.11 also shows that Additive Schwarz preconditioning
is not suited for all the matrices. In the case of the “add32” matrix, Additive
Schwarz preconditioning provides good speedups with a considerably regular
behavior while in other cases, like for example, the “poisson3Db” matrix
the Block Jacobi preconditioner (equivalent to the AS preconditioner with 0
overlap levels) outperforms it. For the “memplus” matrix, the applicability
of AS preconditioning methods depends on the number of processors used
providing some improvement when the number of processors is lower than 32.
Finally there are also matrices, like, the “language” one where improvements
are obtained only when the number of overlap levels is limited.
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Figure 4.11: Solver time versus number of processes for 0, 1 and 2 overlapping
levels.
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Chapter 5

Multigrid Preconditioners
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5.1 Multigrid Methods

In this section a brief introduction to multigrid methods is presented which
will be successively extended to multigrid preconditioners in the following
section.

Multilevel methods, extensively discussed in [80], [65] and [69], have been
developed to improve the convergence behavior of iterative linear systems
solvers. Roughly speaking, common stationary iterative solvers, like the
Gauss-Seidel or the Jacobi ones, may be affected by poor convergence rates
due to the fact that they are point solvers, meaning that the algebraic
equation is solved on each point of the grid independent of the solution at
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any other point1. As a result, such methods, allow a very quick reduction of
local errors while obtaining poor results in reducing global errors. This means
that for errors whose length scales are comparable to the grid mesh size, they
provide rapid damping, leaving behind smooth, longer wave-length errors;
these smooth components are responsible for the slow global convergence.
Figure 5.1 shows how error is smoothed through few Gauss-Seidel iterations:
high frequency local error are reduced while long wave stay almost unchanged
causing low convergence rate.

A multigrid method attempts to improve global convergence employing a
number of grids with different mesh sizes aiming at reducing all wavelength
errors.

The multigrid strategy combines two complementary schemes. The high-
frequency components of the error are reduced applying iterative methods
like Jacobi or Gauss-Seidel schemes. For this reason these methods are
called smoothers. On the other hand, low-frequency error components are
effectively reduced by a coarse-grid correction procedure. Because the action
of a smoothing iteration leaves only smooth error components, it is possible
to represent them as the solution of an appropriate coarser system. Once
this coarser problem is solved, its solution is interpolated back to the fine
grid to correct the fine grid approximation for its low-frequency errors.

1Other iterative techniques attempt to add some portion of a direct solver to the mix.
line solvers are a popular example of this. In a line solver, an entire “line” of points are
solved coupled, points off the line are not coupled. Line solvers are powerful, due to the
point coupling, but are difficult to implement on unstructured grids.
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Figure 5.1: A sample of how error is reduced through few iterations of the
Gauss-Seidel iterative method. It is possible to see how local errors are
rapidly damped while long wave error are almost not reduced.

5.1.1 Iterative Methods and the smoothing property

Consider a system Ax = b where A is a n× n matrix. As already discussed
in section 1.1, stationary iterative methods may be expressed in the form:

x(k+1) = Mx(k) + Nb (5.1)

where M and N have to be constructed in such a way that the sequence
x(k), k = 1, ... converges to the solution x = A−1b in a finite number of steps.
Defining the error at step k is defined as e(k) = x− x(k), equation 5.1 can be
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rewritten as:
e(k+1) = Me(k) (5.2)

where M is the so-called iteration matrix whose characteristics determine the
convergence behavior of the iterative method. Theorem 1 (in section 1.1)
states that the method converges to the system solution if ρ(M) < 1, i.e. if
the spectral radius of the iteration matrix is lower than one.

Many common methods are built based on the splitting technique. The
system matrix can be splitted as A = B−C where B is non-singular; setting
Bx(k+1) + Cx(k) = b and solving with respect to x(k+1) a stationary iterative
method can be formulated as:

x(k+1) = B−1Cx(k) + B−1b (5.3)

In this case, obviously, M = B−1C and N = B−1. The splitting A =
D−L−U , where D = diag(a11, a22, ..., ann) and −L and −U are respectively
the lower triangular and upper triangular parts of A, leads to the well known
(damped-)Jacobi and Gauss-Seidel methods.

The damped-Jacobi method is derived defining B = 1
ω
D and C = 1

ω
[(1−

ω)D + ω(L + U)] which yields:

x(k+1) = (I − ωD−1A)x(k) + ωD−1b, (5.4)

while the Gauss-Seidel method comes from the choice B = D−L and C = U :

x(k+1) = (D − L)−1Ux(k) + (D − L)−1b (5.5)

The iteration matrices for these two methods will be referred as MJ(ω)
and MGS.

To analyze the smoothing property of an iterative solver, consider a one-
dimensional Dirichlet boundary value problem:{

−d2u
dx2 = f(x), in Ω = (0, 1)

u(x) = g(x), on x ∈ 0, 1
(5.6)

Let Ω be represented by a grid Ωh with grid size h = 1/(n + 1) and points
xh = jh, j = 0, 1, 2, ..., n + 1. Assuming fh

j = f(jh) and uh
j = u(jh), the

discretization can be performed with the following scheme for the second
order derivative at xj:

1

h2
[u(xj−1)− 2u(xj) + u(xj+1)] = u′′(xj) + O(h2)

Thus, the following system of n equation is obtained:
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2
h2 u

h
1 − 1

h2 u
h
2 = fh

1 + 1
h2 g(0)

− 1
h2 u

h
j−1 + 2

h2 u
h
j − 1

h2 u
h
j+1 = fh

j , j = 2, ..., n− 1
− 1

h2 u
h
n−1 + 2

h2 u
h
n = fh

n + 1
h2 g(1)

(5.7)

Consider the Jacobi method and the associated eigenvalue problem
MJ(ω)vk = µkv

k. The eigenvectors are given by:

vk = (sin(kπhj))j=1,n, k = 1, ..., n (5.8)

and the corresponding eigenvalues:

µk(ω) = 1− ω(1− cos(kπh)), k = 1, ..., n (5.9)

Equation 5.9 shows that convergence is guaranteed only in the case where
0 < ω ≤ 1 that implies ρ(MJ(ω)) < 1.

Assuming ω = 1 the spectral radius of the iteration matrix is:

ρ(MJ(1)) = max
k
|cos(πkh)| (5.10)

= max
k
|1− 1

2
(πkh)2 + O(h4)| (5.11)

= 1− 1

2
(πh)2 + O(h4) (5.12)

showing how convergence behavior deteriorates with h → 0. In order to
define the Jacobi method smoothing property the following distinction can
be done:

• low frequency error modes: eigenvectors vk with 1 ≤ k < n
2
;

• high frequency error modes: eigenvectors vk with n
2
≤ k < n.

Considering that the error can be written as a linear combination of the
iteration matrix eigenvectors, i.e. e(k) =

∑
i e

(k)
i , then it is possible to state

that at each Jacobi iteration, an error component is damped by a value which
is equal to the corresponding eigenvalue.

Choosing, for example, ω = 2/3 and the eigenvalues have the values
plotted in figure 5.2. It is straightforward from this figure to understand how
the error modes are damped at each Jacobi step; high frequency components
are reduced by at least 70%, low frequency components are reduced at best
by 70% while very low frequency error modes are barely reduced.

Due to this property stationary iterative solvers, in multigrid methods, are
used as smoothers to reduce high frequency error modes; low frequency error
modes are, instead, reduced applying a coarse grid correction as explained in
the next section.
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Figure 5.2: The eigenvalues of the damped-Jacobi iteration matrix with ω =
2/3

5.1.2 Multi-Grid scheme

As already discussed in the previous section, a method like Jacobi is highly
effective at killing off high-frequency error components. On the other hand,
slow convergence is due to slow reduction of low-frequency components. The
notion of high and low frequency is, however, relative to the grid spacing.
Consider, for example, two grids for the problem (5.6); a grid with h spacing
and a coarser one with H = 2h spacing, respectively the black and the red
grid in figure 5.3. So on grid H, some of what looked like low frequency
errors on grid h now look more like high frequency. Multigrid is based on
the idea that both high and low frequency error components can be damped
combining partial solutions of the problem on grids with different spacings.

After the application of few smoothing steps (Jacobi sweeps for example)
an approximation of the solution x̃h is obtained whose error is ẽh = xh− ũh2.
Then ẽh can be approximated on a coarser space. This smooth error must
be expressed as the solution of a coarser problem whose matrix AH and

2the subscript h is used to refer to the problem on grid with h spacing as opposed to
the problem on grid with H = 2h spacing
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Figure 5.3: Two grids with different mesh sizes for the same domain. The
black fine mesh has mesh size h while the red coarse one has mesh size
H = 2h.

right-hand side have to be defined. Notice that in problem (5.6) Ah is a
second order difference operator and rh = bh − Ahx̃h is a smooth function if
ẽh is smooth. Obviously the original equation Ahxh = bh and the residual
equation Ahẽh = rh are equivalent. The difference between the two equations
is that ẽh and rh are smooth, therefore it is possible to represent them on a
coarser grid with spacing H = 2h. Define rH as the restriction of the fine
grid residual on the coarse grid, that is, rH = IH

h rh where IH
h is a suitable

restriction operator. This defines the right-hand side of the coarse problem.
Since ẽh is the solution of a difference operator which can be represented
analogously on the coarse discretization level, the following coarse problem
ca be defined:

AH ẽH = rH (5.13)

with homogeneous Dirichlet boundary conditions as for ẽh. Here AH represents
the same discrete operator but relative to the grid with mesh size H. It is
reasonable to expect that ẽH is an approximation of ẽh on the coarse grid.
Inversely, ẽH can be brought back to the fine space with a prolongation
operator Ih

H . Therefore, since by definition xh = x̃h + ẽh the solution x̃h can

155



be updated applying the following coarse grid correction step :

x̃h
new = x̃h + Ih

H ẽH . (5.14)

In practice, also the interpolation procedure may introduce high frequency
errors on the fine grid problem and, thus, it could be convenient to perform
some more smoothing steps after the coarse grid correction has been applied.

Given that xh(l)
= Mxh(l−1)

+ Nbh is a smoothing procedure, it will be

denoted as xh(l)
= Sh(xh(l−1)

, bh) in the following.

Algorithm 15 Two-Grid Method

1: for l = 1 to ν1 do

2: apply the pre-smoothing step xh(l)
= Sh(xh(l−1)

, bh)
3: end for
4: compute the residual rh = bh − Ahxh(ν1)

5: restrict the residual rH = IH
h rh

6: solve the coarse-grid problem eH = (AH)−1rH

7: apply the coarse-grid correction xh(ν1+1)
= xh(ν1)

+ Ih
HeH

8: for l = 1 to ν2 do

9: apply the post-smoothing step xh(l)
= Sh(xh(l−1)

, bh)
10: end for

Algorithm 15 shows the pseudo-code for a two-grid procedure which can
be iterated until convergence to the system solution; a two-grid scheme starts
at the fine level with pre-smoothing, performs a coarse-grid correction solving
a coarse-grid auxiliary problem, and ends with post-smoothing. This is the
so-called V-cycle.

In the two-grid scheme previously discussed, the size of the coarse grid
mesh is twice as large as the fine grid mesh size; this means that the coarse
problem can still be very large making unpractical to solve it directly as
described in algorithm 15. However the coarse problem has the same form
as the residual problem on the fine level and, thus, the two-grid method can
be used to determine ẽH ; so equation 5.13 can be itself solved by two-grid
cycling introducing a further coarse grid problem.

For a more detailed description define a sequence of grids with mesh size
h1 > h2 >, ..., > hL < 0 so that hk = 2hk−1, k = 1, 2, ..., L. Let Ωhk denote
the set of grid points with grid spacing hk; the number of interior grid points
is nk. On each level k a problem Akxk = bk can be defined where Ak is
an nk × nk matrix and xk and bk are vectors of size nk. The transfer among
levels is performed with Ik−1

k restriction and Ik
k−1 prolongation operators. The
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Algorithm 16 Multi Grid Method

1: if k = 1 then
2: solve Akxk = bk directly
3: end if
4: for l = 1 to ν1 do

5: apply the pre-smoothing step xk(l)
= Sk(xk(l−1)

, bk)
6: end for
7: compute the residual rk = bk − Akxk(ν1)

8: restrict the residual rk−1 = Ik−1
k rk

9: set xk−1 = 0
10: call γ times the MG method to solve Ak−1xk−1 = rk−1

11: apply the coarse-grid correction xk(ν1+1)
= xk(ν1)

+ Ik
k−1x

k−1

12: for l = 1 to ν2 do

13: apply the post-smoothing step xk(l)
= Sk(xk(l−1)

, bk)
14: end for

smoothing iteration is denoted by xk = Sk(xk, bk). The multigrid method
can now be expressed as in

The γ parameter is the number of times the MG method is applied to the
coarser level problem. Since this procedure converges fast, γ = 1 or γ = 2
(in which case the multigrid scheme is called W-cycle) are typical values.

5.1.3 Algebraic Multigrid

Multigrid methods have been generally defined in the previous section as
methods operating on a hierarchy of grids obtained by coarsening the given
discretization mesh in a geometrically natural way. For this reason, the
approach previously presented is defined as “geometric” multigrid and it is
almost straightforward to understand and implement for logically regular
grids. However defining a coarsening strategy to build a grid hierarchy
may be very complicated, if possible at all, when using highly complex
unstructured meshes.

First attempts to automate the extraction of coarser grids consist of
combining geometric multigrid with Galerkin-principle and operator-dependent
interpolation. This attempt, presented in [11], was motivated by the fact
that the Galerkin operator and the operator-dependent interpolation may
be derived directly from the underlying matrix without any reference to the
discretization mesh. A detailed description of Algebraic MultiGrid (AMG),
as this approach has been called, is presented in [63] and [69] where this
discussion has been extracted from.
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A two-level AMG cycle to solve s.p.d systems of equations

Ahxh = bh, or
∑
j∈Ωh

ah
ijx

h
j = bh

i (i ∈ Ωh) (5.15)

is formally defined as a geometric two-grid cycle. The only difference is that,
in the context of AMG, Ωh is just an index set, while it corresponds to a grid
in geometric multigrid. Accordingly, on a coarser level, ΩH is defined as a
smaller index set.

In classical AMG, coarse-level variables are regarded as a subset of fine-
level ones. The set of fine-level variables is, thus, split into two disjoint
subsets Ωh = Ch ∪F h, with Ch representing those variables which are in the
coarse-level and Fh being the complementary set. Given such a C/F-splitting,
the set of coarse level variables is ΩH = Ch and interpolations eh = eHIh

H

can be defined as:

eh
i = (eHIh

H)i =

{
eH

i if i ∈ Ch∑
k∈P h

i
wh

ike
H
k if i ∈ F h (5.16)

where P h
i ⊂ Ch is called the set of interpolatory variables.

While geometric multigrid is essentially based on the usage of robust
smoothers, AMG assumes the usage of simple relaxation schemes, like Gauss-
Seidel or Jacobi, and then attemtps to build a suitable interpolation Ih

H . From
now on the superscripts used to identify the level will be omitted, where
possible, to improve readability. As reported in [69], it can be heuristically
assumed that |ri| << aii|ei| which implies that the error ei can be locally
approximated by the following formula:

ei ≈ −(
∑
j∈Ni

aijej)/aii (i ∈ Ω) (5.17)

where Ni = {j ∈ Ω : j 6= i, aij 6= 0} denoted the neighborhood of any point
i ∈ Ω. Such an error is called algebrically smooth. The goal of AMG is to
define C/F-splittings and sets of interpolatory variables Pi ⊂ C(i ∈ F ) along
with corresponding weights wik such that equation (5.16) yields a reasonable
approximation for each algebrically smooth error e.

Choosing Pi = Ni and wik = −aikaii obviously yields good results but it
basically means that each of the points i ⊂ F has all of its neighbors in C.
This choice is practically unattractive since it poses very high computational
and memory requirements. In practice it is important to reduce the set of
interpolatory variables in order to simplify the coarsening process and to
have sparse Galerkin operators in a way to keep the convergence behavior as
good as possible.
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In the case where the system matrix A is an M-matrix the method
proposed in [63] results to be particularly efficient. This method is based
on the observation that an algebrically smooth error varies slowly in the
direction of strong couplings3. The more strong couplings of any variable i
are contained in Pi, the better an algebrically smooth error satisfies:

1∑
k∈Pi

aik

∑
k∈Pi

aikek ≈
1∑

j∈Ni
aij

∑
j∈Ni

aijej (i ∈ Ω). (5.18)

Using the previous approximation inside equation (5.16) the following “direct4

interpolation” is obtained:

wik = −αi
aik

aii

where αi =

∑
j∈Ni

aij∑
l∈Pi

ail

(5.19)

Roughly speaking, this means that C/F-splittings have to be built in such
a way that each variable i ∈ F has a sufficiently large number of strongly
coupled C neighbors which are then taken as the set of interpolatory variables
Pi.

Another way of building C/F-splitting and interpolations is by “aggregation”.
This is a very simple method where each F-variable interpolates from exactly
one C-variable only. These kind of interpolation doesn’t yield good convergence
behavior5, but, its ease of implementation and its low computational requirements
make it attractive in some cases like, for example, when multigrid methods
are used for preconditioning purposes. In aggregation-type AMG C/F-splittings
and interpolations are built considering wik = 1 for just one k ∈ C and zero
otherwise for each i ∈ F . Consequently the total number of variables can be
subdivided in aggregates Ik(k ∈ C) where Ik contains (apart from itself) all
indices i corresponding to F-variables which interpolate from variable k as

This implies:

IH
h AhI

h
H = (AH

kl) where aH
kl =

∑
i∈Ik

∑
j∈Il

ah
ij (k, l ∈ C) (5.20)

that is, the coefficient aH
kl is just the sum of all cross-couplings between Ik

and Il. A sophisticated way to accelerate the basic aggregation-type AMG

3a point i is said to be strongly connected to j if −(aij) ≥ θ0 · maxk 6=i(−aik), 0 <
θ0 ≤ 1

4an interpolation is called direct if Pi ⊂ C
5better results are achieved in the case where each F-variable is surrounded by its C

interpolatory variables. For a detailed discussion of these properties see [69]
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Figure 5.4: Coarsening by aggregation sample. The arrows show how each
F-variable interpolates from only one C-variable.

is based on a smoothing process used to improve the piecewise constant
interpolation which is only used as a first-guess interpolation (“smoothed
aggregation”). This smoothing procedure consists in the application of one
damped-Jacobi step. Denote the operator corresponding to the piecewise
constant interpolation by Ĩh

H . Then the interpolation actually used is defined
by:

Ih
H = (Ih − ωD−1

h Af
h)Ĩ

h
H (5.21)

where Dh = diag(Af
h) and AF

h is derived from the original matrix Ah by
adding all weak connections to the diagonal. This means that, given some
coarse level vector eH , eh = Ih

HeH is defined by applying one ω-Jacobi
relaxation step to the homogeneous Ah

fv
h = 0, starting with the piecewise

constant operator Ĩh
HeH .

In general, classical AMG and AMG based on smoothed aggregation
perform comparably if applied to relatively smooth (Poisson-like) problems.
A considerable advantage of (smoothed) aggregation-type AMG is that in
most of the cases it poses lower memory requirements with respect to classical
AMG due to its very fast coarsening which determines a very low operator
complexity. On the other hand such methods result to be less robust than
classical AMG when used as stand-alone solvers. The robustness of AMG
multigrid methods can be improved combining them with acceleration methods
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such as CG, or Bi-CGSTAB or other Krylov-subspace family solvers. This
development was driven by the observation that it is often not only simpler
but also more efficient to use accelerated multigrid methods rather than
using efficient but also very complex multigrid stand-alone solvers. Moving
our point of view on iterative solvers, this actually means using multigrid
methods for system preconditioning. As shown in next sections, this approach
results to be very efficient in many cases; in fact, even if it poses much higher
computational requirements than, say, one-level ILU-type preconditioners,
the number of iterations may be drastically reduced providing, then, lower
solution times.

5.2 Two-level Schwarz Preconditioners

Domain Decomposition (DD) preconditioners presented in section 4.1, coupled
with Krylov iterative solvers, are widely used in the parallel solution of
sparse linear systems arising from large-scale applications. Results presented
in section 4.4 show that Additive Schwarz preconditioners provide good
convergence properties and, in some cases, considerable reduction in the
time needed for the solution of a system. Moreover their intrinsic parallelism
make them a favorable choice in many cases. A further improvement to this
family of preconditioners may come from the use of some extra coarse space
where the original linear system can be approximated to provide optimal
convergence rates, i.e. a number of iterations independent of the number of
subdomains [17, 65].

This is the base of two-level, and more generally multilevel, DD preconditioners.
Since on parallel computers the number of subdomains usually matches the
number of available processors, the use of a coarse space is necessary for
developing scalable preconditioning algorithms.

When the matrix to be preconditioned is explicitly related to the geometry
of some problem, e.g. when a structured PDE discretization is considered,
building such a coarse space may be fairly easy. However, in a pure algebraic
formulation, the construction of a coarse space is not a trivial task. Two basic
strategies can be identified: classical Algebraic Multigrid coarsening [63] and
aggregation [12, 77] also discussed in section 5.1.3. As already explained in
previous sections, in the former case, the set of vertices of the adjacency
graph of the matrix is partitioned into two disjoint subsets, one including
the vertices that are related to either the fine or the coarse space, the
other including the vertices that are only in the fine space and will be
interpolated by using coarse-space vertices. In the latter, the coarse-space
vertices are obtained as aggregates of fine-space vertices. In both cases, the
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coarsening algorithms have a sequential nature. Several parallel versions of
these algorithms have been developed, aimed at building a coarse space that
realizes a tradeoff between good convergence properties and low communication
costs. Details on this issue are given in [31] and in the references therein.
The following sections describe the implementation of Two-Level Additive
Schwarz preconditioners presented in [14].

5.2.1 Definition of two-level preconditioners

Two-level Schwarz preconditioners are obtained by combining Schwarz preconditioners
with a coarse-space correction step.

Recall from section 4.2.1 that a one-level AS preconditioner is defined by

M−1
1L =

m∑
i=1

(R̃δ1
i )T (Aδ

i )
−1R̃δ2

i , (5.22)

where Aδ
i is assumed to be nonsingular. The classical AS preconditioner

corresponds to R̃
δj

i = Rδ
i (j = 1, 2); the Restricted AS (RAS) preconditioner

corresponds to δ1 = 0 and δ2 = δ, where R̃0
i ∈ <nδ

i×n is obtained by
zeroing the rows of Rδ

i identified by the vertices in W δ
i \W 0

i ; finally, the
AS preconditioner with Harmonic extension (ASH) correspond to δ1 = δ
and δ2 = 0. Also remember that in actual applications it is customary
to compute an approximate solution of wδ

i = (Aδ
i )
−1vδ

i , e.g. by using an
incomplete factorization of Aδ

i or a basic iterative method such as SOR.
The convergence rate of the one-level Schwarz preconditioned iterative

solvers deteriorates as the number m of partitions of W increases [65]. To
reduce the dependency of the number of iterations on the degree of parallelism
it is possible to introduce a global coupling among the partitions by defining a
coarse-space approximation AC of the matrix A. In a pure algebraic setting,
AC is usually built with a Galerkin approach. Given a set WC of coarse
vertices, with size nC , and a suitable restriction operator RC ∈ <nC×n, AC is
defined as6

AC = RCART
C (5.23)

and the coarse-space correction matrix to be combined with the one-level AS
preconditioners is obtained as

M−1
C = RT

CA−1
C RC , (5.24)

where AC is assumed to be nonsingular.

6according to the notation previously used, the restriction operator is RC = IH
h while

the prolongation one is RT
C = Ih

H .
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The combination of MC and M1L can be performed in either an additive
or a multiplicative framework. In the former case, the two-level additive
Schwarz preconditioner is obtained:

M−1
2L−A = M−1

C + M−1
1L . (5.25)

Applying M−1
2L−A to a vector v ∈ <n corresponds to applying M−1

C and M−1
1L

to v independently and then summing up the results.
In the multiplicative case, the combination can be performed either by

computing
w = M−1

1L v,
z = w + M−1

C (v − Aw),
(5.26)

which corresponds to the following two-level hybrid Schwarz preconditioner

M−1
2L−H1 = M−1

C +
(
I −M−1

C A
)
M−1

1L , (5.27)

or by computing
w = M−1

C v,
z = w + M−1

1L (v − Aw),
(5.28)

which corresponds to

M−1
2L−H2 = M−1

1L +
(
I −M−1

1L A
)
M−1

C . (5.29)

A symmetric two-level hybrid preconditioner can be obtained by applying
M−1

1L before and after the coarse-level correction, provided that A, M1L and
MC are symmetric. sweeping back through the δ-overlap partitions of W .

5.2.2 Basic parallel sparse linear algebra operators

In this section a description of the setup and the application of the two-level
Schwarz preconditioners M2L−A, M2L−H1 and M2L−H2 is given, in terms of
basic sparse Linear Algebra operators, with the aim of designing parallel
algorithms and software based on standard kernels.

Consider a data distribution in which the number m of subsets of the
δ-overlap partition of W is equal to the number of available processors;
processor i holds both the matrix rows with indices in W 0

i and the corresponding
components of the solution and right-hand side vectors. This assumption is
consistent with common usage, e.g. employing a graph partitioning tool to
distribute the data of a sparse linear system arising from the discretization
of a PDE.

Consider, now, the classical AS preconditioner. Processor i contributes
to the setup of M1L by building the matrix Aδ

i through a suitable extension
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of A0
i with the rows corresponding to W δ

i \W 0
i , held by other processors. To

apply M−1
1L , i.e. to compute M−1

1L v, with v ∈ <n, the processor i first gathers
the components of v with indices in W δ

i \W 0
i , obtaining vδ

i = Rδ
i v, then solves

locally a linear system with matrix Aδ
i , obtaining wδ

i = (Aδ
i )
−1vδ

i , and, finally,
updates the components of wδ

i with indices in W 0
i ∩W δ

j , for j 6= i, to compute
its own part of

∑m
i (Rδ

i )
T wδ

i according to the initial data distribution. As
explained in chapter 4.1, the RAS and the ASH preconditioners do not require
the update and the gather operators, respectively.

The two-level Schwarz preconditioners require additional basic operators
to setup MC and to apply it in combination with M1L, according to 5.25, 5.26
or 5.28. The construction of the coarse-space approximation AC is strongly
dependent on the choice of the restriction operator RC ; the same observation
holds for computations of the type M−1

C v. The combination of MC and M1L

requires a parallel vector sum and, in the hybrid versions, a parallel sparse
matrix by vector multiplication.

To define RC , and hence AC and MC , the smoothed aggregation technique
presented in [12, 77] is used. The basic idea is to obtain the coarse set
of vertices WC by grouping the vertices of W into disjoint subsets and to
define the coarse-to-fine space transfer RT

C by applying a suitable smoother
to a simple prolongation operator, to improve the quality of the coarse-space
correction.

Three main steps can be identified in the smoothed aggregation procedure:
the coarsening of the vertex set W , to obtain WC , the construction of the
prolongator RT

C , and its application, to obtain AC . To perform the coarsening
step, the aggregation algorithm sketched in algorithm 17 is used, which is
a particular case of the one presented in [77]. It aggregates the vertices in
W into disjoint subsets V i

C , i = 1, . . . , nC , such that ∪nC
i=1V

i
C = W ; the V i

C ’s
are assumed as coarse-space vertices. As observed in [12], this algorithm
can generate aggregates with suitable “aspect ratios”. However, due to its
sequential nature, it is not suited for a straightforward implementation on
a distributed-memory parallel computer. Parallel aggregation schemes have
been developed, aimed at building a coarse vertex set that allows a good
coarse-space correction, while limiting the cost of data communication (see
[31] and the references therein). The simplest parallel algorithm is the so-
called decoupled aggregation, where the processor i independently applies the
sequential algorithm to the set of vertices W 0

i assigned to it in the initial data
distribution. This version is embarrassingly parallel, since it does not require
any data communication. On the other hand, it can produce non-uniform
aggregates near boundary vertices, i.e. near vertices adjacent to vertices in
other processors, and is strongly dependent on the number of processors and
on the initial partitioning of the matrix A. Nevertheless, this approach has
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Algorithm 17 Aggregation Algorithm

Require: U ← W ; N ← 0; nc ← 0
1: ! Identify the aggregates:
2: repeat
3: ! Start a new aggregate
4: pick i ∈ U ; V i

C ← {i}; nC ← nC + 1;
5: U ← U\{i};
6: ! Add all neighbors to the aggregate
7: T ← {j ∈ U : aij 6= 0};
8: V i

C ← V i
C ∪ T ;

9: U ← U\T ;
10: ! Mark for further processing all the vertices
11: ! adjacent to the current aggregate
12: T ← {i ∈ U ;∃k ∈ V i

C : aik 6= 0};
13: N ← N ∪ T ;
14: U ← U\T ;
15: until (U = 0)
16: ! Add the remaining points to existing aggregates
17: U ← N
18: while (U 6= 0) do
19: pick i ∈ U ;
20: find smallest V j

C such that aik 6= 0 for some k ∈ V j
C ;

21: V j
C ← V j

C ∪ {i};
22: U ← U\{i};
23: end while

been shown to produce good results in practice [73], therefore it has been
chosen it in our implementation.

The prolongator PC = RT
C is built starting from a tentative prolongator

P ∈ <n×nC , defined as

P = (pij), pij =

{
1 if i ∈ V j

C

0 otherwise
. (5.30)

Note that P can be regarded as a piecewise constant interpolation operator
from <nC to <n. PC is obtained by applying to P a smoother S ∈ <n×n:

PC = SP, (5.31)

in order to remove oscillatory components from the range of the prolongator
and hence to improve the convergence properties of the two-level Schwarz
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method [12, 63]. A simple choice for S is the damped Jacobi smoother:

S = I − ωD−1A, (5.32)

where the value of ω can be chosen using some estimate of the spectral radius
of D−1A [12].

If the decoupled aggregation is used, the tentative prolongator P can be
built locally by each processor. Indeed, the processor i can set the part of the
matrix P that corresponds to its local aggregates. Taking into account that
in each processor the non-zero entries of P are in the rows and in the columns
corresponding to the local vertices and the local aggregates, respectively, P
can be regarded as distributed by rows conformally to the matrix A. Hence,
to build the prolongator PC = SP , the processor i has to gather the remote
rows of P with indices in W 1

i \W 0
i and to compute a sequential sparse matrix

by sparse matrix multiplication. A diagonal scaling of the local rows of A is
also required to obtain S. Then, the distributed matrix AC = RCART

C =
P T

C APC can be computed by applying twice a gather plus a sequential sparse
matrix by sparse matrix operator, to recover the remote rows of PC and APC

with indices in W 1
i \W 0

i and to build the local rows of APC and P T
C (APC) in

each processor. After this step an all-to-all communication can be used to
replicate the coarse matrix on all processors, if such a replication is requested
by the user.

According to 5.24, the coarse-space correction w = M−1
C v requires two

parallel sparse matrix by vector multiplications, to obtain z = RCv, and w =
RT

C(A−1
C z), where the computation of A−1

C z can be performed by using either
direct or iterative methods. If AC is replicated, an all-to-all communication
is needed to have the whole vector v in each processor.

5.2.3 PSBLAS-based implementation of two-level
Schwarz preconditioners

The software architecture of the two-level Schwarz preconditioners, as implemented
inside the PSBLAS library, is depicted in figure 5.5. The main routines
specifically developed for the preconditioners are shown in the upper part
of the picture, while the parallel and sequential PSBLAS kernels used by
them are shown in the lower part. The dashed-line and the solid-line boxes
represent routines already available in PSBLAS 1.0 and new routines (now
included in version 2.0), respectively.

The construction of the enlarged matrix Aδ
i , in the routine psb_ovrbld,

is implemented by first building the Aδ
i descriptor and then gathering the

matrix rows corresponding to the indices in W δ
i \W 0

i . The latter operation has
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Figure 5.5: Software architecture of the package of PSBLAS-based two-level
Schwarz preconditioners.

been implemented in the psb_sphalo routine; this routine can be regarded
as a sparse version of the PSBLAS routine psb_halo, which acts on a dense
matrix, distributed conformally to a sparse matrix, by recovering the rows
that correspond to the overlap indices of the sparse matrix. Note that
psb_sphalo has been put into the PSBLAS auxiliary routine set because
it can be used in a more general context to build extended stencils, often
required in PDE computations. As discussed in [13] and in chapter 4.1,
the Aδ

i descriptor allows to use psb_halo and psb_ovrl to implement the
restriction and prolongation operators Rδ

i and (Rδ
i )

T .
The aggregation algorithm applied by the two-level preconditioner has

been implemented in psb_decaggr. To build the smoothed prolongator PC

and the coarse matrix AC , in psb_smthbld and psb_coarsebld, respectively,
the set of PSBLAS serial kernels has been extended with modules performing
the sparse matrix diagonal scaling and the sparse matrix by sparse matrix
multiplication. The latter operation is performed via the integration into
PSBLAS of the SMMP software [6], modified to take advantage of dynamic

167



memory management. It is worth noting that, although the sparse matrix
multiplication functionality is not provided in the last SBLAS standard, the
possibility of its future inclusion has been foreseen by the BLAS Technical
Forum [29]. An estimate of the spectral radius of D−1A for the damping
parameter ω, used in the definition of PC is provided by computing the
infinity norm of D−1A through the corresponding PSBLAS routine. The
implementation of the restriction and prolongation operators in the coarse-
space correction phase was obtained by using the PSBLAS sparse matrix by
dense matrix multiplication module psb_spmm.

The solution of the linear systems with the matrices Aδ
i is performed using

either an incomplete or a complete LU factorization. In the former case, this
was accomplished by the PSBLAS serial kernels for ILU(0) and triangular
system solve, psb_spilu and psb_cssm; in the latter, the UMFPACK package
[23], version 4.4, was interfaced with the PSBLAS routines. The same options
were made available for solving the systems with the replicated matrix AC .
To deal with the distributed AC , also parallel block-Jacobi iterations has
been implemented, with ILU(0) or LU on the diagonal block of AC held by
each processor.

Finally, all the previous functionalities were packaged at the application
level into the setup psb_prcbld and application psb_prcaply routines.

5.2.4 Performance results

The Two-Level preconditioners implementation described in previous sections,
has been tested by solving linear systems with coefficient matrices arising
from simulations of the thermo-fluidynamics in an automotive engine and of
the thermal diffusion in some solids.

The automotive engine test cases are snapshots from the simulation of a
direct injection diesel engine, from a commercial automotive manufacturer.
The matrices arise from the discretization of the pressure correction equation
in the implicit phase of a semi-implicit algorithm (ICED-ALE [47]) for the
solution of unsteady Navier-Stokes equations for compressible flows, as implemented
in the KIVA application software modified to make use of the PSBLAS linear
solvers [36]. The discretization mesh contains approximately 100000 control
volumes; during the simulation the size of the actual domain varies, because
mesh layers are activated/deactivated following the piston movement. The
matrices correspond to different positions of the piston inside the engine
cylinder; they have a symmetric sparsity pattern, with no more than 19 non-
zero entries per row. The results concerning two matrices, named kivap1 and
kivap2, with dimensions 86304 and 42204, respectively are reported here.

Two other matrices have been considered, that arise from the discretization
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of the steady-state thermal diffusion equation in solids. The first one, named
therm2D, is of dimension 600000 and comes from a 2D model of a homogeneous
plate, with a central finite-difference discretization scheme on a regular mesh.
The second matrix, therm3D, has about 1 million rows and has been extracted
from an experimental finite volume code that deals with the steady thermal
conduction in materials with variable conductivity. A central discretization
scheme is used in the code, including the deferred-correction approach proposed
in [34] for handling non-orthogonal computational meshes. The simulation
considered here concerns an aluminium Diesel engine piston discretized by
using a tetrahedral mesh, with prescribed heat flux on the piston head and
prescribed temperatures on the remaining surfaces.

The tests discussed here have been carried out on a cluster with dual-
processor nodes, installed at the Innovative Computing Laboratory of the
University of Tennessee at Knoxville. Each node has an AMD Opteron dual-
processor (model 240, 1.4 GHz), running the Debian Linux 3.1 operating
system with kernel 2.6.13, and 2 GBytes of memory; the nodes are connected
with Myrinet network interfaces. The tests have been run on 32 nodes, i.e. on
64 processors. A development snapshot of the GNU compilers version 4.2,
including both the C and Fortran 95 compilers, was used in conjunction with
the specific MPI implementation for the Myrinet interface.

Table 5.1 shows that Additive Two-Level Schwarz preconditioning does
not provide good results when compared to Multiplicative Two-Level Schwarz
preconditioning in terms of number of iterations having a comparable cost
measured in time/iteration. For this reason and sake of space, only timing
and speedup results for RAS, with overlap 0 (Block-Jacobi) and 1, and for
two variants of the two-level hybrid preconditioner 2LH-post, using RAS
with overlap 1 at the fine level are presented. The coarse-space matrix is
distributed among the processors and four Block-Jacobi sweeps are applied to
the corresponding system; the first variant uses the ILU factorization on the
diagonal blocks, while the second uses the LU factorization implemented in
UMFPACK. In all the preconditioners, the systems arising in the application
of RAS are solved by ILU. The preconditioners are applied as right preconditioners
with the BiCGSTAB solver available in PSBLAS, choosing the null vector
as starting guess. The iterations are stopped when the ratio between the 2-
norms of the residual and of the right-hand-side is less than 10−6; a maximum
number of 1000 iterations is also set, but it is never reached in the tests. A
row-block distribution of the matrices is used, where each processor holds
(approximately) equal-sized blocks of consecutive rows, according to the well-
known BLACS one-dimensional pure-block mapping. A conformal distribution
is applied to the right-hand side and solution vectors. This choice implicitly
defines a domain decomposition such that the number of subdomains is equal
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to the number of processors. Results of a comparison of the PSBLAS package
with well-established software implementing Schwarz preconditioners, carried
out on the engine simulation and the 2D thermal diffusion matrices using
other Linux clusters, are reported in [13].

therm2D
2LH-add, Block Jacobi 2LH-mult-post, Block Jacobi

with ILU with ILU
np It. Setup Solve Total It. Setup Solve Total
1 245 3.4200 112.9000 116.4000 183 3.1180 95.8900 99.0100
2 246 2.0850 89.6600 91.7500 182 1.8420 59.2900 61.1300
4 231 1.1280 48.1000 49.2300 190 0.9694 30.6400 31.6100
8 232 0.5205 17.4900 18.0100 184 0.4858 15.0500 15.5300
16 227 0.2946 7.9110 8.2060 171 0.2641 6.8410 7.1050
32 264 0.1734 4.7420 4.9160 175 0.1621 3.4830 3.6460
64 257 0.1207 3.0110 3.1320 176 0.1165 2.4460 2.5620

kivap1
2LH-add, Block Jacobi 2LH-mult-post, Block Jacobi

with ILU with ILU
np It. Setup Solve Total It. Setup Solve Total
1 10 1.5180 1.2400 2.7580 6 1.5660 1.0760 2.6420
2 10 0.9798 0.9476 1.9270 6 0.8857 0.5305 1.4160
4 11 0.5115 0.5374 1.0490 6 0.4909 0.2881 0.7790
8 12 0.3039 0.2941 0.5980 7 0.2924 0.1876 0.4800
16 12 0.1805 0.1612 0.3417 7 0.1837 0.1129 0.2966
32 12 0.1365 0.1124 0.2489 7 0.1372 0.0814 0.2186
64 12 0.1101 0.0873 0.1974 7 0.1194 0.0626 0.1820

Table 5.1: Comparison between Additive and Multiplicative Two-Level
Schwarz preconditioning.

For all the matrices Tables 5.2-5.5 show the number of BiCGSTAB iterations
(It), the execution times for the preconditioner setup (Setup) and for the
solution of the preconditioned system (Solve), and the total times (Total),
for NP = 1, 2, 4, 8, 16, 32, 64 processors. All the times are measured in
seconds and are mean values over six executions. With therm3D it has not
been possible to run the version of 2LH-post using the LU factorization for
NP = 1, 2, because of the high memory requirements.

As expected, for kivap1 and kivap2 the best execution times are obtained
with the RAS preconditioner, since the coarse-level correction is known to
have a mild impact on matrices that do not come for pure elliptic problems.
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kivap1

RAS, overlap 0 RAS, overlap 1
NP It Setup Solve Total It Setup Solve Total
1 12 .2645 1.0830 1.3475 12 0.2658 1.1260 1.3918
2 16 0.1296 0.7101 0.8396 13 0.1613 0.6258 0.7871
4 16 0.0636 0.3706 0.4342 13 0.1170 0.3474 0.4643
8 20 0.0311 0.2276 0.2587 14 0.0789 0.2046 0.2834
16 22 0.0157 0.1330 0.1488 15 0.0579 0.1281 0.1860
32 23 0.0081 0.0777 0.0858 14 0.0528 0.0828 0.1356
64 24 0.0045 0.0388 0.0433 14 0.0446 0.0610 0.1056

2LH-post, Block-Jacobi with ILU 2LH-post, Block-Jacobi with LU
NP It Setup Solve Total It Setup Solve Total
1 6 1.5660 1.0760 2.6420 7 4.4300 1.5160 5.9470
2 6 0.8857 0.5305 1.4160 7 1.3360 0.8590 2.1950
4 6 0.4909 0.2881 0.7790 6 0.5737 0.3558 0.9295
8 7 0.2924 0.1876 0.4800 6 0.3207 0.1761 0.4968
16 7 0.1837 0.1129 0.2966 6 0.1915 0.0990 0.2905
32 7 0.1372 0.0814 0.2186 7 0.1412 0.0804 0.2215
64 7 0.1194 0.0626 0.1820 7 0.1213 0.0613 0.1826

Table 5.2: Iteration numbers and execution times, in seconds, for kivap1.

kivap2

RAS, overlap 0 RAS, overlap 1
NP It Setup Solve Total It Setup Solve Total
1 38 0.1250 1.6560 1.7810 38 0.1251 1.7060 1.8310
2 55 0.0610 1.1490 1.2100 44 0.0762 1.0030 1.0790
4 55 0.0292 0.5909 0.6201 45 0.0639 0.5913 0.6552
8 73 0.0145 0.3982 0.4127 66 0.0394 0.4719 0.5114
16 87 0.0071 0.2476 0.2547 65 0.0294 0.2768 0.3061
32 95 0.0034 0.1104 0.1139 77 0.0253 0.2060 0.2313
64 126 0.0018 0.1116 0.1134 95 0.0216 0.1550 0.1766

2LH-post, Block-Jacobi with ILU 2LH-post, Block-Jacobi with LU
NP It Setup Solve Total It Setup Solve Total
1 19 0.7097 1.4400 2.1500 12 1.0910 1.0290 2.1210
2 20 0.3922 0.8013 1.1940 16 0.4615 0.8029 1.2640
4 20 0.2460 0.4728 0.7188 16 0.2623 0.3973 0.6596
8 25 0.1364 0.3271 0.4634 19 0.1415 0.2542 0.3958
16 26 0.0875 0.2142 0.3017 24 0.0908 0.1950 0.2858
32 29 0.0669 0.1649 0.2318 29 0.0693 0.1664 0.2357
64 37 0.0550 0.1713 0.2263 40 0.0552 0.1864 0.2416

Table 5.3: Iteration numbers and execution times, in seconds, for kivap2.

For the kivap matrices both the two-level preconditioners lead to a reduction
of the iterations with respect to RAS, but this reduction is not strong enough
to balance the larger execution times needed for building and applying the
coarse-space corrections. The two-level preconditioners are more effective on
therm2D and therm3D, that arise from the discretization of elliptic PDEs.
However, while for therm2D the smallest execution times are obtained by
using 2LH-post with the LU factorization, on therm3D the two-level preconditioners
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therm2D

RAS, overlap 0 RAS, overlap 1
NP It Setup Solve Total It Setup Solve Total
1 614 0.2193 172.9000 173.1000 614 0.2212 187.5000 187.7000
2 749 0.1183 108.5000 108.7000 834 0.1229 130.0000 130.1000
4 775 0.0621 54.7900 54.8500 970 0.0682 75.0900 75.1600
8 751 0.0341 26.9400 26.9700 741 0.0410 29.4700 29.5100
16 884 0.0214 15.4100 15.4300 783 0.0285 15.2000 15.2300
32 778 0.0141 6.7300 6.7440 680 0.0220 6.7170 6.7390
64 906 0.0113 5.0490 5.0600 812 0.0225 5.6390 5.6610

2LH-post, Block-Jacobi with ILU 2LH-post, Block-Jacobi with LU
NP It Setup Solve Total It Setup Solve Total
1 183 3.1180 95.8900 99.0100 5 10.2500 3.8210 14.0700
2 182 1.8420 59.2900 61.1300 18 4.0710 12.8300 16.9000
4 190 0.9694 30.6400 31.6100 26 1.8180 8.6890 10.5100
8 184 0.4858 15.0500 15.5300 34 0.7927 5.3530 6.1460
16 171 0.2641 6.8410 7.1050 57 0.3766 3.9230 4.2990
32 175 0.1621 3.4830 3.6460 76 0.2042 2.1980 2.4020
64 176 0.1165 2.4460 2.5620 106 0.1343 1.6330 1.7680

Table 5.4: Iteration numbers and execution times, in seconds, for therm2D.

therm3D

RAS, overlap 0 RAS, overlap 1
NP It Setup Solve Total It Setup Solve Total
1 56 0.4348 27.2500 27.6800 56 0.4259 29.8300 30.2500
2 63 0.2237 15.7600 15.9900 55 0.2484 15.0400 15.2900
4 57 0.1270 10.3400 10.4700 61 0.1770 12.2400 12.4200
8 66 0.0773 6.3240 6.4010 57 0.1327 6.2150 6.3470
16 63 0.0383 2.1370 2.1760 58 0.1014 2.4040 2.5050
32 70 0.0247 1.2200 1.2440 59 0.0895 1.3940 1.4830
64 95 0.0185 0.9156 0.9341 71 0.0874 1.0920 1.1800

2LH-post, Block-Jacobi with ILU 2LH-post, Block-Jacobi with LU
NP It Setup Solve Total It Setup Solve Total
1 16 8.1740 16.0600 24.2300 – —— —— ——
2 16 4.9520 11.1000 16.0500 – —— —— ——
4 16 2.9370 7.8240 10.7600 7 158.8000 22.9800 181.8000
8 16 1.7560 4.3310 6.0870 8 44.1400 10.8800 55.0200
16 16 0.8118 1.8100 2.6220 10 10.2800 4.9550 15.2400
32 16 0.5323 1.0990 1.6310 13 2.4140 2.3730 4.7870
64 19 0.3962 0.8329 1.2290 17 0.8027 1.3300 2.1330

Table 5.5: Iteration numbers and execution times, in seconds, for therm3D.

are outperformed by RAS, except in a few cases. A closer look at the
execution times of 2LH-post with LU shows that this preconditioner requires
a much greater setup time than the RAS variants, because of the very large
size of the matrix and of the sparsity structure, arising from a nine-point
discretization stencil; conversely, the solution time is smaller for the two-
level preconditioner.

This is interesting in real applications for two reasons. First, it is possible
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Figure 5.6: Speedups for RAS with overlap 0.

12 4 8 16 32 64
0

5

10

15

20

25

30

35

# of processors

sp
ee

du
p

RAS − Overlap 1

kivap1
kivap2
therm2D
therm3D

Figure 5.7: Speedups for RAS with overlap 1.

to reuse some of the aggregation and coarse matrix data structures in all the
cases where the aggregation is purely topological and the matrix pattern
has not changed between two successive invocations of the solver. Moreover,
it may be feasible to reuse the same preconditioner for a number of outer
iterations of a nonlinear solver if the coefficient matrix does not change too
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Figure 5.8: Speedups for 2LH-post with four Block-Jacobi sweeps and ILU
factorization of the blocks.
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Figure 5.9: Speedups for 2LH-post with four Block-Jacobi sweeps and LU
factorization of the blocks.

much. In Figures 5.6-5.9 the speedups of the four selected preconditioners
are plotted for each of the test matrices; the values concerning 2LH-post with
the LU factorization on therm3D are missing, since running this test for NP
= 1, 2 is not possible on the system used for this measures. The speedups
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have been computed using the total times, including the time needed to
build the preconditioner. The overall results are affected by the increase in
the number of BiCGSTAB iterations that can be observed with the increase
in the number of processors.

As expected, RAS with overlap 0 generally shows good speedup values.
The only exceptions are provided by kivap2 on 32 and 64 processors; in this
case the speedup tends to saturate because of the relatively small size of the
local portion matrix. The highest speedup value on 64 processor is close to
35 and is obtained with therm2D. By using RAS with overlap 1, a speedup
decrease can be observed on the engine simulation and the 3D thermal
diffusion matrices; speedup values comparable with those corresponding to
overlap 0 are obtained on therm2D, which has a sparsity pattern coming
from a simple discretization stencil. For kivap1 and kivap2 the speedup of
2LH-post with ILU has a very close behavior to that of RAS with overlap
1. On therm2D, 2LH-post with ILU shows a small speedup increase with
respect to RAS, with a value close to 40 on 64 processors. On therm3D,
instead, the speedup for 2LH-post with ILU is lower than for the RAS cases;
this is mainly due to the size and the sparsity structure of the matrix.
The situation is different for 2LH-post with LU. The highest speedup is
now achieved on kivap1, for which the number of BiCGSTAB iterations
is approximately constant, but the time required by the LU factorization
significantly reduces in going from 1 to 64 processors. On kivap2 the speedup
behavior is comparable with that of the other two-level preconditioner, while
on therm2D a strong speedup reduction is observed, which is mainly due
to the large increase of the iterations, and hence of the solve time, as the
number of processors grows.
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Chapter 6

PSBLAS applications
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6.1 Overview

As already discussed in chapter 2, the PSBLAS library has been designed
to address the solution of sparse systems arising from the discretization of
PDEs through iterative solvers. In this context it is very important to handle
efficiently the movement of data among subdomains defined by a graph
partitioning method (as discussed in chapter 2) while providing flexibility
and ease of usage to the user. This makes the PSBLAS library suitable also
for applications using different PDE discretization and solution techniques.

This chapter presents a brief description of application which arise from
different contexts or which are based on different approaches than the solution
of discretized PDEs with iterative solvers. Some of these applications are
still work-in-progrees and only preliminary results are available; moreover
the related documentation is still in beta release stage. Anyway the aim of
this discussion is just to give the reader an idea of the range of applications
of the PSBLAS software package.
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Computational Fluid Dynamics and the KIVA application The development
of the PSBLAS software package has been mainly driven by the issues
arising from applications which are based on the discretization of Partial
Differential Equations. In this sense, Computational Fluid Dynamics
(CFD) studies that support automotive engine design represent a challenging
testbed and an abundant source of suggestions for the development and
enhancement of the PSBLAS library.

The use of CFD, indeed, have revealed to be of great support for
both the design of automotive engines and the experimental work in
order to quickly achieve the projects targets while reducing the product
development costs. However, considerable work is still needed in the
developemnt of suitable software tools since CFD simulation of realistic
industrial applications may take many hours or even weeks that not
always agrees with the very short development times that are required
to a new project in order to be competitive in the market.

The KIVA code [56] solves the complete system of general time-dependent
Navier-Stokes equations and it is probably the most widely used code
for internal combustion engines modeling. Its success mainly depends
on its open source nature. KIVA has been significantly modified and
improved by researchers worldwide, especially in the development of
sub-models to simulate the important physical processes that occurs
in an internal combustion engine (i.e. fuel-air mixture preparation and
combustion).

The next section (section 6.2) describes in details how the KIVA code
can benefit from the usage of the PSBLAS features. In particular
it shows how execution time can be reduced thanks to parallelism
provided by PSBLAS and thanks to the usage of more suitable solvers
which also improve the accuracy of the computations [8].

Lattice-Boltzmann Methods LBM takes inspiration from the idea of solving
fluid flows through a microscopic kinetic approach, trying to mathematically
describe movements and interactions of the small particles that constitute
the flow with the assumption that the solute concentrations are sufficiently
low not to influence the solvent flow.

At the turn of the 1980s, the Lattice Boltzmann Method (LBM) has
been proposed as an alternative approach to solve fluid dynamics problems [10,
70] and due to the refinements and the extensions of the last years [9,
41, 53], it has been used to successfully compute a number of nontrivial
fluid dynamics problems, from incompressible turbulence to multiphase
flow and bubble flow simulations. The main advantages of LBM with
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respect to conventional CFD are its simpler mechanism for doing dynamics,
its easy numerical implementation and its intrinsic parallelism.

The most severe limitation of the original LB method is the uniform
Cartesian grid on which the LBM must be constructed, requiring the
approximation of a curved solid boundary by a series of stair steps.
This represents a particularly severe limitation for practical engineering
purposes especially when there is a need for high resolutions near the
body or the walls. Among the recent advances in lattice Boltzmann
research that have lead to substantial enhancement of the capabilities
of the method to handle complex geometries [9, 41, 53], a particularly
remarkable option is to use irregular lattices by changing the solution
procedure from the original “stream and collide” to a finite volume
technique [59, 75, 76].

The basic differential form of the Lattice Boltzmann equation can
be formulated in a finite-volume framework (see [76]) which can in
turn be implemented with a series of sparse matrix-vector operations.
Moreover, in most applications of LB, it is necessary to employ large
discretization meshes; thus, it is appropriate to use parallel computing
techniques. All of these issues make PSBLAS a suitable choice for the
implementation of applications based on the Lattice Boltzmann which
doesn’t involve the solution of sparse linear systems as discussed in [38].

Thermal Diffusion The PSBLAS solvers have been used to develop an
application called Vulcan (still work-in progress) which is is a finite–
volume application for the solution of the Fourier’s equation (6.1) for
the thermal diffusion in solid bodies.

ρc
∂T

∂t
= div (λgradT ) + q (6.1)

In particular, the steady conduction in materials with variable thermal
conductivity λ has been investigated, in order to assess the validity of
the iterative procedure for dealing with the non–linear effects induced
by the non–constant diffusion coefficient.

The discretization scheme adopted in the code is the central difference,
with an extra source–term for handling the non–orthogonality of the
computational mesh, based on the deferred correction approach proposed
by Ferziger and Peric [34].

Discretizing the equation the equation (6.1) yields a linear system Ax =
b where A is a matrix whose simmetry reflects the ellipticity of the
problem.
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Three kinds of physical boundary conditions are implemented: prescribed
temperature, adiabatic wall and prescribed heat flux. From a numerical
point of view, the first one is a Dirichlet boundary condition, while the
second and third are Neumann ones. The implementation consists in
the introduction of special source terms which add proper contributions
to the right hand side b and to the main–diagonal coefficient of each
row of A. The term q in the (6.1) represents a heat source which can
be uniformly distributed or not.

The loop of external iterations needed for dealing with the semi–implicit
correction of the non–orthogonality and with the non–linearity of the
diffusion coefficient implies the use of PSBLAS matrix rigeneration (see
section 2.5) which improves the speed of the assembling phase in re–
iterated solving process.

The overall procedure has showed a second order accuracy when compared
to analytical solutions existing in literature.

Figure 6.1: Diesel engine piston: mesh

The code has been tested with the tetrahedral mesh of a Diesel engine
piston depicted in figure 6.1, choosing aluminum as material and applying
a prescribed heat flux on the piston head and prescribed temperatures
on the remaining surfaces.
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6.2 Embedding PSBLAS solvers in the KIVA

application

The following sections will review the basic mathematical model of the Navier-
Stokes equations as discretized in the application presented in [8]; the approach
to the linear system solution based on the library routines from [35, 39] will
be also be described.

6.2.1 Mathematical model

The mathematical model of KIVA-3 is the complete system of general unsteady
Navier-Stokes equations, coupled with chemical kinetic and spray droplet
dynamic models. In the following the equations for fluid motion are reported.

• Species continuity:

∂ρm

∂t
+∇ · (ρmu) = ∇ · [ρD∇(

ρm

ρ
)] + ρ̇c

m + ρ̇s
mδml (6.2)

where ρm is the mass density of species m, ρ is the total mass density,
u is the fluid velocity, ρ̇c

m is the source term due to chemistry, ρ̇s
m is the

source term due to spray and δ is the Dirac delta function.

• Total mass conservation:

∂ρ

∂t
+∇ · (ρu) = ρ̇s (6.3)

• Momentum conservation:

∂(ρu)

∂t
+∇ · (ρuu) = − 1

α2
∇p− A0∇(

2

3
ρk) +∇ · σ + Fs + ρg (6.4)

where σ is the viscous stress tensor, Fs is the rate of momentum gain per
unit volume due to spray and g is the constant specific body force. The
quantity A0 is zero in laminar calculations and unity when turbulence
is considered.

• Internal energy conservation:

∂(ρI)

∂t
+∇·(ρIu) = −p∇·u+(1−A0)σ : ∇u−∇·J+A0ρε+Q̇c+Q̇s (6.5)

where I is the specific internal energy, the symbol : indicates the matrix
product, J is the heat flux vector, Q̇c and Q̇s are the source terms due
to chemical heat release and spray interactions.

Furthermore the standard K− ε equations for the turbulence are considered,
including terms due to interaction with spray.
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Numerical method

The numerical method employed in KIVA-3 is based on a variable step
implicit Euler temporal finite difference scheme, where the time steps are
chosen using accuracy criteria. Each time step defines a cycle divided in
three phases, corresponding to a physical splitting approach. In the first
phase, spray dynamic and chemical kinetic equations are solved, providing
most of the source terms; the other two phases are devoted to the solution
of fluid motion equations [57]. The spatial discretization of the equations is
based on a finite volume method , called the Arbitrary Lagrangian-Eulerian
method [62], using a mesh in which positions of the vertices of the cells may
be arbitrarily specified functions of time. This approach allows a mixed
Lagrangian-Eulerian flow description. In the Lagrangian phase, the vertices
of the cells move with the fluid velocity and there is no convection across
cell boundaries; the diffusion terms and the terms associated with pressure
wave propagation are implicitly solved by a modified version of the SIMPLE
(Semi Implicit Method for Pressure-Linked Equations) algorithm [58].Upon
convergence on pressure values, implicit solution of the diffusion terms in
the turbulence equations is approached. Finally, explicits methods, using
integral sub-multiple time-steps of the main computational time step, are
applied to solve the convective flow in the Eulerian phase.

6.2.2 Algorithmic issues

One of the main objectives of the work on the KIVA code described in [35]
was to show that general purpose solvers, based on up-to-date numerical
methods and developed by experts, can be used in specific application codes,
improving the quality of numerical results and the flexibility of the codes as
well as their efficiency.

The original KIVA code employs the Conjugate Residual method, one
member of the Krylov subspace projection family of methods [7, 44, 49, 64].
Krylov subspace methods originate from the Conjugate Gradient algorithm
published in 1952, but they became widely used only in the early 80s. Since
then this field has witnessed many advances, and many new methods have
been developed especially for non-symmetric linear systems. The rate of
convergence of any given iterative method depends critically on the eigenvalue
spectrum of the linear system coefficient matrix. To improve the rate of
convergence it is often necessary to precondition it, i.e. to transform the
system into an equivalent one having better spectral properties. What follows
describes a work started with the idea of introducing new linear system
solvers and more sophisticated preconditioners in the KIVA code; a number
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of issues related to the code design and implementation had to be tackled to
achieve significant results.

Code design issues

KIVA-3 is a finite-volume code in which the simulation domain is partitioned
into hexahedral cells, and the differential equations are integrated over the
cell to obtain the discretized equation, by assuming that the relevant field
quantities are constant over the volume. The scalar quantities (such as
temperature, pressure and turbulence parameters), are evaluated at the centers
of the cells, whereas the velocity is evaluated at the vertices of the cells. The
cells are represented through the coordinates of their vertices; the vertex
connectivity is stored explicitly in a set of three connectivity arrays, from
which it is possible by repeated lookup to identify all neighbours, as shown
in figure 6.2. The original implementation of the CR solver for linear employs

i1

i3 i2

i4

i5

i6i7

i8

imtab(i4)

jmtab(i4)
kmtab(i4)

Figure 6.2: Vertex numbering for a generic control volume

a matrix-free approach, i.e. the coefficient matrix is not formed explicitly,
but its action is computed in an equivalent way whenever needed; this is
done by applying the same physical considerations that would be needed in
computing the coefficients: there is a main loop over all cells, and for each cell
the code computes the contribution from the given cell into the components
corresponding to all adjacent cells (including itself), from i1 through i8.
This is a “scatter” approach, quite different from the usual “gather” way of
computing a matrix-vector product.

The major advantage of a matrix-free implementation is in terms of
memory occupancy. However it constraints the kind of preconditioners that
can be applied to the linear system; in particular, it is difficult to apply
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preconditioners based on incomplete factorizations. Moreover, from an implementation
point of view, data structures strictly based on the modeling aspects of the
code do not lend themselves readily to transformations aimed at achieving
good performance levels on different architectures.

The above preliminary analysis has influenced the design of the interface
to the sparse linear solvers and support routines in [39] with the following
characteristics:

1. The solver routines are well separated into different phases: matrix
generation, matrix assembly, preconditioner computation and actual
system solution;

2. The matrix generation phase requires an user supplied routine that
generates (pieces of) the rows of the matrix in the global numbering
scheme, according to a simple storage scheme, i.e. coordinate format;

3. The data structures used in the solvers are parametric, and well separated
from those used in the rest of the application.

6.2.3 Integration of the numerical library

The basic groundwork for the parallelization and integration of the numerical
library has been laid out at the time of [35], which is going to be briefly
reviewed below.

The code to build the matrices coefficients has been developed starting
from the original solver code: the solvers in the original KIVA code are built
around routines that compute the residual r = b−Ax, and the right hand side
b and the matrix A have been built starting from these. Since the solution
of equations for thermodynamic quantities (such as temperature, pressure
and turbulence) requires cell center and cell face values, the non-symmetric
linear systems arising from temperature, pressure and turbulence equations
have coefficient matrices with the same symmetric sparsity pattern, having
no more than 19 nonzero entries per row. In the case of the linear systems
arising from the velocity equation, following the vectorial solution approach
used in the original code, the unknowns are ordered first with respect to
the three Cartesian components and then with respect to the grid points.
The discretization scheme leads to non-symmetric coefficient matrices with
no more than 27 entries per (block) row, where each entry is a 3× 3 block.

Algorithmic Improvements

The original KIVA-3 code solution method, the Conjugate Residual method,
is derived under the hypothesis of a symmetric coefficient matrix; thus, there
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is no guarantee that the method should converge on non-symmetric matrices
such as the ones encountered in KIVA. Therefore alternative solution and
preconditioning methods has been tested with the aim to achieve good performance
and reliability. Since the convergence properties of any given iterative method
depend on the eigenvalue spectrum of the coefficient matrices arising in the
problem domain, there no reason to expect that a single method should
perform optimally under all circumstances [55, 64, 72]. Thus an experimental
approach has been adopted, in searching for the best compromise between
preconditioning and solution methods. The Bi-CGSTAB method has been
choosen for all of the linear systems in the SIMPLE loop; the critical solver is
that for the pressure correction equation, where a block ILU preconditioner
has been used, i.e. an incomplete factorization based on the local part of A.
The BiCGSTAB method always converged, usually in less than 10 iterations,
and practically never in more than 30 iterations, whereas the original solver
quite often would not converge at all.

The new code also gains in performance for two other reasons:

1. The termination of the SIMPLE loop is based on the amount of the
pressure correction; thus a better solution for the pressure equation
reduces the number of SIMPLE iterations needed.

2. The time-step chosen for the discretization of the non linear equations
is no longer limited by the quality of the linear solvers.

Further research work on other preconditioning schemes is currently ongoing,
and it is planned to include its results in future versions of the code [13, 22].

6.2.4 Parallelization issues and new developments

Since the time of [35] the code has undergone a major restructuring: FAST-
EVP code is now based on the KIVA-3V version, and thus it is able to model
valves. This new modeling feature has no direct impact on the SIMPLE
solvers interface, but it is important in handling mesh movement changes.
While working on the new KIVA-3V code base, he space allocation requirements
have been reviewed, cleaning up a lot of duplications.

All computations in the code are parallelized with a domain decomposition
strategy: the computational mesh is partitioned among the processors participating
in the computation. This partitioning is induced by the underlying assumptions
in the linear system solvers; however it is equally applicable to the rezoning
phase. The support library routines allow to manage the necessary data
exchanges throughout the code based on the same data structures employed
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for the linear system solvers; thus, it is possible to define a unifying framework
for all computational phases.

The rezoning phase is devoted to adjusting the grid points following the
application of the fluid motion field; the algorithm is an explicit calculation
that is based on the same “gather” and “scatter” stencils found in the matrix-
vector products for the linear systems phase in figure 6.2. It is thus possible
to implement in parallel the explicit algorithm by making use of the data
movement operations defined in the support library [39].

The chemical reaction dynamics is embarassingly parallel, because it
treats the chemical compounds of each cell independently.

For the spray dynamics model specific operators that follow the spray
droplets in their movement have been developed, transferring the necessary
information about the droplets whenever their simulated movement brings
them across the domain partition boundaries.

Mesh movement

The simulation process modifies the finite volume mesh to follow the (imposed)
piston and valve movement during the engine working cycle (see also Fig. 6.3.
The computational mesh is first deformed by reassigning the positions of
the finite volume surfaces in the direction of the piston movement, until a
critical value for the cell aspect ratio is reached; at this point a layer is
cut out (or added into) the mesh to keep the aspect ratio within reasonable
limits. When this “snapper” event takes place it is necessary to repartition
the mesh and to recompute the patterns of the linear system matrices. The
algorithm for matrix assembly takes into account the above considerations by
preserving the matrix structure between two consecutive “snapper” points,
and recomputing only the values of the non-zero entries at each invocation
of the linear system solver; this is essential to the overall performance, since
the computation of the structure is expensive.

Similarly, the movement of valves is monitored and additional “snapper”
events are generated accordingly to their opening or closing; the treatment
is completely analogous to that for the piston movement.

6.3 Experimental results

The first major test case discussed is based on a high performance competition
engine that was used to calibrate the software. The choice of this engine was
due to the availability of measurements to compare against, so as to make
sure not to introduce any modifications in the physical results. Moreover it
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Figure 6.3: Competition engine simulation

Processes Time steps Total time (min)
1 2513 542
2 2515 314
4 2518 236
5 2515 186
6 2518 175
7 2518 149

Table 6.1: Competition engine timings

is a very demanding and somewhat extreme test case, because of the high
rotation regime, high pressure injection conditions, and relatively small mesh
size.

A section of the mesh, immediately prior to the injection phase, is shown
in figure 6.3; the overall mesh is composed of approximately 200K control
volumes. The simulated comprises 720 degrees of crank angle at 16000 rpm,
and the overall timings are shown in table 6.1.

The computation has been carried out at NUMIDIA srl on a cluster
based on Intel Xeon processors running at 3.0 GHz, equipped with Myrinet
M3F-PCIXD-2 network connections. The physical results were confirmed to
be in line with those obtained by the original code. Figure 6.4 shows the
average value of the pressure in the combustion chamber. Figure 6.5 shows
the partitioning of the mesh on 16 processors; the snapshot is taken close to
the top dead center.

Another interesting test case is a complete test of a commercial engine
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Figure 6.4: Competition engine average pressure

Figure 6.5: Mesh partitioning on 16 processes.

cylinder coupled with an air box, running at 8000 rpm; figure 6.6 shows
the resulting airflow. The discretization mesh is composed of 483554 control
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volumes; the simulation comprises the crank angle range from 188 to 720
degrees, with 4950 time steps, and it takes 703 minutes of computation on
9 nodes of the Xeon cluster. In this particular case the grid had never been
tested on a serial machine, or on smaller cluster configurations, because of
the excessive computational requirements; thus the parallelization strategy
has enabled us to obtain results that would have been otherwise unreachable.

Figure 6.6: Commercial engine air flow results
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Conclusions
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Chapter 7

Conclusions

The topics discussed throughout the various sections of this thesis describe
the activity carried out during a PhD course in Computer Science. All of
the work presented has been developed in the context of Computational
Science and Engineering. It has been already pointed out how important
simulation has become either in scientific disciplines or in industrial processes.
Many areas can substantially benefit from the usage of CSE tools to achieve
a deeper understanding of phenomena that are either to expensive or too
dangerous, if not impossible at all, to analyze by direct inspection. Examples
are chemistry, biology, bioengineering, wheater forecast, automotive industry,
electronic design automation, aircraft design...

The development of efficient and easy to use CSE tools is, thus, of key
importance.

This thesis advocates how a multidisciplinary approach is almost essential
to this aim. Based on this concept, Computational Sicence and Engineering
can be defined as the overlap of three main areas (see [82]):

Science/Engineering this disciplines develop models that simulate natural
phenomena;

Applied Mathematics this is the area where algorithms and numerical
methods are developed for the solution of model coming from Science/Engineering;

Computer Science this area deals with the efficent implementation of numerical
methods on computer architectures.

Each of these disciplines gives it contribution to the development and
improvement of CSE tools and methods. Figure 7.1 (taken from [82]) shows
how the development of new and more powerful numerical methods contributes
to the efficiency of CSE tools (top) compared to the contribution offered by
the advances in computer performances (bottom). In particular this figure
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refers to methods for the solution of linear sparse systems some of which
have been extensively discussed in chapters 1 and 5. Even if figure 7.1 is not

Figure 7.1: Comparison of the contributions of mathematical algorithms and
computer hardware.

updated, the same trend is likely to be followed in the next years. This figure
shows that as the complexity of numerical methods and computer hardware
grows over the years, higher CSE skills have to be developed in order to
provide efficient implementations of modern numerical methods that take
full advantage of the most recent computer machinery.

To this extent, scientific and engineering applications represent an uncomparable
source of inputs. A concrete knowledge of applied mathematics is essential
to identify the numerical method that better suits the solution of a scientific
problem. Finally substantial computer sience skills allow the development of
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efficient implementations of numerical methods on modern and very complex
computer architectures.

This thesis shows how it is possible to develop efficient yet flexible CSE
tools (namely the PSBLAS library) based on knowledge of the three disciplines
discussed above:

Computer Science chapter 3 presents an self-adaptive optimization technique
for the matrix-vector product operation. This technique is based on the
usage of a blocked matrix storage format (BCSR) where the dimension
of the blocking provides different level of performance. The self-adaptativity
consists on the automatic choice of the blocking dimension in such a
way that execution times for the matrix-vector product are minimized.
Results presented in section 3.3.3 show that this optimization technique,
while providing extremely high portability, is capable of reducing the
matrix-vector product execution time up to a factor of four (in the
case of the Itanium2 architecture). However, as already discussed
in section 3.3.3, the speedup provided by this optimization technique
strongly depends on the architecture and inout data characteristics
and, thus, it may happen that for some matrices on some architectures
using the BCSR storage format doesn’t provide any improvement. This
is the case of most of the matrices in the testset on the MIPS and Xeon
architectures.

Self-adaptativity is gaining a lot of ground in dense linear algebra.
This is due to the fact that the performance of dense linear algebra
code is only dependent on architecture characteristics. The ATLAS [81]
project is a well known example of self-adaptive software package for the
dense linear algebra. In sparse linear algebra, developing self-tunable
source code is much more complex because the performance of each
operation is strongly dependent also on the input data characteristics.
This introduces the need for a run-time analisys phase whose cost may
exceed the improvements gained.

However chapter 3 shows that self-adaptativity is worth being investigated
even in sparse linear algebra.

Possible future directions include the integration of the proposed optimization
technique into the PSBLAS library (which is, at the moment, work in
progress). This implies that the BCSR optimizations must be extended
to many ither operations different than the matrix-vector product.
Moreover the same approach can be extended to other parametric
storage formats for sparse matrices like, for example, the JAD variant
implemented in the PSBLAS library (see section 3.1.3). Finally other
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optimization techniques like cache blocking or TLB blocking may be
exploited in a self-adaptive way.

Applied Mathematics Chapters 4 and 5 describe to preconditioning techniques
for iterative linear system solvers. The Additive Schwraz and Two-
Level Additive Schwarz are parallel preconditioners that are, respectively,
based on Domain Decomposition and Multilevel methods described in
sections 4.1 and 5.1. Both of them show very good numerical properties;
the Additive Schwarz preconditioner may substantially reduce the number
of iterations to convergence with respect to the Block Jacobi (BJA)
preconditioner for most of the matrices that have been used for testing
(i.e. those reported in section 4.4 and more). In the case of the Two-
Level Additive Schwarz preconditioner, this reduction is even stronger:
in the case of the “therm2D” matrix the number of iterations is reduced
by more than an order of magnitude when the Two-Level preconditioner
matrix is factorized with a complete factorization. Both of these preconditioners,
however, have an expensive setup phase and also the application phase
is considerably more expensive with respect to simple preconditioners
as BJA. This means that in some cases the solver execution time
may only barely reduced if even not increased. It is important to
recall that the preconditioner setup cost may be substantially reduced
considering that one preconditioner may be used more than once and
that topological informations may be reused in subsequent preconditioners
building.

Future work will be directed to the development of more general Multi-
Level preconditioners: the Two-Level Additive Schwarz preconditioner
shows very good numerical properties in the case where the Two-Level
matrix is completely factorized; however a Two-Level preconditioning
matrix may still to big to be completely factorized and, thus, the cost of
the preconditioner setup and application phases too high. Higher level
preconditioning matrices should be enough small to be easily factorize
with a complete factorization.

Science/Engineering Section 6.2 shows how a general purpose CSE software
(namely the PSBLAS library) can be easily used to build applications
that solve models developed in Science or Engineering studies. The
PSBLAS library has been used to replace the original solvers in the
KIVA-III application for automotive engine design. The library integration
has provided several benefilts to the application either from a numerical
or a performance point of view. The PSBLAS library is being used also
to develop other applications (see section 6) some of which (i.e. those
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based on the Lattice-Boltzmann methods) are based on a completely
different approach than the discretization of PDEs which is the main
target of the PSBLAS development.

Future works include providing these applications more features that
improve performance. Specifically, the possibility to reuse topological
information in the preconditioner building phase during successive timestep
is being investigated.
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Appendix A

Experimental Setup

Table A.2 contains the set of matrices that have been used to test and
tune the automatic selection procedure of the BCSR storage format block
size presented in chapter 3. Matrices are reported along with their size,
number of nonzero elements and nonzero elements per row which has, as
described in section 3.3.2, a deep impact on the flop rate of the sparse
matrix-vector product operation. All of the matrices have been downloaded
from “University of Florida Sparse Matrix Collection” [85] and the “Matrix
Market” [83].

Tables A.3 and A.4 contain the architecture that have been used to test
and tune the automatic selection procedure of the BCSR storage format block
size presented in chapter 3. Details are given about the kind of processor and
its clock frequency, the cache size, the memory size, the Operating System
and the compilers used. The AMD Athlon 1200, the Itanium2, the MIPS and
Power3 architectures are installed at the Innovative Computing Laboratory
of the University of Tennesse Knoxville (UTK). The AMD Athlon 1800,
the PentiumIII and the Xeon machines are installed at the CE Laboratory
of the “Tor Vergata University of Rome”, Computer Science Engineering
department. The AMD Athlon 64-bit 3500+ is installed at the Mechanics
Engineering department of the “Tor Vergata” University of Rome.
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Matrix Dimension Nonzero Nonzeroes per row

west2021.mtx 2021 X 2021 7353 3.64
sherman3.mtx 5005 X 5005 20033 4.00
shyy161.mtx 76480 X 76480 329762 4.31
finan512.mtx 74752 X 74752 335872 4.49
bayer02.mtx 13935 X 13935 63679 4.57
pwt.mtx 36519 X 36519 181313 4.96
zenios.mtx 2873 X 2873 15032 5.23
jpwh 991.mtx 991 X 991 6027 6.08
saylr4.mtx 3564 X 3564 22316 6.26
onetone2.mtx 36057 X 36057 227628 6.31
orsreg 1.mtx 2205 X 2205 14133 6.41
lns 3937.mtx 3937 X 3937 25407 6.45
lnsp3937.mtx 3937 X 3937 25407 6.45
gemat11.mtx 4929 X 4929 33185 6.73
wang3.mtx 26064 X 26064 177168 6.80
wang4.mtx 26068 X 26068 177196 6.80
bayer10.mtx 13436 X 13436 94926 7.07
memplus.mtx 17758 X 17758 126150 7.10
vibrobox.mtx 12328 X 12328 177578 14.40
s3rmt3m1.mtx 5489 X 5489 112505 20.50
bai.mtx 23560 X 23560 484256 20.55

Table A.1: Details about the matrices used to tune and test te performance
model presented in chapter 3
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Matrix Dimension Nonzero Nonzeroes per row

coater2.mtx 9540 X 9540 207308 21.73
lhr10.mtx 10672 X 10672 232633 21.80
rdist1.mtx 4134 X 4134 94408 22.84
bcsstm27.mtx 1224 X 1224 28675 23.43
bcsstk35.mtx 30237 X 30237 740200 24.48
nasasrb.mtx 54870 X 54870 1366097 24.90
ct20stif.mtx 52329 X 52329 1375396 26.28
venkat01.mtx 62424 X 62424 1717792 27.52
mcfe.mtx 765 X 765 24382 31.87
gupta1.mtx 31802 X 31802 1098006 34.53
crystk02.mtx 13965 X 13965 491274 35.18
orani678.mtx 2529 X 2529 90158 35.65
3dtube.mtx 45330 X 45330 1629474 35.95
crystk03.mtx 24696 X 24696 887937 35.95
vavasis3.mtx 41092 X 41092 1683902 40.98
goodwin.mtx 7320 X 7320 324784 44.37
rim.mtx 22560 X 22560 1014951 44.99
olafu.mtx 16146 X 16146 1015156 62.87
ex11.mtx 16614 X 16614 1096948 66.03
raefsky4.mtx 19779 X 19779 1328611 67.17
raefsky3.mtx 21200 X 21200 1488768 70.22
mbeaflw.mtx 496 X 496 49920 100.64
dense.mtx 1500 X 1500 2250000 1500.00

Table A.2: Details about the matrices used to tune and test te performance
model presented in chapter 3
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AMD Athlon AMD Athlon AMD Athlon Itanium2
1200 1800 64-bit 3500+

Proc. type AMD Athlon k6 AMD Athlon AMD Athlon 64 Genuine Intel
MP 2200+ Processor 3500+ IA-64 Itanium2

Proc. freq. 1200 MHz 1800 MHz 2211 MHz 900 MHz
Cache size 64 KB L1 64 KB L1 64 KB L1 32 KB L1

256 KB L2 256 KB L2 512 KB L2 256 KB L2
1.5 MB L3

Memory size 256 MB 2 GB 2 GB 8 GB
OS GNU-Linux Fedora Core 3 Fedora Core 3 Red Hat

Linux 3.2.3
Compilers Intel Intel Intel Intel

compilers v9.0 compilers v9.0 Compilers v9.0 Compilers v9.0

Table A.3: Details of the architectures used to test and tune the performance
model presented in chapter 3

MIPS PentiumIII Power3 Xeon
Proc. type MIPS R12000 PentiumIII IBM Power3 Intel Xeon

(Coppermine)
Proc. freq. 270 MHz 930 MHz 375 MHz 3057 MHz
Cache size 32 KB L1 16 KB L1 64 KB L1 32 KB L1

2 MB L2 256 KB L2 8 MB L2 512 KB L2
Memory size 256 MB 512 MB 1 GB 1 GB

OS IRIX64 6.5 Fedora Core 3 AIX 5.1 Fedora Core 3
Compilers MIPSpro Intel IBM xlc and Intel

Compilers v7.41 Compilers v9.0 IBM xlf v6.0 Compilers v9.0

Table A.4: Details of the architectures used test and tune the performance
model presented in chapter 3
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